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1. Introduction

Studying the correspondence between global and infinitesimal symmetries is a clas-
sical topic. We call the passage from global symmetries to infinitesimal ones dif-
ferentiation, and the inverse passage integration. A classical example is the case of
Lie groups and Lie algebras,

Lie algebras
differentiation �� Lie groups

integration
��

However, when the symmetries become more complicated, such as those of L∞-
algebras, or L∞-algebroids, the integration and differentiation both become harder.
The following problems have been solved for these higher symmetries: integration
of nilpotent L∞-algebras by Getzler [5], integration of general L∞-algebras by
Henriques [6], differentiation of L∞-groupoids by Ševera [13], both directions for
Lie 1-algebroids by Cattaneo and Felder [2], Crainic and Fernandes [3], and from
a higher viewpoint by Tseng and Zhu [11]. Here, the author wants to emphasize a
middle step of local symmetries missing in the above correspondence,

Lie algebras
local integration�� local Lie

groups

extension? ��
differentiation

�� Lie groups
restriction

�� .
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Indeed, to obtain infinitesimal symmetries by differentiation, we only need local
symmetries. Conversely, sometimes it is easier to obtain a local integration, avoid-
ing some analytic issues (for example, in Getzler [5] for L∞-algebras). In this
paper, we make our first attempts towards the extension problem from local
symmetries to global ones: we construct an extension from local Kan simplicial
manifolds to weak Kan ones. The classical extension of a local Lie group to a
topological group discussed by van Est [12] can be viewed as the 1-truncation of
our result. Its 2-truncation applied to local Lie groupoids provides a solution to
the integration problem of Lie algebroids into Lie 2-groupoids [15]. Observe that
unlike Lie algebras which are in one-to-one correspondence with simply connected
Lie groups, Lie algebroids (integrable or not) are in one-to-one correspondence
with Lie 2-groupoids with some étale property.

We use the viewpoint of Kan simplicial manifolds to describe arbitrary Lie
n-groupoids.

Recall that a simplicial manifold X consists of manifolds Xn and structure maps

dn
i : Xn→ Xn−1 (face maps) sn

i : Xn→ Xn+1 (degeneracy maps),

for i ∈{0,1,2, . . . ,n} (1)

that satisfy suitable coherence conditions (see,e.g., [4]). The first two examples of
simplicial manifolds (actually, they are simplicial sets with discrete topology) are
the simplicial m-simplex �[m] and the horn �[m, j] with

(�[m])n={ f : (0,1, . . . ,n)→ (0,1, . . . ,m)| f (i)≤ f ( j),∀i ≤ j},
(2)

(�[m, j])n={ f ∈ (�[m])n|{0, . . . , j −1, j +1, . . . ,m}� { f (0), . . . , f (n)}}.
The horn �[m, j] should be thought as a simplicial set obtained from �[m] by
taking away its unique non-degenerate m-simplex as well as the jth of its m + 1
non-degenerate (m−1)-simplices.

Λ[1,1] Λ[1,0] Λ[2,2] Λ[2,1] Λ[2,0] Λ[3,3] Λ[3,2]   ..

Our convention for arrows is that they are oriented from larger numbers to
smaller numbers.

In homotopy theory, the Kan conditions require the natural restriction maps

Xm =hom(�[m], X)→hom(�[m, j], X), (3)

to be surjective. Equivalently, every horn can be filled up by a simplex. They cor-
respond to the possibility of composing and inverting various morphisms, in the
language of groupoids.
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With enrichment in differential geometry, the Kan conditions are

K an(m, j): Equation (3) is a surjective submersion,

K an!(m, j): Equation (3) is a diffeomorphism.

But since hom(�[m, j], X) is formed by taking the fibre product of the Xi ’s, it
may not be a manifold. However, if Equation (3) is a submersion for all 0≤ j ≤
m ≤m0, as shown in [6, Lemma 2.4], hom(�[m0, j], X) is a manifold for all 0≤
j ≤m0. Hence, we are allowed to define,

DEFINITION 1.1. A Lie n-groupoid X (n ∈N∪∞) is a simplicial manifold that
satisfies K an(m, j), ∀m ≥ 1, 0≤ j ≤m, and K an!(m, j), ∀m > n, 0≤ j ≤m. When
n=∞, a Lie ∞-groupoid is also called a Kan simplicial manifold.

Then a Lie 1-groupoid is simply the nerve of a Lie groupoid.
To describe local Lie groupoids, we need local Kan conditions:

K anl(m, j): Equation (3) is a submersion,
K anl !(m, j): Equation (3) is injective étale.

DEFINITION 1.2. A local Lie n-groupoid X (n ∈N∪∞) is a simplicial manifold
that satisfies K anl(m, j), ∀m ≥ 1, 0≤ j ≤m, and K anl !(m, j), ∀m > n, 0≤ j ≤m.
When n=∞, a local Lie ∞-groupoid is also called a local Kan simplicial manifold.

Then, the nerve of a local Lie groupoid is a local Lie 1-groupoid X .
As soon as we have done this, it becomes clear that to associate a Kan object

K an(X) to a local Kan simplicial manifold X , we need to do some sort of fibrant
replacement in the category of simplicial manifolds. However, simplicial manifolds
do not form a model category and we need to do it by hand. In fact, the differen-
tial category is rather special, even the construction for simplicial presheaves can-
not be used directly here. It turns out that the object K an(X) constructed directly
by Quillen’s small object argument is not a Kan simplicial manifold, however, it
is a simplicial manifold and is Kan as a simplicial set. We also prove certain
representability conditions for K an(X) that make it into a weak Kan simplicial
manifold (see Sect. 2), a property slightly weaker than that of a Kan simplicial
manifold. On the other hand, the defects of K an(X) lie only on high levels, that
is, if we perform a 2-truncation τ2(K an(X)), and the 2-truncation is still represent-
able, then τ2(K an(X)) is indeed a Lie 2-groupoid.

2. Definition

To simplify the calculation that we shall encounter later, we introduce a new con-
cept: a simplicial manifold is invertible, if there are isomorphisms

hom(�[2,0], X)∼=hom(�[2,1], X)∼=hom(�[2,2], X),

which are compatible with the face maps hom(�[2], X)→hom(�[2, j], X).
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A local Lie groupoid G loc
1 ⇒G loc

0 has locally defined multiplication m :V ×G loc
0

V

⇒G loc
1 , where V ⊂G loc

1 is an open neighborhood of G loc
0 . We can refine G loc

1 such
that the inverse i is defined from G loc

1 to G loc
1 . Hence, the nerve of a local Lie

groupoid is an invertible local Kan simplicial manifold. Since for higher groupoids,
we do not have explicit inverses, we drop higher invertibility condition for local Lie
n-groupoids. In all cases, invertibility is only to simplify the calculation, and our
motivation is to deal with local Lie 1-groupoids.

Now, we try to define a functor K an sending invertible local Kan manifolds to
Kan simplicial manifolds by modifying directly Quillen’s small object argument.
We will see that this construction is not successful, however, we arrive at a sim-
plicial manifold satisfying conditions slightly weaker than the Kan conditions. Let

J := {�[k, j]→�[k] :0≤ j ≤ k≥3, }∪ {�[2,1]→�[2]}, (4)

be a subset of inclusions with respect to which the Kan conditions have the right
lifting property. Given a local Kan manifold X , we then construct a series of sim-
plicial manifolds

X = X0→ X1→ X2→·· ·→ Xβ→·· · (5)

by an inductive push-out:

(6)

Then, we let K an(X)= colimβ∈N Xβ .
Now, we make some calculations for the first steps of this Kan replacement. First

of all, X0= X1
0= X2

0=· · ·=K an(X)0, and

X1
1= X1 � (X1×X0 X1)

X2
1= X1

1 � X1
1×X0 X1

1=
= X1

1 �
(
X1×X0 X1 � X1×X0 (X1×X0 X1)

� (X1×X0 X1)×X0 X1 � (X1×X0 X1)×X0 (X1×X0 X1)
)

...

K an(X)1= X1 � (X1×X0 X1)� (X1
1×X0 X1

1)� (X2
1×X0 X2

1) . . . ,

(7)

which we can represent by the following picture:
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A calculation shows that

X1
2= X2 � X1×X0 X1 � X1×X0 X1 � X1×X0 X1

� (�3
j=0 hom(�[3, j], X)

X2
2= X1

2 � X1
1×X0 X1

1 � X1
1×X0 X1

1 � X1
1×X0 X1

1

� (�3
j=0 hom(�[3, j], X1)

...

Inside X1
2, there are three copies of X1×X0 X1. The first is an artificial filling of

the horn X1×X0 X1, and the second two are images of degeneracies of X1×X0 X1

in X1
1. Similarly, for X2

2, etc., we represent an element in X1
2 as

(8)

plus the degenerate ones in the other two copies of X1×X0 X1. Furthermore, we
represent an element in X2

2 by

X1
2 : described as above

(9)

We now show that

X1
2→hom(�[2,0], X1)= X1

1×d2,X0,d1 X1
1 (10)

is not a submersion.
We first need some technical preparation. A simplicial set S is called collapsible

if it admits a filtration

pt= S0⊂ S1⊂· · ·⊂ Sk = S (11)

such that each Si is obtained from the previous one by filling a horn, namely such
that Si can be written as Si = Si−1��[ni ,li ]�[ni ] for some injective map �[ni , li ] ↪→
Si−1. Thus, we can define an order relation on the collapsible simplicial sets: we
say that S is not greater than T , and we write S ≺ T , if T = St and S= Ss with
s≤ t in Equation (11). By convention, the notation S≺T also indicates the inclu-
sion map S→T . We also define the dimension of a collapsible simplicial set S by

dim S=max
k
{�[k]≺ S}.

LEMMA 2.1. Given S≺ T and a local Kan simplicial manifold X , hom(T, X) and
hom(S, X) are both manifolds, and the natural map

hom(T, X)→hom(S, X),

is a submersion.
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This is proven in [6, Lemma 2.4] for Kan simplicial manifolds, but it is easy to see
that it works also for local Kan ones since only the submersion condition is used.

We return to the study of the map Equation (10). X1
2 has several components,

and the horn projection map Equation (10) induces on each component the fol-
lowing maps:

X2→hom(�[2,0], X), hom(�[3, j], X)→hom(�[2,0], X) (12)

X1×X0 X1→ X1×X0 (X1×X0 X1), X1×X0 X1→ (X1×X0 X1)×X0 (X1×X0 X1),

(13)

X1×X0 X1→ X1×X0 X1. (14)

The morphisms in Equation (12) are always submersions by Lemma 2.1. How-
ever, the morphisms in Equation (13) are not submersions. This implies that
hom(�[2], K an(X))→ hom(�[2,0], K an(X)) will not be a submersion. Hence,
K an(X) will not be a Kan simplicial manifold, but we will prove that it satisfies

(A) K an(X) is a simplicial manifold;
(B) hom(S, K an(X)) is a manifold for any collapsible S;
(C) the natural map K an(X)n→hom(�[n, l], K an(X)) is surjective for all n and

l with 0≤ l≤n.

Simplicial manifolds satisfying such conditions are called weak Kan simplicial man-
ifolds. These weak Kan simplicial manifolds are indeed Kan as simplicial sets.
The submersion condition in the Kan conditions is replaced by condition (B). By
Lemma 2.1, we can see that the submersion condition implies (B), hence weak Kan
is indeed weaker than Kan. However, a submersion condition is usually applied to
guarantee some representability, for example, the one in condition (B). Hence, we
see that in many cases this condition will be sufficient to conclude. For example,
we can still talk about hypercovers of weak Kan simplicial manifolds (but they will
not be used in this paper).

Before attacking the problem, we prove a technical lemma:

LEMMA 2.2. Suppose that the Xβ ’s are a sequence of simplicial sets constructed by
Equation (6).

1. If S is a collapsible simplicial set, then we can decompose

hom(S, Xβ+1)=�a∈A hom(Sa, Xβ),

with a finite set of collapsible simplicial sets {Sa : a ∈ A} 
 S satisfying dim Sa ≤
dim S.

2. This decomposition respects morphisms, that is if S≺ T , and both of them have
a decomposition,

hom(S, Xβ+1)=�a∈A hom(Sa, Xβ), hom(T, Xβ+1)=�a′∈A′ hom(Ta′, Xβ),
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then there is a map α : A′ → A, and morphisms of simplicial sets Sα(a′)→ Ta′ ,
such that the natural morphism hom(T, Xβ+1)→hom(S, Xβ+1) is induced from
hom(Ta′, Xβ)→hom(Sα(a′), Xβ) on the level of their decompositions.

Proof. Since the procedure to form Xβ+1 from Xβ is the same as the one to
form X1 from X , we only have to prove the two statements for β= 0. Since X is
arbitrary, the decomposition in Equation (1) is clearly unique. We use an induction
on the size of S and T . The initial assumption is verified in the calculation we did
earlier in this section. It is clear that Equation (1) holds for �[m] for m ∈N. Now
with a fixed n, we consider a horn filling diagram as we mentioned in the proce-
dure of Equation (11)

(15)

with dim S≤dim T ≤n−1, and k≤n−1.
We suppose that

(i) statement (1) is true for all S′ with S′ ≺ S;
(ii) statement (2) is true for S′ ≺ T ′ and S′ ≺�[n] when dim S′ ≤ dim T ′ ≤ n− 1

and when (1) is true for S′ and T ′.

To complete the induction, we will prove that

• statement (1) holds for T ;
• statement (2) holds for S≺T , and holds for T ≺�[n] if such a map T→�[n]

exists.

First, we apply hom(−, X1) to Equation (15) and apply the induction hypothesis
to hom(S, X1), hom(�[k, j], X1) and hom(�[k], X1). Then we have

hom(T, X1)=hom(S, X1)×hom(�[k, j],X1) hom(�[k], X1)=
=�a′∈A′ hom(S′a′ , X)×�a∈A hom(Sa ,X) �a′′∈A′′ hom(S′′a′′ , X)=
=�b∈B hom(Tb, X).

Here, Tb is formed when α(a′)=α(a′′) by
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We obtain a map B→ A′ defined by b �→a′ and morphisms S′a′ →Tb. They induce
the morphisms hom(Tb, X)→ hom(S′a′ , X), hence the morphism hom(T, X1)→
hom(S, X1). It’s not hard to see that T ∈ {Tb} by the induction hypothesis and
Equation (15).

Suppose hom(�[n], X1)=�c∈C (Dc, X). If there is a map T ≺�[n], by restriction,
we obtain maps S≺�[n], �[k, j]≺�[n], and �[k]≺�[n] which fit in the following
commutative diagram:

S ∆[n]

Λ[k, j ] ∆[k]

By the induction hypothesis, we have

• the morphism hom(�[n], X1)→ hom(S, X1) is induced by a map α′ :C→ A′
and morphisms S′

α′(c)→Dc;
• the morphism hom(�[n], X1)→hom(�[k, j], X1) is induced by a map α :C→

A and morphisms Sα(c)→Dc;
• the morphism hom(�[n], X1)→ hom(�[k], X1) is induced by a map α′′ :C→

A′′ and morphisms S′′
α′′(c)→Dc.

We see that hom(Dc, X)→ hom(Sα(c), X) induces hom(�[n], X1)→ hom(�[k, j],
X1), and the composed morphism hom(Dc, X)→hom(S′

α′(c), X)→hom(Sα(α′(c)), X)

induces hom(�[n], X1)→hom(S, X1)→hom(�[k, j], X1), which is the same mor-
phism as hom(�[n], X1)→ hom(�[k, j], X1). Hence by the uniqueness of the
decomposition, we have α(α′(c))=α(c) and similarly α(c)=α(α′′(c)), and a com-
mutative diagram,

Then Tb(c) defined by the push-out diagram,
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has a canonical map Tb(c)→ Dc, where b(c) is an index in B and depends only
on c. Since hom(T, X1) is a fibre product, these canonical maps induce the map
hom(�[n], X1)→hom(T, X1) via the maps hom(Dc, X)→hom(Tb(c), X).

PROPOSITION–DEFINITION 2.3. The operation K an constructed in Equation
(6) is a functor from the category of local Kan manifolds X to the category of
weak Kan simplicial manifolds.

Proof. The construction of K an makes it clear that it is functorial. Since
K an(X)= colimβ Xβ , given any finite simplicial set A (a collapsible simplicial set
S is such), the natural map of sets is an isomorphism,

colimβ hom(A, Xβ)
�−→hom(A, K an(X)). (16)

Moreover, by Lemma 2.2,

hom(S, Xβ+1)=hom(S, Xβ)
⊔

(�a hom(Sa, Xβ)). (17)

We then use Lemma 2.2 recursively, and obtain that for any collapsible simpli-
cial set T ,

hom(T, Xβ)=�hom(Tp, X),

for a finite set of collapsible simplicial sets Tp. Hence, hom(S, Xβ) and hom(Sa,

Xβ) are manifolds because X is a local Kan manifold. By Equations (17) and (16),
hom(S, K an(X)) is a disjoint union of manifolds.

Therefore, it remains to show that K an(X) is Kan as a simplicial set. We take
an element A→ B of J and a solid arrow diagram,

A ��

��

K an(X)

��
B ��

��

pt

(18)

then we must show that the dotted arrow exists. By the isomorphism Equation
(16), the map A→K an(X) factors through Xβ→K an(X) for some β and we have
the solid arrow diagram

A ��

��

Xβ ��

��

Xβ+1 ��

����������
K an(X)

�������������������

B

��

�� pt

Since Xβ+1 is constructed as the push-out in Equation (6), the dotted arrow nat-
urally exists, and this dotted arrow defines the one in Equation (18).
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Now, we only have to verify that the dotted arrow in Equation (18) exists for
�[1, j]→�[1] for j =0,1 and �[2, j]→�[2] for j =0,2. We have Xβ

0 = X0, and

hom(�[1, j], Xβ+1)= Xβ+1
0 = X0, hom(�[1], Xβ+1)= Xβ

1 ×d0,X0,d1 Xβ

1 ,

thus the map hom(�[1], Xβ+1)→hom(�[1, j], Xβ+1) being the pull-back of d1 or
d0, has to be a surjective submersion. Now, we prove that if Xβ is invertible, then
Xβ+1 is also invertible. In fact,

hom(�[2,2], Xβ+1)= Xβ+1
1 ×d1,X0,d1 Xβ+1

1 =
= (Xβ

1 � Xβ

1 ×d0,X0,d1 Xβ

1 )×d1,X0,d1 (Xβ

1 � Xβ

1 ×d0,X0,d1 Xβ

1 )=
= Xβ

1 ×d1,X0,d1 Xβ

1 � Xβ

1 ×d1,X0,d1 (Xβ

1 ×d0,X0,d1 Xβ

1 )

� (Xβ

1 ×d0,X0,d1 Xβ

1 )×d1,X0,d1 Xβ

1 � . . .

Since Xβ is invertible, Xβ

1 ×d1,X0,d1 Xβ

1
∼= Xβ

1 ×d0,X0,d1 Xβ

1 . Hence

Xβ

1 ×d1,X0,d1 (Xβ

1 ×d0,X0,d1 Xβ

1 )∼= Xβ

1 ×d0,X0,d1 Xβ

1 ×d0,X0,d1 Xβ

1 ,

(Xβ

1 ×d0,X0,d1 Xβ

1 )×d1,X0,d1 Xβ

1
∼= Xβ

1 ×d1,X0,d1 Xβ

1 ×d0,X0,d1 Xβ

1
∼=

∼= (Xβ

1 ×d0,X0,d1 Xβ

1 )×d0,X0,d1 Xβ

1 ,

. . .

It is easy to continue to verify that Xβ+1 is invertible. Then the final result follows
from Equation (16).

Given an invertible local Kan manifold X , we call K an(X) the Kan replacement
of X .

Even though K an(X) is not Kan, its 2-truncation τ2(K an(X)) behaves well. We
define the n-truncation τn (it was denoted by τ≤n in [6, Section 3]), of a simplicial
manifold X by

τn(X)k = Xk, ∀k≤n−1, τn(X)k = Xk/∼k, ∀k≥n,

where two elements x ∼k y in Xk if they are homotopic1 and have the same
n-skeleton. Since in the process, taking a quotient is involved, the result τn(X)

might not be a simplicial manifold anymore. We view it as a simplicial stack.
When X is Kan, τn(X) viewed as a simplicial set is always a discrete n-groupoid. It
is representable, namely it is indeed a simplicial manifold with the quotient topol-
ogy, if and only if the quotient Xn/∼n is representable because the higher levels
are decided by Xn/∼n . Even though K an(X) is not a Kan manifold, we still have

1This means that di x=di y, 0≤ i ≤ k, and there exists z∈ Xk+1 such that dk (z)= x,dk+1(z)= y,
and di z= sk−1di x= sk−1di y, 0≤ i < k.
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PROPOSITION 2.4. When K an(X)2/ ∼2 is representable, τ2(K an(X)) is a Lie
2-groupoid.

Proof. As a simplicial set, K an(X) is Kan. Hence hom(�[n], τ2(K an(X))) ∼=
hom(�[n, j], τ2(K an(X))), for n ≥ 3. Especially, τ2(K an(X))3 ∼= hom(�[3,0],
τ2(K an(X))). Since the higher layers are determined by the first four layers,

τ2(K an(X))=Cosk3 ◦ Sk3(τ2(K an(X))),

by the same argument as in [16, Section 2.3], to show that τ2(K an(X)) is a
Lie 2-groupoid, we only need to show that hom(�[3,0], τ2(K an(X))) is rep-
resentable and that τ2(K an(X)) satisfies the condition K an(m, j) for m ≤ 2.
In fact, the induction argument there already shows that the representabili-
ty of hom(�[3,0], τ2(K an(X))) is implied by the fact that τ2(K an(X)) satisfies
K an(m, j) for m≤2 since τ2(K an(X))2=K an(X)2/∼2 is representable. Hence, we
only need to show K an(m≤2, j).

As shown in Definition–Proposition 2.3, hom(�[1], Xβ+1)→hom(�[1, j], Xβ+1)

being the pull-back of d1 or d0, is a surjective submersion, hence hom(�[1],
K an(X))→hom(�[1, j], K an(X)) is a surjective submersion. This is K an(1, j) for
K an(X), hence for τ2(K an(X)).

The surjectivity property in K an(2, j) is automatically satisfied. In fact, since
K an(X) is Kan as a simplicial set, the composed map

K an(X)2→ τ2(K an(X))
p−→hom(�[2, j], K an(X))=hom(�[2, j], τ2(K an(X))),

is surjective, hence the desired map p is also surjective. We only need to show
the submersion part. Then what happened to the points where the horn projection
map of K an(X)2 is not a submersion? These points necessarily represent degener-
ate faces. In fact, an element η∈ K an(X)2 can be described as a tree as stated in
Lemma 3.8. If all the vertices of the tree are triangles in X2, then the horn pro-
jection map is a submersion for K an(X)2, hence p is a submersion. The problem
happens exactly when the tree contains at least one vertex coming from one of
the three copies of X1×X0 X1. But these bad pieces as in Equations (13) and (14)
are all homotopic via elements in K an(X)3 to the boundary of good pieces as in
Equation (12), where the submersion holds. Hence, the submersion property also
is true for the 2-truncation.

3. Universal Properties

Given a local Lie 1-groupoid W (or the nerve of a local Lie groupoid), it extends
to a Lie 2-groupoid τ2(K an(W )). In [15], we verified that τ2(K an(W )) is always
a Lie 2-groupoid (even though τ1(K an(W )) might not be Lie) with a universal
property.



394 CHENCHANG ZHU

For this purpose, we need to show some universal properties of our Kan replace-
ment. It should be stable under Morita equivalence of simplicial manifolds (and
this needs to be made precise), and if some simplicial manifold X is Kan, then
K an(X) should be Morita equivalent to X . We begin by introducing concepts
related to Morita equivalence.

3.1. MORITA EQUIVALENCE OF LOCAL KAN MANIFOLDS

The reader’s first guess is probably that a morphism f : X→Y of simplicial man-
ifolds ought to be a simplicial smooth map, i.e., a collection of smooth maps fn :
Xn→Yn that commute with faces and degeneracies. We shall call such a morphism
a strict map from X to Y . Unfortunately, it is known that, already in the case of
usual Lie groupoids, such a notion is not adequate. Indeed there are strict maps
that are not invertible even though they deserve to be called isomorphisms; here is
an example of such a situation. Consider a manifold M with an open cover {Uα}.
There is a natural map from the simplicial manifold X with Xn =⊔

α1,...,αn
Uα1 ∩

· · ·∩Uαn to the constant simplicial manifold M . All the fibers of this map are sim-
plices, in particular, they are contractible simplicial sets. Nevertheless, this map has
no inverse. That is why the notion of Hilsum–Skandalis bimodule [9] was intro-
duced.

The second guess is then to define a special class of strict maps which we shall
call hypercovers. A map from X to Y would then be a zig-zag of strict maps X

∼←
Z→Y , where the map Z→ X is a hypercover.

Another, equivalent, to define a generalized morphism of simplicial manifolds
uses the Cartesian fibrations of [7, Section 2.4]. In this paper, we use the zig-zag
method with the notion of hypercover.

Our definition of hypercover is inspired by the notion of hypercover of étale
simplicial objects [1,4] and by Quillen’s trivial fibrations for simplicial sets [10].

Recall that [8, Section I.3], given a pointed Kan simplicial set X , i.e., X0= pt ,
its homotopy groups are given by

πn(X) := {x ∈ Xn|di (x)= pt for all i}/∼
where x∼ x ′ if there exists an element y∈ Xn+1 such that d0(y)= x , d1(y)= x ′, and
di (y)= pt for all i >1. In general, when X0 is not necessarily a point, πn is a sheaf
over X0.

LEMMA 3.1. Given a map S→ T of pointed Kan simplicial sets, if for any n≥ 0
and any commutative solid arrow diagram

∂�[n] ��
� �

��

S

��
�[n] ��

��

T

(19)
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there exists a dotted arrow that makes both triangles commute, then this map is a
homotopy equivalence, i.e., πn(S)= πn(T ). Here, ∂�[n] stands for the boundary of
the n-simplex.

The proof is standard.
Translating the condition of Lemma 3.1 into a condition on the corresponding

hom spaces, we obtain,

DEFINITION 3.2. A strict map f : Z→ X of local Kan simplicial manifolds is a
hypercover if the natural map

Zm=hom(�[m], Z)→hom(∂�[m]→�[m], Z→ X) (20)

is a surjectve submersion for all m≥0.

Here, hom(A → B, Z → X) denotes the pull-back spaces of the form
hom(A, Z)×hom(A,X) hom(B, X), where the maps are induced by some fixed maps
A→ B and Z→ X . The notation indicates that this space parameterizes all com-
muting diagrams of the form

A−→Z
↓ ↓
B−→X,

where we allow the horizontal arrows to vary but we fix the vertical ones.
Similarly, we can define hypercovers for Lie n-groupoids:

DEFINITION 3.3. A strict map f : Z→ X of Lie n-groupoids is a hypercover if
the natural map Equation (20) is a surjective submersion for all 0≤m < n and is
an isomorphism when m=n.

Remark 3.4. As proved in [14], if f : Z→ X is a hypercover of Lie n-groupoids,
then Equation (20) is automatically an isomorphism for all m >n.

As in the case of Definition 1.1, we need to justify that the pull-back
hom(∂�[m] → �[m], Z → X) is a manifold. This is rather surprising since the
spaces hom(∂�[m], Z) need not be manifolds (for example take m= 2 and Z the
cross product groupoid associated to the action of S1 on R2 by rotation around
the origin). We justified this in [14] for Kan simplicial manifolds, but it is clear that
only the submersion property is needed, hence the same proof is valid for local
Kan manifolds.

DEFINITION 3.5. Two local Kan simplicial manifolds X and Y are Morita equiv-
alent if there exists a local Kan simplicial manifold Z such that both maps X

∼←
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Z
∼→Y are hypercovers. We call the equivalence relation thus defined [14, Section 2]

the Morita equivalence of local Kan simplicial manifolds.

We also define Morita equivalence of Lie n-groupoids in the same fashion using
hypercovers of Lie n-groupoids.

Hypercovers of Lie n-groupoids may also be understood as higher analogues of
pull-backs of Lie groupoids. Let X be a 2-groupoid and let Z1⇒ Z0 be two man-
ifolds with structure maps as in Equation (1) up to the level n = 1, and let fn :
Zn→ Xn be a map preserving the structure maps dn

k ’s and sn−1
k ’s for n≤1. Then,

hom(∂�[n], Z) is defined for n≤1. We further suppose that f0 : Z0 � X0 is a surjec-
tive submersion (hence Z0× Z0×X0×X0 X1 is a manifold) and Z1 � Z0× Z0×X0×X0

X1 also, that is, to say we suppose that the induced maps from Zk to the pull-
backs hom(∂�[k], Z)×hom(∂�[k],X) Xk are surjective submersions for k=0,1. Then,
we form

Z2=hom(∂�[2], Z)×hom(∂�[2],X) X2,

which is a manifold (see [14, Lemma 2.4]).
Moreover there are maps d2

i : Z2 → Z1 induced by the natural projections
hom(∂�[2], Z)→ Z1, and maps s1

i : Z1→ Z2 defined by

s1
0(h)= (h, h, s0

0(d1
0 (h)), s1

0( f1(h))), s1
1(h)= (s0

0(d1
1 (h)), h, h, s1

1( f1(h))),

and maps mi :hom(�[3, i], Z)→ Z2 with

m0((h2, h5, h3, η̄1), (h4, h5, h0, η̄2), (h1, h3, h0, η̄3))= (h2, h4, h1,m0(η̄1, η̄2, η̄3)),

and similarly for the other mi ’s.

0

1

h0

		��������������
3

h4

��
h5



�������������

h2
����������������������

2

h3

����������������h1

���������

Then Z2 � Z1⇒ Z0 is a Lie 2-groupoid and we call it the pull-back 2-groupoid of X
by f . Then f : Z→ X is a hypercover with f2 the natural projection f2 : Z2→ X2.

3.2. THEOREMS AND LEMMAS

We shall prove that if X is a Kan simplicial manifold, then there is a Morita
equivalence X

∼↔ K an(X). It is very easy to prove this result for simplicial sets.
Since the procedure of Kan replacement is basically to fill out horns, the geomet-
ric realizations of K an(X) and X are homotopic. Since X is Kan, the geomet-
ric realizations of K an(X) and X being homotopic is equivalent to the fact that
the natural embedding map X→K an(X) satisfies the lifting property described in
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Equation (19). However, the tool of homotopy theory which is available for sim-
plicial sets cannot be used for simplicial manifolds in general. In fact, these do
not form a model category, and building a certain machinery as a suitable replace-
ment for model categories should be the correct method of proving the following
theorems and lemmas. In the case of simplicial sets, one can easily obtain a mor-
phism π : K an(X)→ X such that the composition X→ K an(X)→ X is the iden-
tity. Then, it is straightforward to check that K an(X)→ X has the correct lifting
property. However, π is not unique (it depends on the choice of fillings in the Kan
condition). Hence when generalized to a differential category, π is not a continu-
ous morphism in general. This forces us to use another proof. Here, we provide a
proof for Lie 2-groupoids W .

THEOREM 3.6. If W is a Lie 2-groupoid, then τ2(K an(W )) is a Lie 2-groupoid
which is Morita equivalent to W .

Proof. In general, there is no direct map from τ2(K an(W )) to W because there
is no (unique) multiplication map W1×W0 W1→W1. Hence, we must construct a
middle step.

A more natural way to describe this construction is to use the corresponding
stacky groupoid G⇒W0, where G is presented by the Lie groupoid G1⇒G0, with
G0=W1 and G1 the set of bi-gons in W2, and the multiplication G×W0 G→G is
presented by the bimodule Em =W2. The bimodules of various compositions of
multiplication from various copies of G to G are presented by various fibre prod-
ucts of W2’s. For example, the bimodule W2×d1,W1,d2 W2, with the moment maps
Jl to W1×W0 W1×W0 W1 and Jr to W1, presents the multiplication

m ◦ (m× id) : (G×W0 G)×W0 G→G.

To simplify the notation, we denote a k-fold fibre product by �×k when no confu-
sion can arise. We let Z0=W0, and let Z1 the disjoint union of the bibundles W×k

2
presenting different compositions of multiplication,

Z1=W1 �W2 � (W2 �W×2
2 �W×2

2 �W×3
2 )� . . . .

This construction is explained by the following picture:

That is, we fill out horns in K an(W )1 by replacing W×n
1 with W×(n−1)

2 . The pro-
jections Z1→K an(W )1 and Z1→W1 are simply the disjoint union of the left and
right moment maps, respectively. These projections are both surjective submersions.
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To show that τ2(K an(W )) is Morita equivalent to W , we only have to show that
the pull-back 2-groupoids on Z are the same, that is,

K an(W )2/∼2×hom(∂�[2],K an(W )) hom(∂�[2], Z)∼=W2×hom(∂�[2],W ) hom(∂�[2], Z).

(21)

If the map p :M→N is surjective and admits local sections at any point in N , then
the pull-back groupoid G1×M N⇒G0×M N is free and proper if and only if the
original groupoid G1⇒G0 is so. Since this is the case, the isomorphism Equation
(21) automatically implies that K an(W )/∼2 is representable. By Proposition 2.4,
τ2(K an(W )) is a Lie 2-groupoid.

We denote the two pull-backs by the maps Z1→W1 and Z1→ K an(W )1 to Z1

by W |Z and K an(W )|Z , respectively, we construct morphisms

π : (K an(W )|Z )2→ (W |Z )2, ι : (W |Z )2→ (K an(W )|Z )2,

and we prove that π ◦ ι= id and ι ◦ π ∼ id up to terms in (K an(W )|Z )3. Then,
the above isomorphism follows naturally. Observe that usually K an(W ) is not a
Lie 2-groupoid, but the pull-back construction described in Sect. 3.1 is valid also
when X is a local Kan manifold. We form (X |Z )n = hom(sk1(�[n])→�[n], Z→
X), where sk1 denotes taking the 1-dimensional skeleton. By [14, Lemma 2.4 ], the
(X |Z )n are manifolds. Then it is easy to check that τ2(K an(W )|Z )=τ2(K an(W ))|Z .

We first construct ι. Let S be a simplicial polygon with three marked points,
namely a simplicial set constructed inductively

�[2]= S0 ↪→ S1 ↪→ S2 ↪→·· · ↪→ Si · · · ,
by push-out, Si+1= Si ��[1]�[2], and the three marked points are the vertices of
S0. With these three marked points, the Si ’s can be viewed as generalized triangles
with their three sides a concatenation of line segments. In this sense, we also have
the three face maps dk .

There is a natural embedding W ↪→K an(W ), but this embedding does not yield
a map W |Z→K an(W )|Z . In fact, take an element (w,∂z)∈ (W |Z )2=�i hom(Si , W )

for a certain set of Si ’s, then (w,∂z) /∈ (K an(W )|Z )2 since ∂w, the boundary of w,
is not mapped to ∂z under the map ∂2 Z→∂2 K an(W ). Here, ∂k�=hom(∂�[k],�).
To construct ι, we need to inductively construct morphisms µi : hom(Si , W )→
K an(W )2 such that they commute with the face maps dk for k=0,1,2,

hom(Si , W )
dk ��

µi

��

hom(dk Si , W )

K an(W )2

∂

��������������

(22)

Then, ι(w,∂z) := (µi (w),∂z), where w∈hom(Si , W ).

Step 1: We first prove the case i = 1. We simplify the notation by setting K :=
K an(W ).
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hom(S1, W )=W2×dk ,W1,d1 W2

by W1×W0 W1↪→K2

��
W2×dk ,W1,d1 W2×W1×W0 W1 K2

by W ↪→K

��
hom(�[3, k′], K )

K an!(3,k′)
��

hom(�[3], K )

dk′
��

K2

(23)

But this map does not commute with the face map (see Equation (22)). To obtain
a map that commutes with the face maps, we only need to compose this map with
the following one,

K2→
(
K2×W1 (W1×W0 W1)

)×K1×W0 W1 W1×W0 W1

W1×W0 W1↪→K2

��
hom(�[3, k′′], K )→ K2

(24)

Step 2: Now suppose we have such a map hom(Si , W )→ K , then we can con-
struct a map hom(Si+1, W )→ K as follows,

hom(Si+1, W )=hom(Si , W )×W1 W2
∂ ��

By Lemma 3.7

��

hom(∂Si+1, W )=hom(∂Si , W )×W1 ∂2W

��
hom(Si , W )×dk ,K1,d1 K2

∂ ��

By hom(Si ,W )→K2

��

hom(∂Si , W )×K1 ∂2 K

��
K2×dk ,K1,d1 K2=hom(S1, K )

Similarly as Step 1, replace W by K

��

∂ �� hom(∂S1, K )

K2

∂
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LEMMA 3.7. There is a natural morphism K1×W1 W2→ K2.

We leave the proof of this lemma involving the Kan condition for K to the
reader.

To construct π , we first construct a local morphism f :K an(W )→W inductively.
The first step is to construct f 1

n by

W 1
n =hom

⎛

⎝�[n], W
∐

∐
�[k, j]×hom(�[k, j],W )

�[k]×hom(�[k, j], W )

⎞

⎠→

→Wn

∐

...

hom(�[n],�[k])×hom(�[k], W )→

→Wn .

In the second step, we use the strict Kan condition hom(�[k, j], W )∼=Wk when
k ≥ 2, and we choose a local section hom(�[2,1], W )→W2 when k= 2. The last
step follows from the composition hom(�[n],�[k]) × hom(�[k], W )→ Wn , and
thus both spaces in the push-out have a natural map to Wn .

Suppose that f β :W β→W is constructed. Then by definition of W β+1 in Equa-
tion (6), f β+1 is the composition of the following natural morphisms

W β+1
n =hom

⎛

⎝�[n], W β
∐

∐
�[k, j]×hom(�[k, j],Wβ)

�[k]×hom(�[k, j], W β)

⎞

⎠→

→hom

⎛

⎝�[n], W
∐

∐
�[k, j]×hom(�[k, j],W )

�[k]×hom(�[k, j], W )

⎞

⎠=

=W 1
n

f 1
n−→Wn .

Then f is the colimit of the f β .
More geometrically, if we view an element in K an(W )2 as a set of adjacent small

triangles of W2, f2 consists in composing these small triangles into a big one in 0
W2 with a choice of filling for each W1×W0 W1, which is given by f 1.
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Now, when we make a choice of fillings for a W1 ×W0 W1 on the boundary,
instead of choosing some filling given by f 1, we choose the element ∂z ∈
hom(∂�[2], Z), then this element in W2 is denoted by f2(x)◦∂z.

Thus, f2 induces a map

K an(W )2×hom(∂�[2],K an(W )) hom(∂�[2], Z)
π−→W2×hom(∂�[2],W ) hom(∂�[2], Z). (25)

as (x,∂z) �→ ( f2(x)◦∂z,∂z). In Lemma 3.8, we give a combinatorial proof that this
map does not depend on the choice of fillings. Hence, we obtain a well-defined
global map π .

Then it is not hard to see that π ◦ ι= id since π is exactly the procedure opposite
to ι.

The procedure to form π and ι consists in using K an!(3, j) to compose [for
example Equation (23)], hence ι◦π and id differ by terms in K an(W )3.

LEMMA 3.8. The map π does not depend on the choice of sections in the construc-
tion of f .

Proof. We denote an element η∈ K an(W )2 by a bicolored tree

A point is black if it represents a weird triangle, i.e., a triangle that comes from the
first copy of X1×X0 X1 which serves as an artificial filling; otherwise, it is white.
For the other two copies of X1×X0 X1, they are degenerated and cannot be glued
directly to nondegenerate triangle in W2. Since degenerated elements play the role
of identities in the composition π , we shall ignore them here. We now prove the
lemma by induction on the number of generations and the number of points in
the youngest generation. It is obvious for the initial case.

We take three sibling points in the youngest generation. If all of them are white,
then we use K an(3, j) without a choice and we obtain an element η′ ∈ K an(W )2

which has fewer generations or fewer points in the youngest generation. The result
follows in this case.

If one of the three siblings is black, then there is precisely one black one in these
three siblings, which we denote by x . Since hom(∂�[2], Z) will give the fillings for
the weird triangles on the border of η, to show the independence, we only have to
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deal with the inner triangles. Then some ancestor of x must have a black descen-
dant y, because a weird triangle must lie on the side of another triangle (which is
the parent of y).

The simplest situation in this case is when the other black descendant is a (true)
cousin (namely their direct ancestors are siblings)

(26)

We choose a triangle η034, and we are given triangles η014, η134, η123, η234, η024.
The procedure is to compose η034, η014, η134 first to obtain η013 by K an(3,3);
then to compose η034, η024, η234 to obtain η023 by K an(3,3); finally, to compose
η013, η023, and η123 to obtain η012 by K an(3,3). These can be viewed as multi-
plications for 2-groupoid [14, Section 2.3]. By the associativity of such multipli-
cations (or equivalently by K an(3, j)! and K an(4, j)!), we can obtain the same
η012 by another order of composition, namely we use K an(3,2) first to obtain η124

then K an(3,3). Since the second way of composing does not depend on the choice
of η034, our final result η012 does not depend on the choice either. Hence, by the
induction hypothesis, we will obtain an element f2(x)◦∂z which is independent of
the choices made.

We might meet more complicated situations, namely when the other black
descendant y is a more remote cousin, but we can reduce them to the simple sit-
uation above:

0

1

34

5
220

1

34

5
x, ξ y, ξ

x , ξ
x , ξ

y , ξ

y , ξ

ζ

We choose a triangle ξ ∈ W2 corresponding to x in the youngest generation.
Then we use K an(3, j) to compose to obtain ξ ′ and ξ ′′ corresponding to x ′ and y′
respectively. As shown in the picture, the true cousins x ′, y′ are ancestors of x and
y respectively. We do the same for the other branch, and obtain ζ . In this proce-
dure, we might have to make other choices of fillings for other black points. But
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it does not matter, since we want to show the independence of the final result on
the choice of ξ .

We recover the situation of Equation (26). We choose a filling η234. By
K an(4, j)! the final result does not depend on the order of composition. Then
by K an(3,2), we first obtain η124; by the induction hypothesis, we obtain η024

independently of the choice of ξ because η024 contains fewer descendants than
η012; finally, by K an(3,3) we obtain η012, which is independent of the choice of
filling ξ .

LEMMA 3.9. If both X and Y are Lie n-groupoids, then a hypercover of local Kan
simplicial manifolds X

∼→Y is automatically a hypercover of Lie n-groupoids.

Proof. Since X is a Lie n-groupoid, there are composed morphisms hom(�[n+
1, j], X)∼= Xn+1

d j−→ Xn→Yn and hom(�[n+ 1, j], X)∼= Xn+1
d j−→ Xn

∂−→hom(∂�[n],
X). These maps yield a map, hom(�[n+ 1, j], X)

p−→ hom(∂�[n]→�[n], X→ Y ).
With this map, we rewrite

hom(∂�[n+1]→�[n+1], X→Y )∼=hom(�[n+1, j], X)×hom(∂�[n]→�[n],X→Y ) Xn .

Since X
∼→Y as local Kan simplicial manifolds, the following map

Xn+1∼=hom(�[n+1, j], X)→hom(�[n+1, j], X)×hom(∂�[n]→�[n],X→Y ) Xn

is a surjective submersion. This implies that Xn→ hom(∂�[n]→�[n], X→ Y ) is
injective. However, Xn→ hom(∂�[n] →�[n], X → Y ) is a surjective submersion
by the condition of hypercovers. Hence, Xn ∼= hom(∂�[n]→�[n], X→ Y ), which
shows that X

∼→Y as Lie n-groupoids.

This lemma implies

COROLLARY 3.10. Two Lie n-groupoids X and Y are Morita equivalent as local
Kan simplicial manifolds if and only if they are Morita equivalent as Lie n-groupoids.

THEOREM 3.11. If φ : X ∼→ Y is a hypercover of local Kan simplicial manifolds,
and if K an(X)2/∼2 is representable, then both τ2(K an(X)) and τ2(K an(Y )) are Lie
2-groupoids and the induced map τ2(K an(X))→ τ2(K an(Y )) is a hypercover of Lie
2-groupoids.

Proof. We first show that if φ : K→ K ′ is a hypercover of Kan simplicial sets
(i.e., if the map in Equation (20) is only assumed to be surjective), then the natu-
ral map

τn(K )n
f−→hom(∂�[n]→�[n], τn(K )→ τn(K ′)), (27)
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is an isomorphism. Observe that the right-hand side is simply hom(∂�[n], K )

×hom(∂�[n],K ′) hom(�[n], τn(K ′)). Thus, we have a commutative diagram

Kn �� ��

g
����

hom(∂�[n]→�[n], K→ K ′)

����
τn(K )n

f �� hom(∂�[n]→�[n], τn(K )→ τn(K ′)),

where � denotes surjective maps. Then f must be surjective because the fact
that f ◦ g is surjective implies that f is surjective. Take (δxn, [yn]) ∈ hom(∂�[n],
K ) ×hom(∂�[n],K ′) hom(�[n], τn(K ′)). If both [xn], [x ′n] ∈ τn(K )n are mapped to
(δxn, [yn]), that is the boundary ∂xn = ∂x ′n = δxn ∈ hom(∂�[n], K ) and φn(x ′n)=
y′n∼ yn∼ y′′n =φn(xn), then y′′n and y′n differ by an element yn+1 ∈ K ′n+1. Since

Kn+1 �hom(∂�[n+1]→�[n+1], K→ K ′),

is surjective, there exists xn+1 such that φn+1(xn+1)= yn+1 and xn, x ′n differ by xn+1.
This proves that [xn]= [x ′n]∈ τn(K )n . Hence, f is also injective.

If the map p :M→ N is surjective and admits local sections at any point in N ,
then the pull-back groupoid G1×M N⇒G0×M N is free and proper if and only
if the original groupoid G1⇒ G0 is so. Since this is the case, the isomorphism
Equation (27), when applied to n = 2 and K = K an(X), K ′ = K an(Y ), implies
that K an(Y )/ ∼2 is representable. Hence, τ2(K an(X)) and τ2(K an(Y )) are Lie
2-groupoids by Proposition 2.4.

Now, we only need to verify that the morphism

τ2(K an(X))m→hom(∂�[m]→�[m], τ2(K an(X))→ τ2(K an(Y )))

is a surjective submersion for m=0,1. For m=0, the result is implied by the fact
that X0→Y0 is a surjective submersion. For m=1, by induction, we need to show
that the natural map

Xβ+1
1 →hom(∂�[1]→�[1], Xβ+1→Y β+1), (28)

is a surjective submersion supposing that the same is true for β. We have

Xβ+1
1 = Xβ

1 �hom(�[2,1], Xβ), Y β+1
1 =Y β

1 �hom(�[2,1],Y β).

The right hand side of Equation (28) decomposes into two terms I, I I according
to the decomposition of Y β+1

1 ,

I =hom(∂�[1], Xβ)×hom(∂�[1],Y β) hom(�[1],Y β),

I I =hom(∂�[1], Xβ)×hom(∂�[1],Y β) hom(�[2,1],Y β).
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By the induction hypothesis, Xβ

1 → I is a surjective submersion. Furthermore, by
[14, Lemma 2.5] (in the case S=T =�[2,1], and T ′ =∂�[1]),

hom(�[2,1], Xβ)→ I I

is a surjective submersion. Thus, Equation (28) is a surjective submersion.
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