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Abstract

We prove the following CR version of Artin’s approximation theorem for holomorphic mappings between real-algebraic sets in
complex space. Let M ⊂ C

N be a real-algebraic CR submanifold whose CR orbits are all of the same dimension. Then for every
point p ∈ M , for every real-algebraic subset S′ ⊂ C

N × C
N ′

and every positive integer �, if f : (CN,p) → C
N ′

is a germ of a
holomorphic map such that Graphf ∩ (M × C

N ′
) ⊂ S′, then there exists a germ of a complex-algebraic map f � : (CN,p) → C

N ′

such that Graphf � ∩ (M × C
N ′

) ⊂ S′ and that agrees with f at p up to order �.
© 2011 Elsevier Masson SAS. All rights reserved.

Résumé

On démontre la version CR suivante du théorème d’approximation d’Artin pour des applications holomorphes entre
sous-ensembles algébriques réels des espaces euclidiens complexes. Soit M ⊂ C

N une sous-variété CR algébrique réelle dont
les orbites CR sont toutes de même dimension. Pour tout point p ∈ M , pour tout sous-ensemble algébrique réel S′ ⊂ C

N × C
N ′

et pour tout entier naturel �, si f : (CN,p) → C
N ′

est un germe d’application holomorphe tel que Graphf ∩ (M × C
N ′

) ⊂ S′,
alors il existe un germe d’application algébrique complexe f � : (CN,p) → C

N ′
telle que Graphf � ∩ (M × C

N ′
) ⊂ S′ et dont le

jet d’ordre � en p coincide avec celui de f .
© 2011 Elsevier Masson SAS. All rights reserved.
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1. Introduction

A well-known theorem in algebraic geometry going back to Artin [1] states that given any system of polynomial
equations P(x, y) = 0, x = (x1, . . . , xn), y = (y1, . . . , ym) over the field of real numbers (resp. complex numbers)
and given any germ of an analytic solution y(x) of the above system at a given point p ∈ Rn (resp. Cn), there exists a
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sequence of germs at p of real-algebraic (resp. complex-algebraic) solutions of the system that converge to the given
solution in the Krull topology.

In this paper, we provide a Cauchy–Riemann version of this approximation theorem. Given a real-algebraic CR
submanifold M ⊂ C

N , let us say that M has the Nash–Artin approximation property if for every point p ∈ M , every
real-algebraic subset S′ ⊂ C

N+N ′
and every positive integer �, if f : (CN,p) → C

N ′
is a germ of a holomorphic map

such that Graphf ∩ (M × C
N ′

) ⊂ S′ (as germs at (p,f (p))), then there exists a germ at p of complex-algebraic map
f � : (CN,p) → C

N ′
that agrees with f at p up to order � with Graphf � ∩ (M × C

N ′
) ⊂ S′. Observe that finding a

sequence (f �)� with the above properties consists of finding a sequence of germs of real-algebraic mappings from
M into C

N ′ � R
2N ′

whose graphs are contained in S′ ⊂ C
N+N ′ � R

2(N+N ′) but which, furthermore, must satisfy
the tangential Cauchy–Riemann equations (on M). Hence, deciding whether M has the Nash–Artin approximation
property is indeed equivalent to asking for a CR (or more generally PDE) version of Artin’s theorem mentioned above.

We provide a positive solution to this approximation problem by making use of the CR geometry of the manifold
M . Let T cM ⊂ T M denote the complex tangent bundle of M . Recall that for every p ∈ M , there exists a unique germ
of a real-algebraic CR submanifold Op through p with the property that every point q ∈ Op can be reached from p

by following a piecewise differentiable curve in M whose tangent vectors are in T cM (see [2]). We call this germ the
CR orbit of M at p and say that M is minimal at p if this CR orbit is a neighborhood of p in M . We also say that M

is of constant orbit dimension if the CR orbits of M have all the same dimension. Our main result is the following:

Theorem 1.1. Let M ⊂ C
N be a real-algebraic CR submanifold of constant orbit dimension. Then M has the

Nash–Artin approximation property.

The study of algebraicity properties of holomorphic mappings sending real-algebraic sets into each other has
been extensively studied in the past years (see e.g. [16,9,10,2,14,8,17,6,4,13,11]). Most of the mentioned results are
concerned with the automatic algebraic extension of all holomorphic mappings between two given real-algebraic sets
and hold under some geometric nondegeneracy conditions on these sets. The situation considered in Theorem 1.1 goes
beyond this setting and deals with the general case where M is allowed to be mapped to an arbitrary real-algebraic set
by a non-algebraic holomorphic map. In such a situation, the only known sufficient condition implying that a (con-
nected) real-algebraic CR submanifold possesses the Nash–Artin approximation property is that of minimality and
goes back to the work of Meylan, Zaitsev and the author [12,13]. Theorem 1.1 provides the same conclusion under
a much weaker sufficient condition, that, in addition, is generically satisfied on every connected real-algebraic CR
manifold (see e.g. [3]). Hence even the following immediate consequence of Theorem 1.1 is new.

Corollary 1.2. For every connected real-algebraic CR submanifold M ⊂ C
N , there exists a closed proper

real-algebraic subvariety ΣM of M such that M \ ΣM has the Nash–Artin approximation property.

In the case of real hypersurfaces, we can deduce from Theorem 1.1 the following stronger result:

Theorem 1.3. Any (smooth) real-algebraic hypersurface of CN has the Nash–Artin approximation property.

Indeed, any connected component of any real-algebraic (smooth) hypersurface of C
N is either Levi-flat, in which

case it is of constant orbit dimension and Theorem 1.1 applies, or is somewhere minimal, in which case it has the
Nash–Artin approximation property in view of [13, Theorem 3.5].

One noteworthy and typical application of Theorem 1.1 deals with the problem of deciding whether the holo-
morphic equivalence of two germs of real-algebraic CR manifolds of the same dimension implies their algebraic
equivalence (see the works [6,4,11]). Specializing Theorem 1.1 to this situation, we have:

Corollary 1.4. Let M,M ′ ⊂ C
N be two real-algebraic CR submanifolds of constant orbit dimension. Then for all

points p ∈ M and p′ ∈ M ′, the holomorphic equivalence of the germs (M,p) and (M ′,p′) implies their algebraic
equivalence.

As for Theorem 1.1, Corollary 1.4 was known only when M and M ′ are (connected and somewhere) minimal and
goes back in this case from the work of Baouendi, Rothschild and the author [4]. For nowhere minimal real-algebraic
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CR manifolds, partial results towards Corollary 1.4 were previously established by Baouendi, Rothschild and Zaitsev
[6] and more recently by Lamel and the author in [11]. In these two works, the conclusion given by Corollary 1.4
is obtained for all points p in a certain Zariski open subset of M . The proofs of [6,11] require to exclude from M a
thin set of points corresponding to the locus of the degeneracy set of a certain holomorphic foliation. Corollary 1.4
answers one of the main questions left open from [6,11] which was to decide whether one could get rid off this locus.

Let us now discuss briefly the proof of Theorem 1.1. If M is as in Theorem 1.1 and p ∈ M , we assume that
p = 0 and we may view the germ of M at 0 as a (small) algebraic deformation of its CR orbits. Namely, there
exists an integer c ∈ {0, . . . ,N} and a real-algebraic submersion S : (M,0) → (Rc,0) such that S−1(S(q)) = Oq

for all q ∈ M near 0. The level sets of S, i.e. the CR orbits, therefore foliate M near the origin by minimal real-
algebraic CR submanifolds. We may hence identify the germ of M at 0 with an algebraic deformation (Mt) for t ∈ R

c

close to 0, where Mt ⊂ C
N−c is a germ at 0 of a minimal real-algebraic CR submanifold (see e.g. Lemma 2.7).

If f : (CN−c
z × C

c
u,0) → C

N ′
is a germ of a holomorphic map such that Graphf ∩ (M × C

N ′
) ⊂ S′ for some real-

algebraic subset S′ ⊂ CN × CN ′
, then for every t ∈ Rc sufficiently small, the holomorphic map ft : (CN−c

z ,0) � z 	→
f (z, t) ∈ C

N ′
satisfies Graphft ∩ (Mt × C

N ′
) ⊂ S′

t , where S′
t := {(z, z′) ∈ C

N−c × C
N ′

: (z, t, z′) ∈ S′}. Since each
submanifold Mt is minimal, the conclusion of Theorem 1.1 boils down to providing a deformation version of the
approximation theorem of [12,13] associated to the deformation (Mt)t∈Rc , the analytic family of holomorphic maps
(ft )t∈Rc and the family of real-algebraic subsets (S′

t )t∈Rc .
To this end, we devote one part of the paper, namely Section 4, to build a system of polynomial equations with

real-algebraic coefficients fulfilled by the restrictions to R
N and R

c of f and J (u) := (∂αf (0, u); |α| � k) for some
suitable integer k. The system is constructed in such a way that it reduces our approximation problem to an application
of a version of Artin’s approximation theorem due to Popescu [15] (see [11] where the use of [15] appeared for the
first time in the subject). To construct the desired system, we introduce a suitable field of partially algebraic power
series, denoted by S

f , depending on the mapping f and its derivatives. An appropriate and careful study of the field
extension generated by the field S

f and the components of the mapping f leads to the desired system of real-algebraic
polynomial equations. At this point, we should mention that the above strategy depends on a key technical proposition,
Proposition 3.2, which is an algebraic dependence result for certain power series which might be of independent
interest. We devote Section 3 to the proof of this result: it requires to introduce algebraic power series rings defined
over a field that is itself a field of fractions of partially algebraic power series and depending on the fixed mapping f .
During the proof of Proposition 3.2, we adapt several tools concerning ratios of power series developed in [12] and
also make use of Artin’s approximation theorem over the above defined field of partially algebraic power series. We
should point out that, under the additional assumption that the source manifold M in Theorem 1.1 is connected and
contains minimal points, most of the tools developed in this paper are unnecessary and the proof can be simplified and
reduced to that of [12,13].

The paper is organized as follows. In Section 2, we introduce the notation and preliminary notions that will be used
throughout the article. Section 3 is devoted to the proof of one key algebraicity property for certain ratios of power
series that is used in Section 4 while building the system of real-algebraic equations associated to a given mapping f .
The proof of Theorem 1.1 is completed in Section 5.

2. Preliminaries

2.1. Algebraic power series and two approximation theorems for polynomial systems

Throughout the paper, given a field K, and indeterminates x = (x1, . . . , xr ), r � 1, we denote by K[[x]] the ring of
formal power series with coefficients in the ring K. For T (x) ∈ K[[x]] and an integer m, we write jmT or (jmT )(x)

for the collection of all partial derivatives of T up to order m. If the indeterminates x split as x = (x′, x′′), we write
(jmT )(0, x′′) for the power series mapping (jmT ) evaluated at x′ = 0. We will also be using the notation jm

x′ T for the
collection of all partial derivatives with respect to x′ up to order m.

We shall frequently make use of the ring of algebraic power series over K: it is the subring AK{x} of K[[x]]
consisting of those T (x) ∈ K[[x]] for which there exist a positive integer m and, for j = 0, . . . ,m, polynomials
Pj ∈ K[x] with Pm 
= 0 such that
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m∑
j=0

Pj (x)T (x)j = 0.

Note that when K = C, AC{x} is the usual ring of (complex-)algebraic (or Nash) functions over C, which is
contained in the ring of convergent power series denoted in this paper by C{x}. Given any convergent power series
η = η(x) ∈ C{x}, we will also denote throughout the paper by η̄ = η̄(x) the convergent power series obtained from η

by taking complex conjugates of its coefficients.
In this work, we will make use of two approximation theorems for polynomial systems of equations with algebraic

coefficients. The first one is due to Artin [1].

Theorem 2.1. (See Artin [1].) Let K be a field, P(x, y) = (P1(x, y), . . . ,Pm(x, y)) be m polynomials in the ring
AK{x}[y] with x = (x1, . . . , xr ), y = (y1, . . . , yq). Suppose that Y(x) = (Y1(x), . . . , Yq(x)) ∈ (K[[x]])q is a formal
solution of the system

P
(
x,Y (x)

) = 0. (2.1)

Then, for every integer �, there exists Y �(x) ∈ (AK{x})q satisfying the system (2.1) such that Y �(x) agrees with Y(x)

up to order �.

The second one is a more precise version of Theorem 2.1 and corresponds to Popescu’s solution of the
approximation problem on nested subrings.

Theorem 2.2. (See Popescu [15].) Let K be a field, P(x, y) = (P1(x, y), . . . ,Pm(x, y)) be m polynomials in the ring
AK{x}[y] with x = (x1, . . . , xr ), y = (y1, . . . , yq). Suppose that Y(x) = (Y1(x), . . . , Yq(x)) ∈ (K[[x]])q is a formal
solution of the system

P
(
x,Y (x)

) = 0. (2.2)

Suppose furthermore that for every j = 1, . . . , q , there exists sj ∈ {1, . . . , r} such that Yj (x) ∈ K[[x1, . . . , xsj ]]. Then,
for every integer �, there exists Y �(x) ∈ (K{x})q satisfying the system (2.2), such that Y �(x) agrees with Y(x) up to
order � and each Y �

j (x) ∈ AK{x1, . . . , xsj }, j = 1, . . . , q .

Observe that by a noetherianity argument, Theorems 2.1 and 2.2 also hold for a polynomial system with infinitely
many equations.

2.2. K-algebraicity of ratios of formal power series

In Section 3, we will have to study certain types of ratios of formal power series defined over a ground field that is
not the usual field of complex numbers, but, rather a field extension over C. In order to prove a key property of these
ratios, we shall use and modify some concepts about ratios of formal power series introduced in [12] for the case of
C[[x]] to treat ratios of power series over K[[x]] where C ↪→ K is a field extension.

Let C ↪→ K be a field extension. Given two power series N(x),D(x) ∈ K[[x]], x = (x1, . . . , xr ), we write (N : D)

for a pair of formal power series where we both allow N and D to be zero. When D 
≡ 0, we can think of (N : D) as
being the usual ratio N/D. In the following, we say that two ratios (N1 : D1) and (N2 : D2) of formal power series in
K[[x]] are equivalent if N1D2 − N2D1 = 0. As in [12], it will be useful to introduce the following notion.

Definition 2.3. Given two ratios (N1 : D1) and (N2 : D2) of formal power series in K[[x]], a complex linear
subspace E ⊂ C

r and a nonnegative integer q , we say that (N1 : D1) and (N2 : D2) are q-similar along E if
(jq(N1D2 − N2D1))|E = 0.

We have the following (weak) transitivity property of the notion of q-similarity, whose simple proof is completely
analogous to that of [12, Lemmas 3.2 and 3.3] and is left to the reader.
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Lemma 2.4. Let (N1 : D1), (N2 : D2) and (N3 : D3) be three ratios of formal power series in K[[x]]. Suppose that we
have a splitting of the indeterminates of the form x = (u1, u2, u3) and let E be the linear subspace of C

r given by
E = {u1 = 0, u2 = 0}. Suppose that there exist an integer � and integers q1, q2 � � such that(

j�(N2,D2)
)∣∣

E

= 0,

(
j

q1
u1 j

q2
u2 (N1D2 − N2D1)

)∣∣
E

= 0,

(
j

q1
u1 j

q2
u2 (N3D2 − N2D3)

)∣∣
E

= 0.

Then (j
q1−�
u1 j

q2−�
u2 (N3D1 − N1D3))|E = 0.

We now define the notion of K-algebraicity for (formal) power series along a certain complex subspace that will
be extremely useful in Section 3.

Definition 2.5. Given a ratio (N : D) of formal power series in K[[x]] and a complex linear subspace E ⊂ C
r , we

say that (N : D) is K-algebraic along E if there exist an integer � and for every integer q , formal power series
Nq,Dq ∈ AK{x} such that (N : D) and (Nq : Dq) are q-similar along E and such that (j�(Nq,Dq))|E 
≡ 0.

Remark 2.6. Using Lemma 2.4, it is easy to see that if two ratios of formal power series in K[[x]] are equivalent
and if one of them is nontrivial and K-algebraic along a complex subspace E ⊂ C

r then the other ratio has the same
property.

2.3. Generic real-algebraic submanifolds and local CR orbits

Let M ⊂ C
N be a real-algebraic CR submanifold with N � 2 and T 0,1M its CR bundle. For every point p ∈ M ,

we denote by GM(p) the Lie algebra evaluated at p generated by the sections of T 0,1M and its conjugate T 1,0M . By
a theorem of Nagano (see e.g. [3,7]), for every point p ∈ M , there is a well-defined unique germ at p of a real-analytic
submanifold Vp satisfying CTqVp = GM(q) for all q ∈ Vp . This unique submanifold is necessarily CR and is called
the CR orbit of M at p. In fact, by [2, Corollary 2.2.5], this CR orbit is even a real-algebraic CR submanifold contained
in M . It is not difficult to see that if M is connected, the dimension of the local CR orbits is constant (and of maximal
dimension) except possibly on a proper real-algebraic subvariety ΣM of M (see e.g. [5,6]). If dimVp = dimM for
some point p ∈ M , we say that M is of minimal (or also of finite) type at p.

Assume in what follows that M is a (connected) real-algebraic generic submanifold of C
N of CR dimension n

and codimension d . If p is a point in M \ ΣM , where ΣM is defined as above, then one may choose holomorphic
(algebraic) coordinates such that M is described near p through the following well-known lemma.

Lemma 2.7. (See [5, Proposition 3.4] and [2, Lemma 3.4.1].) Let M ⊂ C
N be a connected generic real-algebraic

submanifold through a point p ∈ M whose CR orbit at p is of maximal dimension and let c ∈ {0, . . . , d} be the
codimension of this CR orbit in M . Then there exist normal algebraic coordinates Z = (z, η) ∈ C

n ×C
d , η = (w,u) ∈

C
d−c × C

c, such that M is given near the origin by an equation of the form

η = (w,u) = Θ(z, z̄, η̄) := (
Q(z, z̄, w̄, ū), ū

)
, (2.3)

where Q is a C
d−c-valued complex-algebraic map near 0 ∈ C

n+N . Furthermore, there exist neighborhoods U,V of
the origin in R

c and C
N−c respectively such that for every u ∈ U , the real-algebraic submanifold given by

Mu := {
(z,w) ∈ V : w = Q(z, z̄, w̄, u)

}
(2.4)

is generic in C
N−c and minimal at 0.

As a real-analytic submanifold, M can be complexified and gives rise to its so-called complexification, which we
denote by M. This complexification M is the germ at 0 of the complex-algebraic submanifold of C

2N given by{
(Z, ζ ) ∈ (

C
N × C

N,0
)
: σ = Θ̄(χ, z, η)

}
, (2.5)
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where Z = (z, η) ∈ C
n × C

d and ζ = (χ,σ ) ∈ C
n × C

d . Recall also that the above choice of normal coordinates
implies that the following two identities hold

Θ(z,0, σ ) = Θ(0, χ,σ ) = σ, Θ
(
z,χ, Θ̄(χ, z, η)

) = η. (2.6)

In what follows, we pick a point p ∈ M \ ΣM and choose normal coordinates for M at p as given by Lemma 2.7.
In Section 3, we will need the iterated Segre mappings attached to such a germ of submanifold (see e.g. [5]). These
mappings are defined in the following way. For any nonnegative integer j , we denote by tj a variable lying in C

n

and also introduce the variable t [j ] := (t1, . . . , tj ) ∈ Cnj . We also use the notation s for a variable lying in the Eu-
clidean space C

d−c. Then we first set v0(s, u) := (0, s, u) for (s, u) ∈ C
d sufficiently closes to 0 and defines the map

vj : (Cnj × C
d−c × C

c,0) → C
N for j � 1 inductively as follows:

vj

(
t [j ], s, u

) := (
tj ,Uj

(
t [j ], s, u

))
, where Uj

(
t [j ], s, u

) := Θ
(
t j , v̄j−1

(
t [j−1], s, u

))
. (2.7)

From the construction we clearly see that each iterated Segre mapping vj defines an algebraic map in a neighborhood
of 0 in C

nj+d . In fact, for every point (s, u) ∈ C
d sufficiently close to the origin, the map vj (·, s, u) parametrizes the

usual Segre set of order j attached to the point (0, s, u) (see e.g. [2,3]). Notice also that, thanks to (2.6), one has the
following useful identities

vj (0, s, u) = (0, s, u), vj+2
(
t [j+2], s, u

)∣∣
tj+2=tj

= vj

(
t [j ], s, u

)
, j � 0, (2.8)

and that for every j � 0, the germ at 0 of the holomorphic map (vj , v̄j−1) takes its values in M, where M is the
complexification of M as defined by (2.5).

3. An algebraicity property for certain ratios of power series on real-algebraic generic submanifolds

Throughout this section, we assume that M is a germ of a (connected) real-algebraic generic submanifold through
the origin in C

N with N � 2 and that f : (CN,0) → C
N ′

is a germ of a holomorphic mapping. We also assume that
the CR orbit of M at the origin is of maximal dimension and that normal coordinates Z = (z,w,u) for (M,0) have
been chosen (and fixed) as in Lemma 2.7. In such a setting, we are going to prove a crucial algebraicity property for
certain ratios of (convergent) power series constructed from the mapping f and whose restriction on M is CR.

3.1. Statement of the algebraicity property

Given any integer k, we denote by J k
0 (CN,C

N ′
) the jet space of order k at the origin of holomorphic maps from C

N

to C
N ′

. Throughout the paper, Λk , Γ k and Υ k will denote coordinates in J k
0 (CN,C

N ′
) and we write Λk = (Λk

α)|α|�k

where Λk
α ∈ C

N ′
for α ∈ N

N (and analogously for Γ k and Υ k).
In order to state the algebraic criterion given by Proposition 3.2 below, we need to define the following ring of

power series that depend on the above fixed choice of normal coordinates Z = (z,w,u).

Definition 3.1. Let f and Z = (z,w,u) be as above. Let B
f be the subring of C{u}[z,w] consisting of those

power series T (z,w,u) for which there exists an integer k and S ∈ C[z,w,u,Λk,Γ k] such that
T (z,w,u) = S(z,w,u, (jkf )(0, u), (jkf̄ )(0, u)). The field of fractions of B

f will be denoted by S
f .

In what follows, we say that a holomorphic vector X defined near 0 ∈ C
N
Z × C

N
ζ is a (0,1) vector field if it

annihilates the natural projection C
N × C

N � (Z, ζ ) 	→ Z ∈ C
N . The goal of this section is to prove the following:

Proposition 3.2. Let M , f and Z = (z,w,u) be as above. Let ϕ1, ϕ2 ∈ C{Z,ζ } with ϕ2|M 
≡ 0, where M is
the complexification of M as given by (2.5). Assume that there exist an integer k, and power series Φ1,Φ2 ∈
AC{Z,ζ }[Λk,Γ k,Υ k] such that

ϕj (Z, ζ ) = Φj

(
Z,ζ,

(
jkf

)
(0, u),

(
jkf̄

)
(0, u),

(
jkf̄

)
(ζ )

)
, j = 1,2. (3.1)

Assume furthermore that the ratio ϕ1/ϕ2 is annihilated by any (0,1) holomorphic vector field tangent to M near 0.
Then ϕ1/ϕ2 is algebraic over the field S

f (as introduced in Definition 3.1).
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Other (different) types of CR ratios of (formal) power series on real-analytic generic submanifolds have been
studied in [12]. Though the technique used in [12] deals only with minimal generic submanifolds, we will use part of
this technique to prove Proposition 3.2.

3.2. Proof of Proposition 3.2

We assume in what follows that we are in the setting of Proposition 3.2. In order to prove Proposition 3.2, we need
to work in appropriate rings of formal power series. All these formal power series will have the same ground field that
is defined as follows:

Definition 3.3. Let D
f
u be the subring of C{u} consisting of those (convergent) power series T (u) for which there

exists an integer k and S ∈ AC{u}[Λk,Γ k] such that T (u) = S(u, (jkf )(0, u), (jkf̄ )(0, u)). The field of fractions of
the ring D

f
u will be denoted by K

f
u .

The first step in the proof of Proposition 3.2 relies on the following lemma:

Lemma 3.4. In the setting of Proposition 3.2, there exists power series �1(Z),�2(Z) ∈ C{Z} ∩ K
f
u [[z,w]] such that

�2 
≡ 0 and such that the ratios (ϕ1 : ϕ2) and (�1 : �2) are equivalent. In addition, the ratio (�1 : �2) (viewed
as a ratio of power series in K

f
u [[z,w]]) is K

f
u -algebraic along the (n + c)-dimensional complex subspace {w = 0}

(as explained in Definition 2.5).

Proof. By assumption, we know that

∂

∂χ

(
ϕ1(Z,χ, Θ̄(χ,Z))

ϕ2(Z,χ, Θ̄(χ,Z))

)
= 0. (3.2)

Since ϕ2|M 
= 0, we can choose a multiindex β ∈ N
n of minimal length such that(

∂ |β|
χ

(
ϕ2

(
Z,χ, Θ̄(χ,Z)

)))∣∣
χ=0 
≡ 0.

Setting

�1(Z) := (
∂ |β|
χ

(
ϕ1

(
Z,χ, Θ̄(χ,Z)

)))∣∣
χ=0, �2(Z) := (

∂ |β|
χ

(
ϕ2

(
Z,χ, Θ̄(χ,Z)

)))∣∣
χ=0,

it follows from (3.2) that (�1 : �2) is a ratio of convergent power series that is equivalent to (ϕ1 : ϕ2). In addition, it
follows from the chain rule and from (3.1) that there exists power series Φ̃j ∈ AC{Z}[Λk,Γ k,Υ k+|β|], j = 1,2, such
that

�j(Z) = Φ̃j

(
Z,

(
jkf

)
(0, u),

(
jkf̄

)
(0, u),

(
jk+|β|f̄

)
(0,w,u)

)
, j = 1,2. (3.3)

Then (3.3) readily implies that both power series �1,�2 belong to K
f
u [[z,w]]. In fact, one may even notice that for

every integer q , if �1,q and �2,q denote the truncated power series

�1,q (z,w,u) =
∑

ν∈N
d−c

|ν|�q

∂ν�1

∂wν
(z,0, u)

wν

ν! , �2,q (z,w,u) =
∑

ν∈N
d−c

|ν|�q

∂ν�2

∂wν
(z,0, u)

wν

ν! ,

then �1,q ,�2,q ∈ A
K

f
u
{z,w}, and (�1,q : �2,q ) and (�1 : �2) are q-similar along the subspace L := {w = 0}.

Furthermore, since there exists an integer n0 such that (jn0(�1,�2))|L 
≡ 0, it follows that for all q � n0, we
have (jn0(�1,q ,�2,q ))|L 
≡ 0, which shows that the ratio (�1,�2) is K

f
u -algebraic along the complex subspace L.

The proof of Lemma 3.4 is complete. �
For the second step of the proof of Proposition 3.2, we shall use the iterated Segre maps introduced in Section 2.3.

For any integer j , recall that vj is the mapping given by (2.7). Note that since each map vj is algebraic and since the

power series �1 = �1(z,w,u) and �2 = �2(z,w,u) given by Lemma 3.4 belong to the ring K
f
u [[z,w]], it follows
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from the first identity of (2.8) that the power series �1 ◦ vj = (�1 ◦ vj )(t
[j ], s, u) and �2 ◦ vj = (�2 ◦ vj )(t

[j ], s, u)

both belong to the ring K
f
u [[t [j ], s]]. In what follows, when writing any iterated map vj , we shall sometimes omit to

write the variables for sake of brevity.

Lemma 3.5. In the setting of Proposition 3.2, let j be a positive integer and assume that the ratio (�1 ◦ vj : �2 ◦ vj )

of power series in K
f
u [[t [j ], s]] is K

f
u -algebraic along the complex subspace Ej := {s = 0} ⊂ C

nj+d−c . Then

the ratio (�1 ◦ vj+2 : �2 ◦ vj+2) of power series in K
f
u [[t [j+2], s]] is K

f
u -algebraic along the complex subspace

Ej+2 := {s = 0} ⊂ C
n(j+2)+d−c .

In order to prove Lemma 3.5, we need the following preliminary result.

Lemma 3.6. Under the assumptions of Lemma 3.5, the ratio (�1 ◦ vj+2 : �2 ◦ vj+2) is K
f
u -algebraic along the

complex subspace Ẽj+2 := {s = 0, tj+2 = t j } ⊂ C
n(j+2)+d−c .

Proof of Lemma 3.6. By assumption, there exist an integer �0 and for every integer q , (formal) power series
Nq,Dq ∈ A

K
f
u
{t [j ], s} such that(

j�0(Nq,Dq)
)∣∣

Ej

≡ 0,

(
jq

(
(�2 ◦ vj )Nq − (�1 ◦ vj )Dq

))∣∣
Ej

= 0. (3.4)

Consider the algebraic map I : (Cnj+d ,0) � (t [j ], s, u) 	→ C
nj+d given by

I
(
t [j ], s, u

) :=
{

(t [j ],Uj (t
j , tj−1, . . . , t1, s, u)) for j odd,

(t [j ],Uj (t
j , tj−1, . . . , t1, s, u)) for j even,

(3.5)

where Uj is the mapping given by (2.7). The reader can check that, by using the second identity of (2.6), the map I

satisfies the following properties

vj

(
I
(
t [j ], s, u

)) = (
t j , s, u

)
, I

(
t [j−1], vj

(
t [j ], s, u

)) = (
t [j ], s, u

)
. (3.6)

Consider the algebraic map J (t [j+2], s, u) := I (t [j−1], vj+2(t
[j+2], s, u)) and, for every integer q , define

Ñq := Nq ◦ J , and D̃q := Dq ◦ J . Since J (0,0, u) = (0,0, u) and since J ∈ AC{t [j+2], s, u}, the power series Ñq and

D̃q belong to the ring K
f
u [[t [j+2], s]]. In fact, noticing that the last C

c-valued component of J (t [j+2], s, u) is equal to
u and using the fact that Nq,Dq ∈ A

K
f
u
{t [j ], s} and the second identity of (3.6), we see that Ñq, D̃q ∈ A

K
f
u
{t [j+2], s}.

Furthermore, it follows from (3.6) that vj+2 = vj ◦ J and therefore we have

(�2 ◦ vj+2)Ñq − (�1 ◦ vj+2)D̃q = (
(�2 ◦ vj )Nq − (�1 ◦ vj )Dq

) ◦ J. (3.7)

Noticing furthermore that (3.6) and (2.8) imply that J (Ẽj+2) ⊂ Ej , it follows from (3.4) and (3.7) that for every
integer q , the ratios (�1 ◦ vj+2 : �2 ◦ vj+2) and (Ñq : D̃q) are q-similar along Ẽj+2. In addition, the second iden-
tity in (3.6) implies Nq = Ñq |tj+2=tj and Dq = D̃q |tj+2=tj which shows, in view of the first identity in (3.4) that
(j�0(Ñq, D̃q))|Ẽj+2


≡ 0. This proves Lemma 3.6. �
Proof of Lemma 3.5. We first note that in view of (3.1), there exist power series Φ1,j+2 and Φ2,j+2 both in the ring
AC{t [j+2], s, u}[Λk,Γ k,Υ k] such that for r = 1,2 one has

ϕr,j+2
(
t [j+2], s, u

) := ϕr(vj+2, v̄j+1)

= Φr,j+2
(
t [j+2], s, u,

(
jkf

)
(0, u),

(
jkf̄

)
(0, u),

(
jkf̄

) ◦ v̄j+1
)
. (3.8)

Note in addition that the (convergent) power series ϕr,j+2, r = 1,2, both belong to the ring K
f
u [[t [j+2], s]]. Using

the fact that ϕ2|M 
≡ 0 and that the mapping (vj+2, v̄j+1) is clearly submersive from C
n(j+2)+d into C

N , we get that
there exists an integer �1 such that (

j�1(ϕ1,j+2, ϕ2,j+2)
)∣∣˜ 
≡ 0. (3.9)
Ej+2
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Furthermore, since the ratios (ϕ1 : ϕ2) and (�1 : �2) are equivalent by Lemma 3.4, it follows that the ratios
(ϕ1,j+2 : ϕ2,j+2) and (�1 ◦ vj+2 : �2 ◦ vj+2) are also equivalent. Hence from Lemma 3.6 and Remark 2.6, we get

that the ratio (ϕ1,j+2 : ϕ2,j+2) is K
f
u -algebraic along Ẽj+2. We are now going to follow the strategy of the proof of

[12, Lemma 3.8]. There exists an integer �2 and for every integer q , power series Aq,Bq ∈ A
K

f
u
{t j+2, s} such that the

ratios (Aq : Bq) and (ϕ1,j+2 : ϕ2,j+2) are q-similar along Ẽj+2 with(
j�2(Aq,Bq)

)∣∣
Ẽj+2


≡ 0. (3.10)

Furthermore, we may assume without loss of generality that �2 � �1. For the rest of the proof, we fix an arbitrary
integer m � �2 and set Y(t [j+1], s, u) := (jkf̄ ) ◦ v̄j+1. Then for every integer q � m + �2, we have(

j
q−m

tj+2 jm
s (Aqϕ2,j+2 − ϕ1,j+2Bq)

)∣∣
Ẽj+2

= 0. (3.11)

Since Aq and Bq are both in the ring A
K

f
u
{t [j+2], s} and in view of (3.8), we may rewrite (3.11) as follows:

Sq,m

(
t [j+1], u,

(
jm
s Y

)(
t [j+1],0, u

)) = 0, ∀q � m + �2, (3.12)

where Sq,m is a polynomial in its last argument with coefficients in the ring A
K

f
u
{t [j+1]}. By construction, the power

series mapping (jm
s Y )(t [j+1],0, u) belongs to the ring K

f
u [[tj+1]] and is a formal solution of the polynomial system

of equations with coefficients in A
K

f
u
{t [j+1]} provided by (3.12). By Theorem 2.1, for every integer r , we may find a

power series mapping Y r(t [j+1], u) ∈ A
K

f
u
{t [j+1]} such that(

j r
t [j+1]Y

r
)∣∣

t [j+1]=0 = (
j r
t [j+1]

((
jm
s Y

)∣∣
s=0

))∣∣
t [j+1]=0 (3.13)

and satisfying

Sq,m

(
t [j+1], u,Y r

(
t [j+1], u

)) = 0, ∀q � m + �2. (3.14)

Choose T r ∈ A
K

f
u
{t [j+1]}[s] such that (jm

s T r)|s=0 = Y r and set for e = 1,2

ϕr
e,j+2

(
t [j+2], s, u

) := Φe,j+2
(
t [j+2], s, u,

(
jkf

)
(0, u),

(
jkf̄

)
(0, u), T r

(
t [j+1], s, u

))
. (3.15)

In view of (3.9), (3.13) and the fact that m � �2 � �1, we may choose r such that(
j�1

(
ϕr

1,j+2, ϕ
r
2,j+2

))∣∣
Ẽj+2


≡ 0, (3.16)

and keep such a choice of r for the remainder of this proof. From the construction of the power series mapping T r , it
follows that ϕr

1,j+2, ϕ
r
2,j+2 ∈ A

K
f
u
{t [j+2]} and that the following identity holds:(

j
q−m

tj+2 jm
s

(
Aqϕr

2,j+2 − ϕr
1,j+2Bq

))∣∣
Ẽj+2

= 0, ∀q � m + �2. (3.17)

Lemma 2.4 together with (3.11), (3.17) and (3.10) implies(
j

q−m−�2
tj+2 jm−�2

s

(
ϕ1,j+2ϕ

r
2,j+2 − ϕr

1,j+2ϕ2,j+2
))∣∣

Ẽj+2
= 0, ∀q � m + �2. (3.18)

Hence, (3.18) obviously implies (
jm−�2
s

(
ϕ1,j+2ϕ

r
2,j+2 − ϕr

1,j+2ϕ2,j+2
))∣∣

Ej+2
= 0, (3.19)

which shows that the ratios (ϕ1,j+2 : ϕ2,j+2) and (ϕr
1,j+2 : ϕr

2,j+2) are (m − �2)-similar along Ej+2. Since (3.16)

immediately implies that (j�1(ϕr
1,j+2, ϕ

r
2,j+2))|Ej+2 
≡ 0, we obtain that the ratio (ϕ1,j+2 : ϕ2,j+2) is K

f
u -algebraic

along Ej+2. Since the ratio (�1 ◦ vj+2 : �2 ◦ vj+2) is equivalent to (ϕ1,j+2 : ϕ2,j+2), the conclusion of Lemma 3.5
follows from Remark 2.6. �
Completion of the proof of Proposition 3.2. In view of Lemma 3.4, we have to show that �1/�2 is algebraic over
the field S

f . We start by noticing that Lemma 3.4 provides the fact the ratio (�1 ◦ v1 : �2 ◦ v1) of power series
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in K
f
u [[t1, s]] is K

f
u -algebraic along the subspace E1 := {s = 0}. Applying Lemma 3.5, we get that for every odd

integer, the ratio (�1 ◦ vj : �2 ◦ vj ) (of power series in the ring K
f
u [[t [j ], s]]) is K

f
u -algebraic along the complex

subspace Ej := {s = 0} ⊂ C
nj+d−c. Choose j = 2d + 3 for the remainder of this proof, where we recall that d is the

codimension of M in C
N . There exists an integer �3 and for every integer q , power series Nq,Dq ∈ A

K
f
u
{t [2d+3], s}

such that the ratios (Nq : Dq) and (Θ ◦ v2d+3 : � ◦ v2d+3) are q-similar along the subspace {s = 0} with(
j�3(Nq,Dq)

)∣∣
s=0 
≡ 0. (3.20)

Take q = �3 and choose β0 ∈ N(2d+3)n+d−c with |β0| � �3 of minimal length such that(
∂β0N�3, ∂

β0D�3

)∣∣
s=0 
≡ 0.

Then we have (
(�2 ◦ v2j+3)∂

β0N�3 − (�1 ◦ v2j+3)∂
β0D�3

)∣∣
s=0 = 0. (3.21)

Since the manifold M0 given by Lemma 2.7 is minimal at the origin, the minimality criterion given in [2,3] shows
that the mapping C

(2d+3)n+c � (t [2d+3], u) 	→ v2d+3(t
[2d+3],0, u) ∈ C

N is of generic rank N . Hence (3.21) implies
that (∂β0D�3)|s=0 
≡ 0 and that the following identity holds in the quotient field of K

f
u [[t2d+3]]

(�1 ◦ v2j+3)(t
[2d+3],0, u)

(�2 ◦ v2j+3)(t [2d+3],0, u)
= (∂β0N�3)(t

[2d+3],0, u)

(∂β0D�3)(t
[2d+3],0, u)

. (3.22)

Since N�3,D�3 ∈ A
K

f
u
{t [2d+3], s}, it follows from (3.22) that the germ of the meromorphic function given by the

left-hand side of (3.22) is also algebraic over the quotient field of the ring K
f
u [t [2d+3]]. Therefore there exist two

positive integers a, b and, for μ = 0, . . . , a, polynomials Pμ = Pμ(u, t [2d+3],Λb,Γ b) ∈ AC{u}[t [2d+3],Λb,Γ b] such
that

Pa

(
u, t [2d+3],

(
jbf

)
(0, u),

(
jbf̄

)
(0, u)

) 
≡ 0

and such that the following identity holds:

a∑
μ=0

Pμ

(
u, t [2d+3],

(
jbf

)
(0, u),

(
jbf̄

)
(0, u)

)( (�1 ◦ v2j+3)(t
[2d+3],0, u)

(�2 ◦ v2j+3)(t [2d+3],0, u)

)μ

= 0. (3.23)

In fact, the above mentioned minimality criterion even provides points arbitrarily close to 0 in C
2d+3 such that the

(algebraic) map t [2d+3] 	→ v2d+3(t
[2d+3],0,0) sends those points to the origin and has rank N − c there. Pick a point

T 0 with this property such that the left-hand side of (3.22) is meromorphic in an open neighborhood V ×W of the ori-
gin in C

(2d+3)n×C
c with T 0 ∈ V . From the rank theorem, we may find an algebraic map λ : (CN,0) → (C(2d+3)n, T 0)

such that v2d+3(λ(z,w,u),0, u) = (z,w,u). Composing (3.23) with the algebraic mapping λ, we get

a∑
μ=0

Pμ

(
u,λ(z,w,u),

(
jbf

)
(0, u),

(
jbf̄

)
(0, u)

)(�1(z,w,u)

�2(z,w,u)

)μ

= 0, (3.24)

for (z,w,u) ∈ C
N sufficiently close to the origin. It is easy to see that one may choose the mapping λ so that

Pa(u,λ(z,w,u), (jbf )(0, u), (jbf̄ )(0, u)) 
≡ 0, which proves that �1/�2 is algebraic over the quotient field of
A

K
f
u
{z,w}. Since this latter field is algebraic over the quotient field of K

f
u [z,w], which is itself algebraic over the

field S
f , we see that the proof of Proposition 3.2 is complete. �

3.3. An application of the algebraicity property

We shall now provide an application of Proposition 3.2 in the spirit of [12, Proposition 4.3]. This result will be one
of the key point of the proof of Theorem 1.1.
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Proposition 3.7. Let f : (CN,0) → C
N ′

be a germ of a holomorphic mapping and M be a connected real-algebraic
generic submanifold through the origin. Assume that the CR orbit of M at 0 is of maximal dimension and choose
normal coordinates Z = (z,w,u) for M near 0 as in Lemma 2.7. Let M be the complexification of M as defined in
(2.5) and assume the mapping f splits as follows f = (g,h) ∈ C

e × C
N ′−e for some integer e ∈ {1, . . . ,N}. Assume

also that there exist an integer k0 and a polynomial R ∈ AC{Z,ζ }[Λk0 ,Γ k0][ξ ′,� ′] where (ξ ′,� ′) ∈ C
e × C

e such
that:

(i) R(Z, ζ, (jk0f )(0, u), (jk0 f̄ )(0, u), ξ ′,� ′) 
≡ 0 (Z, ζ, ξ ′,� ′) ∈ M × C
e × C

e near 0,
(ii) R(Z, ζ, (jk0f )(0, u), (jk0 f̄ )(0, u), g(Z), ḡ(ζ )) = 0 for (Z, ζ ) ∈ M near 0.

Then the components of the mapping g are algebraically dependent over the field S
f (as introduced in Definition 3.1).

Proof. Let E be the set of all polynomials B ∈ C{Z,ζ }[ξ ′] such that there exist an integer m and
D ∈ AC{Z,ζ }[Λm,Γ m,Υ m][ξ ′] such that

B
(
Z,ζ, ξ ′) = D

(
Z,ζ,

(
jmf

)
(0, u),

(
jmf̄

)
(0, u),

(
jmf̄

)
(ζ ), ξ ′),

with B(Z, ζ, ξ ′) 
≡ 0 for (Z, ζ, ξ ′) ∈ M × C
N ′

near 0 and such that B(Z, ζ, g(Z)) = 0 for (Z, ζ ) ∈ M near 0.
We claim that E is not empty. Indeed, let R as by the assumption of the lemma. There are two cases to consider.

On one hand, if

R
(
Z,ζ,

(
jk0f

)
(0, u),

(
jk0 f̄

)
(0, u), ξ ′, ḡ(ζ )

) 
≡ 0,
(
Z,ζ, ξ ′) ∈ M × C

e near 0,

then we are clearly done. On the other hand, if for (Z, ζ, ξ ′) ∈ M × C
e near 0,

R
(
Z,ζ,

(
jk0f

)
(0, u),

(
jk0 f̄

)
(0, u), ξ ′, ḡ(ζ )

) = 0,

then we also have

R̄
(
ζ,Z,

(
jk0 f̄

)
(0, u),

(
jk0f

)
(0, u),� ′, g(Z)

) = 0

for (Z, ζ,� ′) ∈ M × C
e. Writing

R̄
(
ζ,Z,Γ k0,Λk0,� ′, ξ ′) =

∑
α∈NN ′

Cα

(
ζ,Z,Γ k0 ,Λk0, ξ ′)(� ′)α

,

where the above sum is finite and each Cα ∈ AC{Z,ζ }[Γ k0,Λk0][ξ ′], assumption (i) implies that there exists
β ∈ N

N ′
such that Cβ(ζ,Z, (jk0 f̄ )(0, u), (jk0f )(0, u), ξ ′) 
≡ 0 for (Z, ζ, ξ ′) ∈ M × C

e near 0. Since
Cβ(ζ,Z, (jk0 f̄ )(0, u), (jk0f )(0, u), g(Z)) = 0 for (Z, ζ ) ∈ M near 0, the claim is proved.

Since E is not empty, we may choose B0 ∈ E with the minimum number r0 of monomials in ξ ′. If r0 = 1, we
see that one component of the mapping g necessarily vanishes identically, which proves the proposition in this case.
Otherwise, let m ∈ Z+ such that we may write B0(Z, ζ, ξ ′) = D0(Z, ζ, (jmf )(0, u), (jmf̄ )(0, u), (jmf̄ )(ζ ), ξ ′) for
some D0 ∈ AC{Z,ζ }[Λm,Γ m,Υ m][ξ ′]. We expand D0 in monomials in ξ ′ in the following way

D0
(
Z,ζ,Λm,Γ m,Υ m, ξ ′) =

r0∑
j=1

D0,j

(
Z,ζ,Λm,Γ m,Υ m

)
Ej

(
ξ ′).

We also set for j = 1 . . . , r0,

Tj (Z, ζ ) := D0,j

(
Z,ζ,

(
jmf

)
(0, u),

(
jmf̄

)
(0, u),

(
jmf̄

)
(ζ )

)
, (3.25)

and note that from the definition of r0, it follows that Tj (Z, ζ ) 
≡ 0 for (Z, ζ ) ∈ M near 0 and for every j = 1, . . . , r0.
Let L1, . . . , Ln be a local basis of (0,1) holomorphic vector fields tangent to M near 0, where we recall that n is the
CR dimension of M . Since M is real-algebraic, we may assume, without loss of generality, that these vector fields
have (complex-)algebraic coefficients. Since

B0
(
Z,ζ, g(Z)

) =
r0∑

Tj (Z, ζ )Ej

(
g(Z)

) = 0, (Z, ζ ) ∈ M near 0, (3.26)

j=1
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applying each vector Lν to this identity yields,

r0−1∑
j=1

Lν

(
Tj (Z, ζ )

Tr0(Z, ζ )

)
Ej

(
g(Z)

) = 0, (3.27)

for ν = 1, . . . , n and (Z, ζ ) ∈ M near 0. For every ν ∈ {1, . . . , n} and j = 1, . . . , r0 − 1, we note that the ratio of

convergent power series Lν(
Tj (Z,ζ )

Tr0 (Z,ζ )
) may be written in the form Tj,ν(Z, ζ )/(Tr0(Z, ζ ))2, where

Tj,ν(Z, ζ ) = Gj,ν

(
Z,ζ,

(
jm+1f

)
(0, u),

(
jm+1f̄

)
(0, u),

(
jm+1f̄

)
(ζ )

)
for some Gj,ν ∈ AC{Z,ζ }[Λm+1,Γ m+1,Υ m+1]. Hence, it follows from (3.27) and the minimality of r0 that

Lν(
Tj (Z,ζ )

Tr0 (Z,ζ )
) ≡ 0 for all ν = 1, . . . , r0 − 1. We may therefore apply Proposition 3.2 to conclude that each ratio Tj/Tr0

is algebraic over the field Sf (as given in Definition 3.1). In other words, we may say that in the quotient field of
C{Z,ζ }, the subfield F generated by S

f and all the ratios Tj/Tr0 , j = 1, . . . , r0 − 1, is an algebraic extension of S
f .

Since (3.26) tells us that the components of the mapping g are algebraically dependent over F, it follows that they are
also algebraically dependent over Sf . The proof is therefore complete. �
4. A polynomial system of equations with real-algebraic coefficients associated to a given holomorphic map

In this section, we assume that we are in the same situation as in the previous section. Namely, we assume that
M is a germ of a (connected) real-algebraic generic submanifold through the origin in C

N with N � 2 and that
f : (CN,0) → C

N ′
is a germ of a holomorphic mapping. We also assume that the CR orbit of M at 0 is of maximal

dimension and that normal coordinates Z = (z,w,u) ∈ C
n × C

d−c × C
c for (M,0) have been chosen (and fixed) as

in Lemma 2.7.
Our goal in this section is to construct a system of real-algebraic equations over R

N associated to the mapping
f such that f |RN and (jkf )|{0}×Rc are solutions of such a system for a suitable integer k. The constructed system
will possess further additional properties (see Proposition 4.3 for the precise statement) that will be crucial in order to
prove Theorem 1.1.

4.1. Field extension associated to a given holomorphic map

We refer the reader to [18] for the basic notions of field theory used in the remainder of this paper and keep using
the notation introduced in previous sections.

Let S
f (f ) denote the field generated by S

f and all the components of the mapping f . Then denoting M{Z} the
field of fractions of C{Z}, we have the following field extensions

S
f ↪→ S

f (f ) ↪→ M{Z}.
Let e = e(f ) ∈ {0, . . . ,N ′} be the transcendence degree of the field extension S

f ↪→ S
f (f ). We may therefore

choose e components of the mapping f , denoted by g in the rest of this paper, such that g forms a transcendence basis
of S

f (f ) over S
f .

We shall assume in the rest of Section 4 that e < N ′.

If we write f = (g,h) ∈ C
e
ξ ′ × C

N ′−e
ω′ , then the components of g are all algebraically independent over S

f and any

other component of h is algebraically dependent over S
f (g). Writing h = (h1, . . . , hN ′−e) and ω′ = (ω′

1, . . . ,ω
′
N ′−e

),
we may find an integer k and, for every j ∈ {1, . . . ,N ′ − e}, a polynomial Pj ∈ C[Z,Λk,Γ k, ξ ′][ω′

j ] such that for all

Z = (z,w,u) ∈ C
N sufficiently close to the origin

Pj

(
Z,

(
jkf

)
(0, u),

(
jkf̄

)
(0, u), g(Z),hj (Z)

) = 0. (4.1)

Furthermore, writing Pj (Z,Λk,Γ k, ξ ′,ω′ ) = ∑mj Pj,ν(Z,Λk,Γ k, ξ ′)(ω′ )ν , we may assume that
j ν=0 j
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Pj,mj

(
Z,

(
jkf

)
(0, u),

(
jkf̄

)
(0, u), g(Z)

) 
≡ 0, j = 1, . . . ,N ′ − e. (4.2)

We now come to a useful lemma that is a more refined version of [12, Lemma 6.2] (or of [11, Lemma 4.3])
but whose proof is completely analogous. For sake of completeness, we provide the proof of this statement.
In what follows, we write Z′ = (ξ ′,ω′) ∈ C

e × C
N ′−e and will denote by � ′ another variable lying in C

e and
θ ′ = (θ ′

1, . . . , θ
′
N ′−e

) ∈ C
N ′−e . We also denote �k = card{α ∈ N

N : |α| � k}.

Lemma 4.1. In the above setting, for every real-valued polynomial ρ(Z, Z̄,Z′, Z̄′) in C
N × C

N ′
, there exists a

nontrivial polynomial Qρ ∈ C[Z,ζ,Λk,Γ k, ξ ′,� ′][X] such that the following holds: for all germs of holomorphic
maps H : (CN,0) → C

N ′−e , G : (CN,0) → C
e, T : (Cc,0) → C

�k satisfying

Pj

(
Z,T (u), T̄ (u),G(Z),Hj (Z)

) ≡ 0, j = 1, . . . ,N ′ − e,

and

Pj,mj

(
Z,T (u), T̄ (u),G(Z)

) 
≡ 0,

then

Qρ
(
Z,ζ,T (u), T̄ (u),G(Z), Ḡ(ζ ), ρ

(
H(Z),G(Z), H̄ (ζ ), Ḡ(ζ )

)) ≡ 0

for all (Z, ζ ) ∈ C
2N near 0. Furthermore, we may write

Qρ
(
Z,ζ,Λk,Γ k, ξ ′,� ′,X

) =
δ∑

ν=0

Qρ
ν

(
Z,ζ,Λk,Γ k, ξ ′,� ′)Xν

with δ independent of ρ and with Qρ
δ (Z, ζ, T (u), T̄ (u),G(Z), Ḡ(ζ )) 
≡ 0 for (Z, ζ ) ∈ M near the origin.

Proof. For j = 1, . . . ,N ′ − e, consider

Pj

(
Z,Λk,Γ k, ξ ′,ω′

j

) =
mj∑
ν=0

Pj,ν

(
Z,Λk,Γ k, ξ ′)(ω′

j

)ν
,

Vj

(
ζ,Λk,Γ k,� ′, θ ′

j

) :=
mj∑
ν=0

P̄j,ν

(
ζ,Γ k,Λk,� ′)(θ ′

j

)ν
.

For every j ∈ {1, . . . ,N ′ − e}, let Aj (resp. Bj ) be the complex-algebraic variety in C
N+2�k+e given by the zero set

of the polynomial Pj,mj
(resp. P̄j,mj

) and set E := ⋃N ′−e
j=1 Aj ∪ ⋃N ′−e

j=1 Bj . For (Z,Λk,Γ k, ξ ′) ∈ CN+2�k+e \ E

(resp. (ζ,Γ k,Λk,� ′) ∈ C
N+2�k+e \ E) and for every j ∈ {1, . . . ,N ′ − e}, denote by σ

(1)
j (Z,Λk,Γ k, ξ ′), . . . ,

σ
(mj )

j (Z,Λk,Γ k, ξ ′) (resp. ς
(1)
j (ζ,Γ k,Λk,� ′), . . . , ς(mj )

j (ζ,Γ k,Λk,� ′)) the mj roots of the polynomial Pj

(resp. Vj ).
Next for (Z,Λk,Γ k, ξ ′) and (ζ,Γ k,Λk,� ′) as above, consider the following polynomial W in X

W
(
Z,ζ,Λk,Γ k, ξ ′,� ′,X

)
:=

m1∏
i1=1

. . .

mN ′−e∏
iN ′−e=1

m1∏
n1=1

. . .

mN ′−e∏
nN ′−e=1

(
X − ρ

(
Z,ζ, ξ ′, σ (i1)

1 , . . . , σ
(iN ′−e)

N ′−e
,� ′, ς(n1)

1 , . . . , ς
(nN ′−e)

N ′−e

))
, (4.3)

where, for r = 1, . . . ,N ′ − e, we have written σ
(ir )
r for σ

(ir )
r (Z,Λk,Γ k, ξ ′) and ς

(nr )
r for ς

(nr )
r (ζ,Γ k,Λk,� ′).

It follows from Newton’s theorem on symmetric polynomials that W can be rewritten in the following form

W
(
Z,ζ,Λk,Γ k, ξ ′,� ′,X

) = Xδ +
∑
γ<δ

Wγ

(
Z,ζ,Λk,Γ k, ξ ′,� ′)Xγ , (4.4)

where δ is independent of ρ and where for each γ = 0, . . . , δ − 1,
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Wγ

(
Z,ζ,Λk,Γ k, ξ ′,� ′)

:= Dγ

(
Z,ζ, ξ ′,� ′,

(( Pj,νj
(Z,Λk,Γ k, ξ ′)

Pj,mj
(Z,Λk,Γ k, ξ ′)

)
νj

)
j

,

(( P̄j,νj
(ζ,Γ k,Λk,� ′)

P̄j,mj
(ζ,Γ k,Λk,� ′)

)
νj

)
j

)
, (4.5)

for some polynomial Dγ of its arguments (depending only on ρ) and where 1 � j � N ′ − e and 1 � νj � mj . Setting

K
(
Z,ζ,Λk,Γ k, ξ ′,� ′) :=

N ′−e∏
j=1

Pj,mj

(
Z,Λk,Γ k, ξ ′) · P̄j,mj

(
ζ,Γ k,Λk,� ′),

we see that for a suitable integer rρ , Qρ := Krρ W ∈ C[Z,ζ,Λk,Γ k, ξ ′,� ′][X]. We leave it to the reader to check
that the construction of the polynomial Qρ provides all the desired properties of the lemma. The proof is therefore
complete. �
4.2. Construction of the polynomial system attached to the mapping f

For every real polynomial ρ(Z, Z̄,Z′, Z̄′) defined over C
N × C

N ′
, let Qρ be the polynomial given by Lemma 4.1.

As in Lemma 4.1, we write

Qρ
(
Z,ζ,Λk,Γ k, ξ ′,� ′,X

) =
δ∑

ν=0

Qρ
ν

(
Z,ζ,Λk,Γ k, ξ ′,� ′)Xν, (4.6)

and define

pρ := inf
{
ν ∈ {0, . . . , δ}: Qρ

ν

(
Z,ζ,

(
jkf

)
(0, u),

(
jkf̄

)
(0, u), ξ ′,� ′)∣∣

M×C2e 
≡ 0, near 0
}
. (4.7)

It follows from (4.1) and (4.2) and Lemma 4.1 that each pρ is well defined.
We need the following lemma.

Lemma 4.2. In the above setting, there exists a finite collection of polynomials S1, . . . , Sb ∈ AC{u}[Λk,Γ k] such that
for every T ∈ (C{u})�k , T satisfies the system of equations

Qρ
ν

(
Z,ζ,T (u), T̄ (u), ξ ′,� ′)∣∣

M×C2(N ′−e) ≡ 0, near 0, (4.8)

for all ν ∈ {0, . . . , pρ − 1} and every real-valued polynomial ρ defined over C
N × C

N ′
if and only if

Sq

(
u,T (u), T̄ (u)

) ≡ 0, near 0 ∈ R
c, q = 1, . . . , b.

Proof. For every real-valued polynomial ρ defined over C
N × C

N ′
and every 0 � ν � pρ − 1, we write

Qρ
ν

(
Z,ζ,Λk,Γ k, ξ ′,� ′) =

∑
α,β∈Ne

Qρ
ν,α,β

(
Z,ζ,Λk,Γ k

)(
ξ ′)α(

� ′)β
.

Then a convergent power series mapping T as in Lemma 4.2 satisfies (4.8) if and only if for every α,β ∈ NN ′−e, every
ν ∈ {0, . . . , pρ − 1}, we have

Qρ
ν,α,β

(
Z,ζ,T (u), T̄ (u)

) ≡ 0, (Z, ζ ) ∈ M, close to 0. (4.9)

Using Lemma 2.7, we may choose a parametrization (R2N−d−c × R
c,0) � (y,u) 	→ ϕ(y,u) ∈ C

N of M near 0
such that ϕ is real-algebraic and such that for each fixed u ∈ R

c sufficiently close to the origin, the mapping
(R2N−d−c,0) � y 	→ ϕ(y,u) parametrizes (the germ at 0 of) the manifold Mu as defined in (2.4). Hence for all u ∈ C

c

sufficiently close to the origin and for every γ ∈ N
2N−d−c and every α,β, ν, we may set

S ρ
ν,α,β,γ

(
u,Λk,Γ k

) :=
(

∂γ

∂yγ

(
Qρ

ν,α,β

(
ϕ(y,u), ϕ̄(y,u),Λk,Γ k

)))∣∣∣∣ . (4.10)

y=0
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From our construction, each S ρ
ν,α,β,γ ∈ AC{u}[Λk,Γ k]. Furthermore a convergent power series mapping T (u) as in

Lemma 4.2 satisfies (4.9) if and only if for every γ ∈ N
2N−d−c and every α,β, ν as above

S ρ
ν,α,β,γ

(
u,T (u), T̄ (u)

) ≡ 0

for all u ∈ Rc sufficiently close to the origin. By a noetherian argument, we may extract a finite collection of
polynomials in the family (S ρ

ν,α,β,γ ) providing the conclusion of the lemma. The proof is therefore complete. �
We are now in a position to prove the main technical result of this section.

Proposition 4.3. Let M and f be above. Let e be the transcendence degree of the field extension S
f ↪→ S

f (f ), and
assume that e < N ′. For j ∈ {1, . . . ,N ′ − e} and q ∈ {1, . . . , b}, let Pj ∈ C[Z,Λk,Γ k, ξ ′][ω′

j ] and

Sq ∈ AC{u}[Λk,Γ k] given by (4.1) and Lemma 4.2 respectively. For x ∈ R
n+d−c , u ∈ R

c , consider the following
(complex-valued) polynomial system:

Pj

(
x,u,Λk,Λk, ξ ′,ω′

j

) = 0, Sq

(
u,Λk,Λk

) = 0, j ∈ {
1, . . . ,N ′ − e

}
, q ∈ {1, . . . , b}. (4.11)

Then Λk = (jkf )(0, u), ξ ′ = g(x,u), ω′ = (ω′
1, . . . ,ω

′
N ′−e

) = h(x,u) is a complex-valued real-analytic solution

of (4.11). Furthermore, the system (4.11) has the following property: for every real-algebraic set Σ ′ ⊂ C
N × C

N ′

and every sequence Λk = T �(u), ξ ′ = g�(x,u), ω′ = h�(x,u) of germs at 0 ∈ R
N of real-analytic mappings con-

verging as � → ∞ in the Krull topology to (jkf )(0, u), g(x,u) and h(x,u) respectively and satisfying (4.11), if
Graphf ∩(M ×CN ′

) ⊂ Σ ′ (as germs at (0, f (0))), then for � large enough, we also have Graphf �∩(M ×CN ′
) ⊂ Σ ′

(as germs at (0, f (0))) where f � : (CN,0) → C
N ′

is the holomorphic map obtained by complexifying the real-analytic
mapping (g�, h�) : (RN,0) → C

N ′
.

Proof. The first part of the conclusion of the proposition follows immediately the construction of the system (4.11)
(e.g. Lemma 4.2 and (4.7) and (4.1)). Let us the prove the second part of the desired conclusion. To this end, let Σ ′
be a fixed real-algebraic subset of C

N × C
N ′

and assume that Graphf ∩ (M × C
N ′

) ⊂ Σ ′ (as germs at (0, f (0))).
Let also (T �(u))�, (g�(x,u))�, (h�(x,u))� be a sequence of germs at 0 ∈ R

N of real-analytic mappings converging as
� → ∞ in the Krull topology to (jkf )(0, u), g(x,u) and h(x,u) respectively, and, satisfying for every integer � the
system (4.11). We may assume that Σ ′ 
= C

N × C
N ′

since otherwise the conclusion of the proposition is obvious.
We prove the proposition by contradiction. Assume therefore that there exists a subsequence (f ηr )r such that

Graphf ηr ∩ (M × C
N ′

) 
⊂ Σ ′ for every integer r . Choose a finite number of nontrivial real-valued polynomi-
als ρ1, . . . , ρm defined over C

N × C
N ′

such that Σ ′ = ⋂m
j=1 Σ ′

j where Σ ′
j is the zero set of the polynomial ρj .

Then, by the pigeonhole principle, we may assume that there exists a subsequence (f η̃r )r of (f ηr )r such that
Graphf η̃r ∩ (M × C

N ′
) 
⊂ Σ ′

1 for every integer r . Without loss of generality, we may assume that this subsequence
is the whole sequence (f �)�. Furthermore, in what follows, when complexifying germs at 0 ∈ R

N of real-analytic
mappings, we will keep the same notation for the obtained germs at 0 ∈ C

N of holomorphic maps. For every integer
�, we thus have

ρ1
(
Z,ζ,f �(Z), f̄ �(ζ )

) 
≡ 0, (Z, ζ ) ∈ (M,0). (4.12)

Since for every integer �, the mapping Λk = T �(u), ξ ′ = g�(x,u), ω′ = h�(x,u) satisfies the system of complex-valued
real-algebraic equations given by (4.11), we have, in view of Lemma 4.2 that for every ν = 0, . . . , pρ1 − 1

Qρ1
ν

(
Z,ζ,T �(u), T �(u), ξ ′,� ′)∣∣

M×C2(N ′−e) = 0, near 0, (4.13)

where Qρ1 is the polynomial associated to ρ1 and given by Lemma 4.1 and written as in (4.6). Note also that we also
have for j = 1, . . . ,N ′ − e and for Z ∈ C

N sufficiently close to the origin

Pj

(
Z,T �(u), T �(u), g�(Z),h�

j (Z)
) = 0.

Observe that the sequence of germs of holomorphic mappings (f �(Z))� and (T �(u))� converge in the Krull topology
as � → ∞ to the holomorphic maps f (Z) = (g(Z),h(Z)) and (jkf )(0, u) respectively. This implies in particular
that, in view of (4.2), that for � large enough, we have
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Pj,mj

(
Z,T �(u), T �(u), g�(Z)

) 
≡ 0, j = 0, . . . ,N ′ − e.

Hence by Lemma 4.1, for � large enough and for all (Z, ζ ) ∈ C
2N sufficiently close to the origin, we have

Qρ1
(
Z,ζ,T �(u), T �(u), g�(Z), g�(ζ ), ρ1

(
Z,ζ,f �(Z), f �(ζ )

)) = 0. (4.14)

Then (4.14) and (4.13) imply that, for (Z, ζ ) ∈ M near 0, we have

δ∑
ν=pρ1

Qρ1
ν

(
Z,ζ,T �(u), T �(u), g�(Z), g�(ζ )

)(
ρ1

(
Z,ζ,f �(Z), f �(ζ )

))ν = 0. (4.15)

Using (4.12), we may therefore write for (Z, ζ ) ∈ M near 0,

Qρ1
pρ1

(
Z,ζ,T �(u), T �(u), g�(Z), g�(ζ )

)
=

δ∑
ν=1+pρ1

Qρ1
ν

(
Z,ζ,T �(u), T �(u), g�(Z), g�(ζ )

)(
ρ1

(
Z,ζ,f �(Z), f �(ζ )

))ν
. (4.16)

Since Graphf ∩ (M × C
N ′

) ⊂ Σ ′ (as germs at (0, f (0))), we have ρ1(Z, ζ, f (Z), f̄ (ζ )) ≡ 0 for (Z, ζ ) ∈ M near 0.
Hence the restriction to M of the right-hand side of (4.16) converges in the Krull topology, as � → ∞, to 0, whereas
the left-hand side of (4.16) converges to

Qρ1
pρ1

(
Z,ζ,

(
jkf

)
(0, u),

(
jkf̄

)
(0, u), g(Z), ḡ(ζ )

)∣∣
M.

This implies that for (Z, ζ ) ∈ M sufficiently close to 0, we have

Qρ1
pρ1

(
Z,ζ,

(
jkf

)
(0, u),

(
jkf̄

)
(0, u), g(Z), ḡ(ζ )

) = 0. (4.17)

By the definition of pρ1 (see (4.7)), we have

Qρ1
pρ1

(
Z,ζ,

(
jkf

)
(0, u),

(
jkf̄

)
(0, u), ξ ′,� ′)∣∣

M×C2e 
≡ 0, near 0.

Proposition 3.7 implies that the components of g are algebraically dependent over the field S
f . This contradicts the

definition of the mapping g. The proof of Proposition 4.3 is complete. �
5. Proof of Theorem 1.1

Consider first the case N = 1. Then M is a real-algebraic curve in the complex plane. Fix a point p ∈ M . Since we
can algebraically flatten M near p, we may assume without loss of generality that M is a piece of the real line and
that p = 0. Then the conclusion of the theorem follows easily from Theorem 2.1 with K = R.

Assume in the remainder of this section that N � 2. We first prove Theorem 1.1 in the case where M is generic
in C

N . Pick a point p ∈ M and choose normal coordinates Z = (z,w,u) ∈ C
n × C

d−c × C
c vanishing at p as in

Lemma 2.7. As in Section 4, let e be the transcendence degree of the field extension S
f ↪→ S

f (f ) where S
f is the

quotient field of the ring B
f as given in Definition 3.1. We use in what follows the notation introduced in the previous

section. Let S′ be the real-algebraic subset of C
N × C

N ′
containing the germ at (0, f (0)) of Graphf ∩ (M × C

N ′
).

FIRST CASE. If e = N ′, we claim that M × C
N ′ ⊂ S′ (as germs at (0, f (0))). Indeed, choose a finite collection of

real-valued polynomials r1, . . . , rm over C
N × C

N ′
such that S′ = {r1 = 0, . . . , rm = 0}. Suppose that there exists j ∈

{1, . . . ,m} such that rj (Z, Z̄,Z′, Z̄′)|
M×CN ′ 
≡ 0 near the origin. Since rj (Z, ζ, f (Z),f (ζ )) ≡ 0 for (Z, ζ ) ∈ (M,0),

Proposition 3.7 implies that the components of the mapping f are algebraically dependent over S
f , which contradicts

the fact that e = N ′. Hence for every integer j ∈ {1, . . . ,m}, rj (Z, Z̄,Z′, Z̄′) ≡ 0 for (Z,Z′) ∈ (M × C
N ′

,0), which
proves the claim. Therefore, we see that, if for every integer �, f � denotes the Taylor polynomial of the mapping f

up to order �, then the sequence of polynomial mappings (f �)� satisfies the required conclusion.
SECOND CASE. Assume that e < N ′. In view of Proposition 4.3, we see that it is enough to find for every integer �,

germs at 0 ∈ R
N of complex-valued real-analytic mappings Λk = T �(u), ξ ′ = g�(x,u), ω′ = h�(x,u) that solve the

system (4.11) with the following additional two properties: the sequences (T �(u))�, (g�(x,u))�, (h�(x,u))� converge
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as � → ∞ in the Krull topology to (jkf )(0, u), g(x,u) and h(x,u) respectively and the real and imaginary part of
every component of these mappings must belong to the ring AR{x,u}. But the existence of these three sequences
of germs of real-analytic mappings with the desired properties follows by a direct application of Theorem 2.2 (with
K = R) to the system of real-valued real-algebraic equations associated to the system (4.11). The proof of Theorem 1.1
is therefore complete in case M is generic in C

N .
To conclude the proof of Theorem 1.1, we will show as in [12] that the case where M is not generic follows from the

generic case treated above. Indeed, if M is not generic and p ∈ M , then the germ (M,p) is equivalent (through a local
complex-algebraic biholomorphism) to a germ of real-algebraic submanifold of the form (M1 × {0},0) ⊂ C

N−r
t × C

r
s

where r ∈ {1, . . . ,N − 1}, M1 is a real-algebraic generic submanifold in C
N−r of constant orbit dimension near 0 (see

e.g. [3]). We may therefore assume that (M,p) = (M1 × {0},0) and apply the generic case treated above to the holo-
morphic map (CN−r ,0) � t 	→ f (t,0) ∈ C

N ′
. Hence, for every integer �, there exists a (germ of a) complex-algebraic

mapping ψ� : (CN−r ,0) → C
N ′

such that Graphψ� ∩ (M1 × C
N ′

) ⊂ S′ and that agrees with the power series map-
ping f (t,0) up to order � at 0. Denoting, for every integer �, by ϕ� the Taylor polynomial of order � of the mapping
(t, s) 	→ f (t, s) − f (t,0) and setting f � := ψ� + ϕ�, we get the desired result.
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