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1. INTR~OUCTI~N 

This is the first in a series of papers intended to develop the modern 
theory of the umbra1 calculus. No previous knowledge of the subject is 
required for this series. 

Let us give a brief explanation of the term modern umbra1 calculus. A 
large part of applied analysis is concerned with the study of certain 
sequences of special polynomials. Some of the most important of these 
sequences are associated with the names of Jacobi, Gegenbauer, Legendre, 
Chebyshev, Bessel, Laguerre, Hermite and Bernoulli. All of these sequences, 
and many more, fall into a special class. Boas and Buck, in their work on 
polynomial expansions of analytic functions, used the term sequences 
generalized Appelf type for members of this class. A sequence p,(x) 
polynomials is of generalized Appell type if it has a generating function 
the form 

of 
of 
of 

where 

‘X 
A(t) Y’(xh(t)) = K‘ k~o P&X) tk 

A(t)= 5 aktk, 
k=O 

a0 f 0, 

Y(t) = G Ykfk, 
k=O 

!Pk # 0 for all k, 
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THEORY OF THE UMBRAL CALCt’LL’S. i 

and 

h(t) = 6 h,tk, 
h-l 

h,#O. 

The modern umbra1 calculus grew out of an attempt to develop a unified 
theory for this class of polynomial sequences. In an earlier paper this author 
and G.-C. Rota developed the theory to deal effectively with an important 
subclass known as the sequences of Sheffer A-type zero, whose generating 
functions are of the form 

Atr) e+“(l) = \ - xi Pk@) [k, 

kzo k! 
(1.1) 

This subclass includes the important sequences of Hermite, Laguerre and 
Bernoulli. We remark that the sequence p,(x) is normalized by the presence 
of k! on the right side of (1.1). All attempts at that time to extend the theory 
to the entire class of generalized Appell sequences failed. It is the purpose of 
this paper to make that extension. 

Let us give a breif description of the contents of this paper. Section 2 
contains a review of needed facts about formal power series. Section 3 
discusses the dual vector space P* of all linear functionals on the algebra P 
of polynomials. For it is in the umbra1 calculus that one studies the algebra 
P via its dual space P*. In this section the structure of an algebra is put on 
the vector space P*. Then since we may multiply linear functionals, the 
notion of a geometric sequence MLk for k = 0, 1, 2,... and M and L in P” 
makes sense. Section 4 defines a certain algebra of linear operators on P 
which is isomorphic to the algebra P *. Thus technically we introduce no new 
mathematical concepts; however, the notational convenience of the linear 
operator proves indispensible to the theory. In Section 5 we define the main 
object of study--the Sheffer sequence. Briefly. a sequence S,,(X) of 
polynomials is the Sheffer sequence for a pair of linear functionals (M, L) if 
it is orthogonal to the geometric sequence MLk. that is. if 

(ML’ 1 s,,(x):) = c,,J,.~ 

for all II. k > 0 where c, is a fixed sequence of non-zero constants and the 
notation (N / p(x)j is used for the action of N in P* on p(x) in P. Of course 
6,., is the Kronecker delta function, a,,, = 0 if n # k and 6,., = 1. In this 
same section we give several characterizations of Sheffer sequences. 
including the generating function 

“, Sk(X) 
A(r) E,(h(t)) = L - tk. 

k=O ‘h 
(1.2) 
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where A(t)‘and h(t) are as before and 

is a generalization of the exponential series (s,(t) = exr if c, = n!). Thus we 
see that if Y, = l/c,,, then the sequence S&)/C, is of generalized Appell type 
as defined by Boas and Buck. Also included in Section 5 is an algebraic 
characterization of Sheffer sequences which may be thought of as a 
generalization of the binomial formula. In Section 6 we derive recurrence 
formulas for Sheffer sequences and in Section 7 we give a powerful formula 
for the direct computation of Sheffer sequences. Section 8 is devoted in part 
to the connection-consfanfs problem of determining the constants an,k in 

sn(x)= ' an.kPk(X)y 
k=O 

where S,(X) and p,(x) are given Sheffer sequences. The remainder of the 
paper is devoted to examples. 

The author realizes all too well the motivational difficulties encountered in 
reading a large amount of theory without the benefit of example. Accor- 
dingly, one may resonably omit Sections 7 and 8 at first reading. 

Let us point out one of the most innovative aspects of the present theory. 
Suppose s,(x) is the Sheffer sequence for the pair of linear functionals (M, L) 
where M is not the multiplicative identity in the algebra P*. If we denote this 
identity by E, then the Sheffer sequence p,(x) for the pair (E, L) bears a 
strong association to s,(x). Many of the properties of s,(x) are possessed by 
p,(x) and yet in some sense p,(x) is a simpler sequence. Now the point is 
that almost all of the well-known classical sequences are of the type s,(x). In 
the Hermite and Bernoulli cases the associated sequence p,(x) is the simple 
sequence x”. In the Laguerre case L:‘(x) of order a, the simpler associated 
sequence is the Laguerre sequence L h-“(x). But up to now there had been no 
clue to the existence of such sequences p,(x) associated to, for example, the 
Jacobi, Gegenbauer or Chebyshev sequences. A major portion of the 
examples is devoted to the study of the properties of these new sequences. 

It is painfully evident from even a superficial screening of the literature 
that one man’s Hermite polynomial, say, is not another man’s Hermite 
polynomial. The difference is mainly due to normalization factors. We are no 
exception in this regard. For the Gegenbauer polynomials G,(x) Rainville 
sets 

(1 - 2xt + f*)-*’ = v i;,(x) fk. 
k=O 
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In Section 9 we shall study the Sheffer sequence s,(x) characterized by 

(1 - 2xf + I~)-.’ = ?- 
hTlJ 

(-;’ ) sk(x) tk. 

Thus ( -i’) s,(x) is the Gegenbauer sequence. In the hope of minimizing the 
confusion we shall reserve the name Gegenbauer for the sequence G,,(x). 
referring to Section 9 as the Gegenbauer case. For the Chebyshev 
polynomials of the first kind we have 

7 

(1 -$)(I -2xr+?-‘= 1 +2 \‘ Tk(X)P. 
h-0 

In Section 9 we study the Sheffer sequence characterized bl 

(1 -x2)(1 -2-U +t2)-’ = \‘ (-lySk(X)fk. 
k=O 

A similar normalization factor is required for the Chebyshev polynomials of 
the second kind. Finally, for the Jacobi polynomials P,(x) Rainville gives the 
generating function 

[ 

l+a+P 

-f)yap4 

2 7 
2+a+P: 

2 

(1 ?F, 2f(X 

- I 

) 
1 +a; (1 -t)! 

1 

“, 
= 

k~o (1 + a)‘k’ k 
(1 + a +#k) p (x) [” 

’ 

In Section 10 we study the Sheffer sequence J,(x) satisfying 

I+a+P 2+a+P 

(1 -t)-‘-“-’ zFl 
2 ’ 2 ; 2xt 

1 +a: (1 -ty 1 

((1 + a +P)/2Yk’((2 + a +PP)‘” 
(1 + a)(k’ 

J (?c) th 

k=O 
I . 

From this we may easily obtain J,,(x) in terms of the classical Jacobi 
polynomials (see Section 10). 

We have decided to postpone any discussion of applications of the umbra1 
calculus to future works. The calculus may be applied successfully to the 
study of orthogonality, inverse relations, formal power series, solutions to 
recurrence relations and counting techniques to mention only a few. 
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However, these applications can be broadened and await further 
generalizations of the theory to appear as sequels to this paper. We briefly 
discuss two such generalizations in the last section. 

2. FORMAL POWER SERIES 

In this section we give a few basic facts about formal power series. Let F 
be the algebra of all formal power series in the variable t over the field K (of 
characteristic zero). Addition and multiplication in jr is purely formal and 
.F is well known to be an integral domain. If 

f(t) = c a,tk, 
k:O 

(2.1) 

then the degree of f(t) is the smallest k such that ak # 0. It is easy to see 
that deg f(t) g(t) = deg f(t) + deg g(t). 

The series f(t) has a multiplicative inverse in r, denoted by f -l(t) or 
l/f(t), if and only if deg f(t) = 0. We call such a series invertible. 

Suppose gk(t) is a sequence in F for which deg gk(t) > k. Then if ak is a 
sequence of constants, the sum 

ic 

" akgk(t) 
k=O 

is a well-defined series in F, found by simply collecting coefficients of like 
powers off. In particular, we may take gk(t) = g(t)k where deg g(t) > 1. 

If f(t) is given by (2.1), we may form the composition 

f(&))= ' akdtjk 
k:O 

which is a well-defined element of F provided deg g(t) > 1. It is clear that 
de f(sO)) = deg f(t) . deg g(O 

The series f(t) has a compositional inverse, denoted byf(t) and satisfying 
f(f(t)) = f@(t)) = f, if and only if deg f(t) = 1. We call any series f(t) 
with deg f (t) = 1 a delta series. 

A sequence gk(t) for which deg gk(t) = k forms a pseudobasis forfl. In 
other words, for each series f(t) there is a unique sequence of constants ak 
for which 

ftf)= ' akgk(t). 
kr0 

In particular, the powers of a delta series form a pseudobasis forjr. 
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3. LINEAR FUNCTIONALS 

Let P be the algebra of polynomials in a single variable over K and let P*' 
be the dual vector space of all linear functionals on P. We use the notation 
(L / P(X)::> for the action of L in P* on P(X) in P. Any linear functional L in 
P* is uniquely defined by specifying the values (L / S":J for n > 0. 

Let c,, be a fixed sequence of non-zero constants. We use this sequence to 
define. for each f(t) in .i7, a linear functional in P* as follows. If j’(r) = 
yl_, a,[*. then the linear functional f(f) satisfies 

(f(t) ) s”,; = C,ta,, (3.1) 

for all II > 0. Notice that we have used the same notation f(t) for the power 
series and the linear functional. This should cause no confusion since if f(t) 
and g(t) are in. F, then f(t) = g(r) if and only if (J(r) j x”‘;:, = (g(r) / .Y” :: for 
all H > 0. In other words, f(r) and g(f) are equal as formal series if and only 
if they are equal as linear functionals. 

The action defined in (3.1) depends on the particular choice of the 
sequence c,. although the notation does not reflect this. We will generally 
think of c, as fixed and no confusion should arise. 

As a consequence of (3. I ) we have 

(fk 1 .P j = c,S,.~ 

and so for any p(x) in P. 

Now any linear functional L in P* can be represented as a series in. i7. In 
fact. if 

fLtf)= c ‘“;““) fk. (3.2) 
hT0 h 

then 

and so as linear functionalsf,(t) = L 



64 STEVEN ROMAN 

It is easily verified that the map L --) ft(t) is a vector space isomorphism 
from P* ontoF. We shall obscure this map by identifying P* as the vector 
space 3 of all formal power series in t. Thus from now on we shall write 
our linear functionals in the form of power series in I. 

The isomorphism L + fL(f) has induced a natural product on linear 
functionals-namely, that of formal power series, In symbols J;.,,,(r) = 

.L(f) fdf). 
Let us give some simple consequences of these results. 

PROPOSITION 3.1. If deg f(t) > deg p(x), then 

u-0) I P(X)) = 0. 

PROPOSITION 3.2. If f(f) is in .7, then 

f(f)z q (f(yki '") tk. 

k=O 
(3.3) 

Proof. Applying the right side to x” gives 

Thus the two sides of (3.3) are equal as linear functionals, and so also as 
formal power series. 

In view of (3.3) we have for any f(t), g(f) in 3, 

(f(t) g(t) I x”) = + 
k=O 

* u-(0 I -x”>( so> I xN - “j. 

COROLLARY 1. If deg p,(x)=n and (f(f) 1 p,,(x))=0 for all n>/O, 
then f(r) = 0. 

PROPOSITION 3.3. If p(x) is in P, then 

p(x)= K’ cfk 1 dx)) Xk. 
ky0 ck 

(3.4) 

Prcof. Applying f” to both sides of (3.4) shows that corresponding coef- 
ficients of like powers of x are equal. This proves the result. 

COROLLARY 2. If deg fk(f) = k and (fk(t) ( p(x)) = 0 for all k > 0, ihen 
p(x) = 0. 
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ProoJ This follows from the fact that f&t) forms a pseudobasis for / 
and so (I.’ ! p(s)) = 0 for allj> 0. 

PROPOSITION 3.4. If f (t) is a delta series arzd 

g(t)= \’ 
A:,, 

a,f(tY. 

therl 

(g(t) Is”:\ = \‘ ah(f(t)k is”). 
h:O 

Prooj We have 

One of the most important linear functionals on P is the eaaluatiorz 
functional denoted, for .1’ in K. by c,.(t) and defined by 

In view of (3.3) we have 

E,.(t) zz c-- -I” th. 
h-n ch 

It is interesting to note the form of c,.(t) for various choices of the sequence 
c,,. For example, if c,, = n!. then 

b-,(t) = e?“. 

and if c,, = l/(2 ). then 

F,.(t) = (1 +4’ty 
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It will be convenient to introduce a linear operator a, on 3 by setting 

ck a,tk=- , tk- I k>l 
ck-l 

= 0. k=O 

and extending by infinite linearity. Then we have for all IZ > 0 and k > 0. 

(tk ( x . x”) = (tk ( xn+ ‘) 

=cn+l nt1.k 6 

= @,t" 1 xy. 

This proves the following proposition. 

PROPOSITION 3.5. ff f(t) is in F, then 

(a,f(t) I P(X)) = u-(t) I -UP(X)) 

for all p(x) in P. 

For practice, we compute 

a,&,(t) =a, F -1” tk 
k=O ck 

=F yk 

k:L Gtk-' 

= y&,(t). (3.5) 

As a final remark, when we are thinking of a delta (or invertible) series 
f(t) as a linear functional we shall refer to it as a delta (or invertible) 
functional. 
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4. LINEAR OPERATORS 

If f(r) in T has the form f(t) = CFLO a,tk, then we shall define the linear 
operator f(t) on .i7 by 

n 
f(t)x” = \’ C, n- k -UkX . 

k-0 c,-k 
(4.1) 

Again we have used the same notation f(t) for a formal power series and a 
linear operator. No problems will arise (except perhaps for the temporary 
confusion of the reader) since f(t) and g(t) are equal as formal power series 
if and only if they are equal as linear operators. [To see the “if’ part take 
successively n = 0, 1. 2 ,... in (4.1 )J. 

Notice that we are using juxtaposition to denote the action of an operator 
on a polynomial. A little practice will remove the discomfort involved in 
thinking of an element f(f) in .X as either a formal power series, a linear 
functional or a linear operator. and the notational difference between 

and 

(f(f) I P(X)i 

f 0) P(X) 

will make the particular type of action of f(f) on p(x) clear. 
The action f(f) p(x) depends on the sequence c,. However, we shall think 

of this sequence as being fixed and so no confusion should arise. 
It follows from (4.1) that 

tkxn = ctl -X-k n>k 
C n-k 

= 0, n<k 

and so 

cn fkMyy” -i - 
rrl -.i 

= fk(fjXn). 
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Therefore, if f(f), g(f) are in X we have 

If(f) &)I 2-G) = f(r)l&I P(-~)l 
and we may write f(t) g(f) p(u) without ambiguity. 

Notice also that 

f(f) &w P(+K) = go1 f(f) P(X)* 

(4.2) 

Actually, (4.2) shows that the product in 3 is composition of operators. 
When we are thinking of a delta (or invertible) series f(f) as an operator 

we may refer to it as a delta (or invertible) operafor. 
A key relationship between the linear functional f(f) and the linear 

operator f(t) is given in the next theorem. 

THEOREM 4.1. If f(f), g(f) are in .F, fhen 

(g(f) “f(f) I P(X)) = (g(t) I f(O P(X)) 

for all p(x) in P. 

ProoJ By linearity we need only show this for g(f) = fk. f(f) = f’ and 
p(x) = 5”. But then we have 

(fkfj ) x”) = (tk+j 1 x”) 

=Cnan.k+j 

For many choices of the sequence c,, the operator t may be expressed 
in terms of some more familiar operators. To fix the notation we use 
(x)n = x(x - 1) . . * (x - n + 1), X’n) = x(x + 1) . . * (x + n - 1) 

Dx” = nx”-I, 

D-‘-y” = L.x llfl 
n+l 

, 

Then 
X -lx” = x”- I, .u-‘1 =o. 

(1) when c,=n!, f=D; 

(2) when c, = 1, f =x-l; 
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(3) when c,, = (II!)“‘+ ‘, t = (Ds)” D: 

(4) when c,, = l/(-A),,. I = -(1 + SD) ’ Y ‘: 

(5) when c, = 1,/n. r=.y-‘D-‘-y- ‘: 

(6) Lvhen c,, = l/( ;,-‘). I = -(A +.uD)~ D: 

(7) \chen c,, = 2”‘( 1 + a)““/( I -k IX +b)““‘. 
1=4(l +~I+~+~.~D)-‘(~+u+/I+~sD) I.\. ‘(u+sD): 

(8) when c,,=(I -q)... (1 -q”)/(l -4)“. 
fP(.K) = ( p(qs ) - p(s) ,/(q.u ~ s ). 

As we shall see, from the point of view of the present theory the operator I 
is the natural operator for studying various polynomial sequences. Case 1 is 
related to sequences of Sheffer A-type zero, such as the Hermite and 
Laguerre polynomials. This case has been studied by the present author and 
CC. Rota. Case 6 concerns itself with such polynomials as those of Gegen- 
bauer and Chebyshev. Case 7 relates to the Jacobi polynomials and Case 8 is 
the so called q-case. 

Let us make some remarks concerning the series a,(t). This series acts as 
the same linear functional. namely. evaluation at j’, regardless of the 
particular sequence c,. However, this is not the case for the operator e,.(f). 
We have 

Now if for example c,, = n!. we obtain 

E,,(I) -KY” = (x + y)“. 

and if c,, = 1, we obtain 

.K ,I + I 

E!(f) x" = 
-? 

.n+ I 

.K-J. 

It is not hard to see that not all linear operators on P are of the form &f(l) 
in F. We have the following characterization of such operators. 

PROPOSITION 4.1. Let U be a linear operator on P. There exists a series 
f(t) in .F such that Up(x) = f(t) p(x) f or all p(x) in P f and on1.1~ if L: 
commutes with the operator 1. that is, Utp(.u) = tUp(x) for all p(x) in P. 

Proof. The necessity is clear. For the converse, suppose lJ commutes 
with t. We define the series f(r) by 
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jyrjx” = ;- (” lcyk) tk<Kn 
k=O 

= 
;. (to 1 Ut”-kxn) Xnmk 

k:O 

+ (tn-kc;~~H) nmk 
= x 

k=O 

= 
;- (t" ;Li, 

xk 

k=O ck 

= Ux". 

The last equality follows from the fact (easily proved by induction) that 
deg Ux” < n and from Eq. (3.4). 

COROLLARY 1. A linear operator on P has the form f(t) in .F if and 
only ifit commutes with any delta operator. 

ProofI This follows from the fact that the sequence of powers of a delta 
operator form a pseudobasis for 7. We may then apply Proposition 4.1. 

COROLLARY 2. A linear operator on P has the form f(t) in 3 if and 
only if it commutes with any evaluation operator &Jt). 

Prooj This follows from Corollary 1 since e?(t) - c; ‘to is a delta series. 

5. POLYNOMIAL SEQUENCES 

By a sequence p,(x) in P we shall always imply that deg p,(x) = n. 

THEOREM 5.1. Let f(t) be a delta series and let g(t) be an invertible 
series. Then the identity 

(g@> f@lk 1 sn(x)) = Cndn,k (5.1) 

for all n, k > 0 determines a unique sequence s,(x) in P. 

Proof: The uniqueness follows from Corollary 1 of Proposition 3.3. For 
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the existence, suppose s,(x) = CyzO u,,~-& where a,,.,, # 0. and g(f) f(t)” = 
‘7 k bk.iti where b,., f 0. Then (5.1) becomes 

= 'I‘ K1 bk,.a,.j(ti / .y') 
-- 
i =k j-0 

n 

zz \‘ b, ja,,jcj. 
,7-k 

(5.2) 

By taking k = n one obtains 

1 
a n.n= -’ b n.n 

By taking successively k = n - 1, n - 2,..., 0 one obtains a triangular system 
of equations which can be solved for anqk. 

We will say that the sequence s,(x) is the She&r sequence for the pair 
(g(f), f(t)), or s,(x) is She&v for (g(t), f(t)). Notice that g(t) must be 
invertible and f(r) must be a delta series. The case g(r) = 1’ calls for special 
attention. The Sheffer sequence for (to, f(t)) will be called the associated 
sequence for f(t), and we say s,,(x) is associated to f(t) or f(f) is associated 
ro s,(x). 

THEOREM 5.2 (The Expansion Theorem). Let s,,(x) be Sheffer for 
(g(f)- f (t)). Then for any h(t) in .F 

h(r) = \ '", (h(r) 1 Sk(X)) gtr,firjk 

k=O ck 

ProoJ: We simply apply the left side to s,(x) to obtain (h(t) / s,,(x)). The 
fact that deg s,(s) = n completes the proof. 

COROLLARY 1. If p,(x) is the associated sequence for f(t), then for an) 
h(r) in .F 

h(t) = F ch@) 1 Pktx)) fctjk 

k=O Ck 

The next results show how to expand an arbitrary polynomial as a linear 
combination of polynomials from a Sheffer sequence. They follow from 
Theorem 5.2 by taking h(t) = c,(t). 
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COROLLARY 2. Let s,(x) be Sheffer for (g(t), f(r)). Then for any p(x) 
in P 

p(x) = L' (gWfWk I P(-~)> s 
ky0 ck 

k 
@> 

COROLLARY 3. Let p,(x) be associated to f(t). Then for any p(x) in P 

p(x)= \‘ (S(Ok I P(-~)i 

ky0 ck 
Pk(-'). 

It is our intention now to characterize Sheffer sequences in several ways. 
We begin with the generating function. 

THEOREM 5.3 (Generating Function). The sequence s,(x) is Sheffer for 
(g(t), f(t)) if and only if 

--&&,,(f@)) = F S,(4’)tk 
k=O ck 

(5.3) 

for all y in K. 

Proof: If s,(x) is Sheffer for (g(t), f (t)), then by the Expansion Theorem 

", skb') 
Es(f) = -T - s(r) f wk 

k:O ck 

and so 

and 

-&) E.“@(f)) = e @Lk. 
k:O ck 

For the converse, suppose (5.3) holds. Then if r,,(x) is the Sheffer sequence 
for (g(t), f(t)), we have 

= 
$ sk(4)) [k 

k:O ck 

and so rk(x) = sk(x) for all k > 0. 



COROLLARY 1. The sequence p,(x) is associated to f(t) if and onf~~ if 

. 

Equation (5.3) defines the sequence c; ‘S,,(X) as a so-called generalized 
Appell sequence by Boas and Buck. Thus we see that the present theor! 
applies to a rather broad class of polynomial sequences. 

The generating function leads us to a representation for Sheffer sequence. 

THEOREM 3.5. The sequence s,(x) is Shefir &for (g(t), f(t)) iJ‘ ajzd 
Oll~l~ Q’ 

s,,(x) = 
“. 

\ 
(g(J;(t)) ’ f(t)” 1 Y :: 

xh. 
k-0 ‘k 

(5.4) 

Proof. Applying the right-hand side of (5.3) to 2 gives 

= S,(Y) 

and applying the left-hand side of (5.3) to x” gives 

Since these equations hold for all 4’ in K, the result follows. 
Equation (5.4) is called the conjugate representation for S,,(X). 

THEOREMS 5.5. The sequence s,(x) is Sheffer for (g(t), f(t)) if and onI>, 
lyg(t) s,(x) is the associated sequence for f(t). 

Proof. This follows directly from the definitions and Theorem 4.1. 
Theorem 5.5 says that each associated sequence generates a class of 

Sheffer sequences, one for each invertible operator g(t) in. F. 
Next we give an operator characterization of Sheffer sequences. 

THEOREM 5.6. A sequence p,(x) is the associated sequence for f(t) if 
and only* if 

(i) (to 1 p,(x)) = CoS,30. 

(ii) 
C 

f(t) p,(x) = n 
C PC l(X) 
n-1 
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Proof: Suppose (f(f)k ) p,(x)) = ~,a,,~. Then k = 0 gives (i). To get (ii) 
we have 

and so (ii) follows since f(t) is a delta series. Conversely, if (i) and (ii) hold, 
then 

UWk I P,(X)> = to c, ( I c “-k Pn-k(X) ) 
Ctl 

= - cn-kLk.0 
C n-k 

THEOREM 5.7. A sequence s,(x) is She&r for (g(r), f(r)) for some 
intlertible g(t) if and only if 

J-(r) s,(x) = 
C/l ---s,-,(x)* (5.5) 

C n-l 

Proof If s,(x) is Sheffer for (g(t),f(t)), then p,(x) = g(f) s,Jx) is 
associated to f(t). Hence 

g(t) s,(-r) = J-0) g - V) P,(X) 
= g-‘(t) f(f) P,(X) 

=C”-g-‘(t)p,-,(x) 
C n--l 

C, 
=-s,-,(x). 

C n--l 

Conversely, if (5.5) holds, then we define a linear operator U on P by 
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where p,,(s) is associated to f(t). Then 

qf(r) s,(x) = -5- us, ,(A-) c II - I 
C 

= n p,, , !.s 1 
C PI- I 

= f(t) PA-) 

= J‘(t) Us,(s) 

and so CT(r) =f(r)CJ. By Corollary 1 of Proposition 4.1 we deduce the 
existence of an invertible g(t) in i7 for which g(r) s,,(s) = p,(s). The result 
follows from Theorem 5.5. 

We now turn to a characterization of Sheffer sequences which generalizes 
the binomial formula. 

THEOREM 5.8 (The Sheffer Identity). A sequence s,(x) is Shefferfor the 
pair (g(t). f(t))@- some g(r) if and OH/J’ if 

E!(f) s,(x) = ;‘- crf ___ Pk(l’) s,, -kb-) 
k=o ckc,-k 

(5.6) 

-for all .I* in K where p,(x) is associated to f(t). 

Proof: Suppose s,(x) is Sheffer for (g(t),f(t)). Then by the Expansion 
Theorem 

Applying both sides to S,(X) and using Theorem 5.7 gives Eq. (5.6). For the 
converse, let U be the linear operator on P defined by (is,(x) = p,,(x). Then 
it is sufficient to show that U = h(t) for some h(t) in.7. Now 

= 
~ Pkt.1’) P,,-k+) 

A:(, ckc,-k 

= ___ pk(4’) s,,-k@) 
h-0 ckc,-~h 

= U&,(f) s,(x) 

and so there exists an invertible h(t) for which U = h(t). This completes the 
proof. 
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One may observe that for c, = n! the Sheffer identity is 

Sk(X) Pn-k(X). 
When s,(x) = p,(x) =x” we get the binomial formula. 

An important property of Sheffer sequences is their performance with 
respect to multiplication in F. 

THEOREM 5.9. Let s,(x) be She&r for the pair (g(t), f(t)) and let p,(x) 
be associated to f(t). Then for all h(t) and l(t) in .F we haue 

(h(t) 4t) I s,,(x)) = kto & (h(t) I Sk(-y))(l(t) 1 Pn -kcX)) 

Proof. An instructive proof of this result is based on the algebra Plx, y] 
of polynomials in two variables x and y. For h(t) in 2- by h,(t) we mean the 
linear operator on P[x, ~11 defined by 

h,(tj xk$’ = (h(t) ( .? > JJ~ 

and by h,(t) we mean 

h,.(t) x”$ = xk(h(t) ) xj). 
Then the identity 

(hjt) 0) I x”> = k$o --& (h(t) I x”-~XW Ix”> 

can be written as 

(h(t) I(r) Ix”> = h,(f) &) k$o +x n-k k J’ 
k n-k 

= h,(t) I,(t) E,!(f) xn. 

By linearity we may replace .I?’ by s,(x) giving 

(h(t) W) I s,(-~)) = h,(f) ~,O) my s,(x) 

= h,(t) l,(t) T- ” ___ sk(y) P,-,(x) 
k:O ckc,-k 

=?- 
k~o -& (l(t) 1 sk@)XW) I P,, mk@)). 

The result follows by interchanging h(t) and l(t). 
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6. RECURRENCE FORMULAS 

If ,u is a linear operator on P, then the adjoint ,u ‘* is the linear operator on 
F defined by 

,u*f(t) = c u-0) Id:) *h, 
k:o ck 

PROPOSITION 6.1. If deg A.(f) > j for j > 0 and 

then 

Proof: We have 

J. 

f(r) = " aj.fi(t). 

jT) 

iu *f(t) = cT a,p*f(t). 
,TiJ 

(6.1) 

= 
A aiP*fj(t). 

j-0 

PROPOSITION 6.2. If ,u is a linear operator on P. then 

for all f(t) in F and p(x) in P. 

ProoJ: By Proposition 6.1 we need only show this for f(t) = li and 
p(s) =x”. In this case 

If p,(x) is associated to f(t). then the umbra1 shifr 13, associated to J(r) 
lor p,(.u)l is the linear operator on P is defined b) 

B,p,(s) = (‘z + lk, p,, i- ,(s) 
c nil 

for all 12 > 0. 
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Recall that a derivation B on an algebra A is a linear operator on A 
satisfying 

2(ab) = (&)b + a c3b 

for all a, b in A. 
We may characterize umbra1 shifts by their adjoints. 

THEOREM 6.1. An operator 0 on P is the umbra1 shifr for f(t) if and 
only if its adjoint 8* is a derivation on .F satisfjjing Eq. (6.1) and 

e*ff(t)k = kf(t)k- 1 

for all k > 0. 

ProoJ Suppose 0, is the umbra1 shift for f(t), with associated sequence 
p,(x). Then 

(e:f (0” 1 p,(4) = (f (ok I ~p,w 

and so e/*f(t)k = kf (t)k-‘. From Proposition 6.1 we conclude that t9F is a 
derivation onX. For the converse, let w be a derivation on .7 for which 
rof (t)k = kf (t)k-‘. Then if p,(x) is associated to f(t), we have 

&f (t)k I P,(X)> = (kf (t)k- ’ I P&)) 

= kcn6n.k- 1 

= (f (t)k I eda)) 

= (e:f (ok I P,(X)). 

Thus since w satisfies (6.1), we conclude w = tI,*. 
Notice that e,?t” = ktk-’ and so 8: is the derivative with respect to t. That 

is. 

and 

(g(t) I em = (g’(t) I x”>. 
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We also observe that 

e,tx”=~e,x”-’ 
C II I 

= my” 

and so 

8, t = xD. 

where D is the derivative with respect to x’ on P. 
Next we derive the chain rule for derivations. 

PROPOSITION 6.3. If f (t) and g(t) are delta series, then 

@F = (q%(t)) 0: 

Proof. Since 0,X is a derivation, 

e,*g(t)k = kg(t)k-1 e;g(tj 
= (e;m e,*g(t)k 

and Proposition 6.1 completes the proof. 
Now we can relate two umbra1 shifts. 

THEOREM 6.2. If 0, and 8, are umbra1 shift, then 

e,= e, o (e,*f(t))-1. 

ProoJ: For any p(x) in P, 

ok I e,m) = (e,*tk 1 ~(4) 

= w,*fw) -vpk) I P(X)) 

= (e,*tk I (qfw - 1 PW 

= ok 18, 0 (e,*fw -1 P(X)) 

from which the result follows. 
From this theorem we obtain our first recurrence formula. 

THEOREM 6.3. Zf p,(x) is associated to f(t), then 

P,+ I(X) = (,C;& afw P,(x)~ 
n 

(6.2) 
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where f ‘(t) is the ordinary derivative off(t) with respect to t and 19,: x” -+ 
((n + l)Cn/C,+,)x”+‘. 

Proof. The result follows from Theorem 6.2 by taking g(t) = t and 
applying to P,(X). 

We wish to derive a recurrence formula for Sheffer sequences. To this end 
we derive a formula for the adjoint 0: of an umblal shift. 

PROPOSITION 6.4. Let 8, be the umbra1 shift for f(t). Then 

0,?h(t) = h(t) 9,- $h(t) 

for all h(t) in .F. 

Proof: For any g(t) in X and p(x) in P we have 

(g(t) I ~,WW) P(X)) = P,*(W) g(t) I P(X)) 

= @W(t) s(t)> - h(t) e,-%(O) I P(X)) 

= (g(t) I (h(t) of- efh(t)) P(X)). 

PROPOSITION 6.5. Let s,(x) be Sheffer for (g(t), f (t)). Then if t9, is the 
umbra1 shift for f(t), 

S”+,(X)= ,,‘;;;, (g(t) eww + 0,) S,(X). n 
Proof. Let p,(x) be the associated sequence for f(t). Then 

s,+,(*y)= g-‘(t) Pn+,(X) 

= ,‘;;;c, g-w efs,w 

But 

g-'(f)e~j.g(t)=(g-l(t)e~--~g~'(f)) g(t)+4 

= g(t) e,*ww + e,. 

This completes the proof. 
Now we have our recurrence formula. 

THEOREM 6.4. Let s,(x) be the Sheffer sequence for (g(t), f(t)). Then 

(6.3) 
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Proof This follows from Proposition 6.5 by noticing that 

r!$y’(f) = (8Tf) e:g-‘(t) 

= (f’(f))-‘(-g-m2(t) g’(t)) 

and 

0, = e,(e:f(f)) ’ 

= O,(J-‘(t)) ‘. 

THEOREM 6.5. Let s,(x) be She&- for (g(t), f(t)). If 

therl 

Ts,(x) = m,(x). (6.4) 

In other words, s,(x) is an eigenfunction for T with eigenwlue n. 

Proof: This follows from Theorem 6.4 by noticing that 

(n ‘;; ; c, %I(-~) = f(t) S", ,P). 

The two forms of T are equivalent since t9,t = xD. 
We remark that since s,(x) forms a basis for P, any polynomial solution 

to Tp(.u) = rip(x) is a constant multiple of s,(s). 
Next we require two lemmas. 

LEMMA 1. Let h(t) be invertible. with leading coefficient equal to 1. Then 
the equation 

h(t) = g 

has a unique (up to multiplicatit~e constant) solution gicen bjq 

g(t) = ew (1. h(f) df ). 

LEMMA 2. Let l(t) be a delta series, with leading coefficient equal to 1. 
Then the equation 
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f(t) 
4) = f’(t) 

has a unique (up to multiplicative constant) solution given by 

f(t) = t exp (I (r(t)‘ty’ - 1 &). 

THEOREM 6.6. Let T be a linear operator of the form 

T = (0, - h(t)) l(t) 

= (xD - th(t)) r(t) 
t 

where h(t) is invertible and l(t) is a delta series both having leading coef- 
ficient equal to 1. Then a solution to the equation 

Ts,(x) = ns,(x) 

is given by nth polynomial in the Shefler sequence for the pair 

(.%P (j-h(t)dt),texp (j(c(r)‘r~‘-l dt)). 

Proof: A solution to Ts,(x) = ns,(x) is given by the Sheffer sequence for 
the pair (g(t), f (t)) where 

g’(t) - = h(t), 
g(t) 

f(t) 
f’o = w 

The result follows from the lemmas. 
We shall now derive another set of recurrence formulas. 

THEOREM 6.7. Let s,(x) be Sheffer for (g(t), f(t)). Suppose 

fct) = ? ak tk, 
k:, kc, 

J;(t) --I 
C-1 t 

fy+ ‘? bktk 
k=o ck 

MfWl’ 
g(f (t)) 

= ?’ dktk 
k:O ck 

[d, = O]. 
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Then 

m,(x) = T- cn 
~ (a,@, - dk) St,-kP) 

hz, CRC,-k 
(6.5) 

and 
,, 

m,(x) = K‘ c* ___ (b,d - dk) s,, -k(x) 
AZ,, ckc,-k I4 =Ol (6.6) 

Proof: To prove (6.5) we have 

But 

and 

The result follows by substitution and f(t)k s,(x) = (c,/c, mk) S, -J-u). To 
prove (6.6) we proceed in the same manner using 



84 STEVEN ROMAN 

Theorem 6.7 has a sort of converse. 

THEOREM 6.8. Let r,,(x) be a sequence of polynomials satisfying (6.5). 
Let 

I(() = -? ak (k 
,,:, kc, 

and 

(h(f) = c dk (k. 
k:O ck 

Then there is a constant a for which at-,(x) is Sheffer for the pair 

Proof. First we notice that solutions to (6.5) are unique up to 
multiplicative constant. Now suppose s,(x) is the Sheffer sequence for the 
pair (s(t), f(O), where 

and 

.m = w> 

Then in view of Theorem 6.7 the sequence s,(x) satisfies (6.5). Hence 
s,(x) = at-,(x) for some constant a. It remains only to solve the above 
equations for f(t) and g(t) using the previous lemmas. 

In order to complete the converse to Theorem 6.7 we need one more 
lemma. 

LEMMA 3. Let h(t) be invertible. Then there is a unique (up to 
multiplicative constant) solution to the equation 

l(t) = 7 ( 1 
fw -’ J;,(() 



THEORY OF THE UMBRAL (‘LCl’ILI:S. 1 x5 

f(t)=rexp (&[vdO. 

THEOREM 6.9. Let r,,(x) be a sequence of polynomials satisf?,ing (6.6). 
Let 

th(t) = \“- 5 tk. 
k:O ck 

Then there is a constant a for which ar,(x) is Sheffer for the pair (g(t), f(t)) 
where 

f(t) = t exp (11’ v dt ). 

g(t) = exp ({h(&)) d&l). 

Proof: The solution to (6.6) is unique up to the multiplicative constant. 
Now let S,(X) be the Sheffer sequence for (g(l), f(t)) where 

(- ) J.-Y.- ~- ’ f’(l) = l(t) 
and 

wmv = th(t) 
g(f (0) . 

Then by Theorem 6.7 the sequence sn(x) satisfies (6.6). Hence s,(x) = ar,(x) 
for some constant a. It remains only to solve for f(t) and g(t) using the 
previous lemmas. 

7. TRANSFER FORMULAS 

In this section we develop formulas for the direct computation of 
associated sequences. Using these formulas and Theorem 5.5 we can 
compute Sheffer sequences. 
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THEOREM 7.1 (The Transfer Formula). Zf p,(x) is the associated 
sequence for f(t), then 

PAX) = f ‘(t) 
f(f) --n-’ 

( 1 
7 x” (7.1) 

for all n > 0. As usual f’(t) is the derivative off(t) with respect to t. 

Proof: We check the conditions of Theorem 5.6 for the sequence p,(x) in 
(7.1). For condition (i) we have 

(10 /f’(t) (+)-‘- ’ xn) 

= ((Lp)‘(Ly’ ( xn) 

= ((Ly +t (q)‘(y)-” ( xn). 

For n = 0, we get 

(P+r (qq’(qy’ ( l)=(t”i 1) 

=Co. 

For n > 0, we get 



THEORY OF THE UMBRAL CALCI.ILUS. f 87 

As for (ii) we have 

This completes the proof. 
An alternative form of the Transfer Formula can be derived. 

THEOREM 7.2 (The Transer Formula). Zf p,(x) is rhe associured 
sequence for f(t), then 

fbralln> 1. 

Proof: In view of Proposition 6.4 we have 

-n-l 
xn 

(7.2) 

We can use the Transfer Formula to relate any two associated sequences. 
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COROLLARY 1. Let p,(x) be associated to f(t) and q,,(x) be associated 
to g(t)/(t), Lvherc g(t) is any invertible series. Then 

qn(-K) = 0, g(t) --?I 8; ‘P,(X), 

where 0; IX" + ’ = (c,+ ,/(n + 1) c,) x” and 0;‘l = 0. 

The Transfer Formula readily gives Lagrange’s formula for the 
compositional inverse of a delta series. To see this we take y= 0 in the 
generating function of a Sheffer sequence, 

since eodf(t)) = c; ‘. Now by the Transfer Formula 

c,s,(O)= (to 1 g-‘(t)f’(t) (F)m-k-‘xk) 

= g-‘(t)f’(t) p-*-l ( 2). 
( 

Thus the coefftcient of tk/ck in g-Iv(t)) equals ck times the coefficient of tk 
in g-‘(t) f’(t)df(t)/t)-k-‘. Other versions of Lagrange’s formula are 
similarly derived. 

The next proposition is an application of the Transfer Formula. 

PROPOSITION 7.1. Let s,,(x) be Sheffer for (g(t), f(t)). Let h(t) and I(t) 
be invertible. Then the sequence 

r,(x) = h(t) 4)” s,(x) 

is Shefer for 

( 
V’(t) f(t)\’ 
f ‘(6 h(t) W) g(t), z-‘(t) SW). 

Prooj First we have 

I-‘@) f(t) r,(x) = f(t) h(t) WY-’ s,,(x) 

= 5 h(t) Z(t)” - ’ s, _ ,(x) 
C n-1 

cn = - r,-l(x). 
cn-I 
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Also. 

is the associated sequence for l-‘(r) f(t), and the proof is complete. 

8. UMBRAL COMPOSITION AND TRANSFER OPERATORS 

Let p,(x) be associated to f(f). The transfer operatorfor p,,(x) or f(t) is 
the linear operator ;i, on P defined by 

We have 

$x” = p,(x). 

(go) I Pk(X)‘l’ p 
ck 

(8. I ) 

We can characterize transfer operators by their adjoints. 

THEOREM 8.1. A linear operator 1 on P is the transfer operator for f(t) 
[J” and or+ if irs agjoint A * is an automorphism of. 9 satisjj*ing (6.1) and for 
Ltlhich 

A*f(t) = t. 

ProojY Suppose ,I1 is the transfer operator for f(t), with associated 
sequence p,(x). By Theorem 5.9 we have 

G$W~) g(r) lx”> = (hi0 g(r) I pnix)j 

= <, c, 
___ W i P&)&g(t) 1 P”-k@)) 

k:O CkCn-k 
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and so kFh(t) g(t) =LFh(t)kFg(t). Also, from (8.1) we see that n:f(t) = t. 
For the converse, suppose o is an automorphism of Y satisfying (6.1) and 
for which wf(t) = t. Then if ,$ is the transfer operator for f(t), with 
associated sequence p,(x) we have 

(qf(t)k I x”> = UWk I nx”> 

= cmk I P,(X)) 

= Cn8n.k 

= (tk ) x") 

= h-mk I x"> 

and so o = A;. 
The most important properties of transfer operators are contained in the 

next result. 

THEOREM 8.2. (a) A transfer operator maps associated sequences to 
associated sequences. 

(b) 0-1: p,(x)+ 4°C x is a linear operator where p,(x) is associated to ) 
f(t) and q,,(x) is associated to g(t), then n*g(t) = f(t). 

(c) Ifp,(x) and qn(x) are associated sequences and kp,,(x) = q,(x), 
then L is a transfer operator. 

Proof. (a) Let ,I: xn + p,(x) be a transfer operator and let q,,(x) be 
associated to g(t). Then 

(A* - ‘bwk I k(x)) = ( g(t) I 9,(x)) 

and so 19,(x) is the associated sequence for ,I* -‘g(t). 

(b) We have (n*gW I p,(x)) = (g(t) I AP,&)) = (g(t) I q,(x)) = 
Cll4LL = (f(t) I p,(x)) and so l*g(t) = f(t). 

(c) Suppose p,(x) is associated to f(t), and q,,(x) is associated to 
g(t). Then by (b), k*g(t) = f(t) and I*g@(t))k = tk. Hence 
(t#(f))k I nxn> = crk Ix”> = C,8,,,k and so Lx” is associated to g(f(t)). 

Suppose p,(x) and q,,(x) are two sequences of polynomials with q,,(x) = 
,%=O q,.kXk* Then the umbra1 composition of qn(x) with p,(x) is the 
sequence 

s&w = ' qn.kPk(X)- 
k:O 
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Notice that if A: x” + p,(x), then 

q&w = b,(x). 

THEOREM 8.3. Let p,(x) be associated to f(t) and q,,(x) be associated to 
g(t). Then q,( p(x)) is associated to g(f (t)). 

ProoJ Let 1: xn + p,,(x) be the transfer operator for f(t). Then by the 
proof of part (a) of Theorem 8.2, Aq,(x) is the associated sequence for 
A” ~- ‘g(t). But Aq,(x) = q,(p(x)) and. by part (b) of Theorem 8.2. ,I* - ‘g(t) = 
&a” -‘ojj =g(f (t)). - 

We would like to extend this result to Sheffer sequences. 

THEOREM 8.4. Let s,(x) be She&v for (g(t),J‘(t)) and let r,,(x) be 
Sh@zr for (h(t). f(t)). Then r,(s(x)) is Sheffer for the pair 

(g(t) hif (t)), 4f (t))). 

Proof: Let s: x, + p,,(x) be the transfer operator associated to f(t) and 
let ,u: x” + s,(x). Thus we have ,D = g- ‘(t) Ar. Now 

(g(t) h(f(t)) 4f (t))k I r&(x))) 

= (g(t) h(f (t)) U(t))” I w,(x)) 

= (g(t) h(f 0)) 4f (t))k I g ‘(t) $r,(x)i 

= (4VU(~)) 4fW)k) I r,(x)? 

= (h(t) 4tjk I r,,(-x)) 

- C,Bn.k. 

This completes the proof. 
Suppose s,(x) and r,(x) are two sequences of polynomials related by 

r,(-y) = \’ an,ksk(x). 
kz0 

The connection-constants problem is to determine the constants anvk. In case 
s,(x) and r,(x) are Sheffer sequences we can give a solution to this problem. 

THEOREM 8.5. Let s,(x) be Shefir for (g(t), f (I)) and let r,(x) be 
Shefirfor (h(t), l(t)). Suppose 

r,(x) = + an,ksk(x). 
k=O 

(8.2) 
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Then the sequence 
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t,(x) = + a,,kxk 
k:O 

is the Shefier sequence for the pair 

Proof. Equation (8.2) can be written as 

r,(x) = t,Cs(x)). 

If tn(x) is Sheffer for the pair (X(t), Y(t)), then by Theorem 8.4 we have 

h(t) = g(t) -W-(t))~ 

4) = W(t)) 

and so 

Y(t) = K?(t)>, 
X(f) = hdf(t)) iiimr 

COROLLARY 1. Zfp,(x) is associated to f(t) and q”(x) is associated to 
l(t) and 

qdx)= '- an,kPk(X)3 
k=O 

then t,(x) = Cizo amekxk is associated to [(f(t)). 

9. EXAMPLES:GEGENBAUER,CHEBYSHEV AND OTHERS 

In this section we study the delta series 

This will lead us to the Gegenbauer and Chebyshev polynomials. 
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Associated Sequence 

We begin by computing 

f(t)= -t 
I+dC7’ 

f(t) = f$ ? 

f’(t) = pi;; dn) 

= J-0) 
Q/i7 

We shall denote the associated sequence for f(t) by p,,(x). The generating 
function for p,(x) is 

The conjugate representation for p,(x) is 

p,(x) = 6 
((-2t/( 1 + t2))k 1 x”! 

2. 
k:O ck 

Now 

I 
= (-2)” \‘ 

,;J 

1 

(-2)nm’i ("J")c,, if k=n-zj 

= 

0 if kfrr-2j 

Let us give some consequences of the Expansion Theorem. We have 

tn = \’ (I” / PktX)j fcty 

kTn ck 
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But 
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Cl” I Pk(X)) = 0 if n + k odd 

and 

lt" I Pn+2j("))=Ce2)" ( ;n) cn+2j 

and so 

p = ? (-2)” -n 
( I( 

--t n + 2j 

,To .i l+di7 ) 

(1 $ dC7)” = G (-2)” 
( I( 

;n 4 

1 

2j 

,ro 1+di7 . 

From Rainville, [4, p. 701 one can deduce 

for all a. Hence 

Thus we have 

where by (9.2) 

and 

if n - k is odd 

(j-(t)"-" 1 x") = (-l)“(n - 2j)(n - l)j-1 

2nj! 
c 
n 

and so 

P-2) 

xf# = 'C$' (-l)"Cn - 2j)(n - ')j- 1 C, 

,TO 2nj! c,_zj Pn- 2&f). 
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Now we turn to some recurrence formulas. From the fact that 
f(t) P&) = (c,,/c,- ,) pn- ,(-v> we have 

and 

Cl2 (9.3) 

fiTp,(x) = (1 + dC7) p,(x) - p,,(u) 

= -L (1 + &3&t-(f) P, + ,(.y) - P,(X) 
C N + 1 

CR 
= ----tp,+,(-y)- PA-Y). (9.4) 

C ntl 

Equating the two expressions gives the recurrence 

C, ----p,+,(x) t$ 
C 

rp,- I(X) + &J,(x) = 0 (9.5) 
II+1 n-1 

Notice that (9.5) holds for any Sheffer sequence using f(f) as its delta series. 
We may obtain another recurrence from (6.4). We observe first that 

and so 

and using (9.3) gives 

(xD - n) p,(x) + 5 .Y Dt p,m,(s) = 0. 
n-i 

(9.6) 

Also, Eq. (6.6) becomes 

(n - xD) p,(x) = 2.uD “ 

Of course, Eqs. (9.5) and (9.6) may be used to derive other recurrences. 
Now let us turn our attention to a specific form for c,,. namely. 



96 STEVEN ROMAN 

where 4 is not a non-negative integer. Let us collect some preliminary 
results. We have 

and 

C 
“= 

n 

C n-l -/l-n+ 1 

n 
fx”= -A-n+ 1 

xCl 

One can easily verify that 

t=-@+xD)-9. 

Also, 

et9 =-(n+n)x”+’ 

(9.7) 

and so 

8, = -X(A + XD). 

Next we have 

The generating function now becomes 

or 

(1 + P)‘“(l - 2yt t 

[Note the similarity with the 
conjugate representation yields 

P,(Y) fk. 

Gegenbauer generating function. ] The 

Ini (HTi;l) (“; “) (-2x),P2j 
P,(X) = \’ 

,To -1 
( 1 n 
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Referring to (9.7) we see that (9.5) becomes 

-A 
DP, - ,(-u) - 2 

( 1 
,2 (A + xD) p,(x) = 0 

(9.8) 

which holds for any Sheffer sequence using f(t) as its delta series. Equation 
(9.6) becomes (using (xD)* = XD + x*D ‘) 

(.u’D’ + (,I - R + 1) XD -,&I) p,(x) + n 
A+)?-1 

XD ‘p,, ,(x) = 0 

Sheffer Sequences: Gegenbauer Case 

Let sJx) be Sheffer for the pair (g(f), f(t)) where 

( 2 

1 

-bJ 
g(O = 

l+lp=7 . 

It is easy to see that 

g(f(t)) = (1 + t*p 

and so the generating function is 

(1 + ~*Y-w - 2yr +p-.‘= c (;A) sk(y)tk. k=ro 

Thus when 1, =A? the polynomials ( -i’) sk(x) are the Gegenbauer 
polynomials. 

To obtain the conjugate representation we notice that 

--&f(t)” = (-2)k tk(l + I?))-.~” 

and a simple computation yields 

-1 
( N 

-A,+-2j-n 
In’!1 n _ 2j 

S”(X) = \ 
j 1 

,To -L 

( ) 

(-zx)ff - *j. 

n 

To apply the Expansion Theorem we observe that 

g(f) f(r)k = 2+t)k( I + dc7) --irk 



98 STEVEN ROMAN 

and from (9.1) we obtain 

g(t) f(t)k = F (-1 Jk(Jo + k)(Jo + k + V - ‘)j- 1 [Zj+k 

,To 
2k+Zjj! 

Hence 

(-l)“&+n-2k)(&+n- l),-, 

2”k! 
s n-2ktX)* 

We may use the techniques of Section 8 to relate Sheffer sequences for 
different choices of A,. Suppose s,(x) is Sheffer for (go(t), f(t)) and suppose 
r,,(x) is Sheffer for (g,(t), f(t)) where 

( 2 
1 

.hl 
go(t) = 

1+dC7 

and 

( 2 
1 

.\ I 
g,(t) = 

1+j/C7 . 

If 

r,(X) = + a,,,$&), 
k=O 

then by Theorem 8.5, t,(x) = ~~=, u,,~x~ is Sheffer for the pair 

which is the pair 

Thus 

(( 1 + t*).+.k0, t). 

[n/21 
=r 

ky0 
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and finally 

We now come to the recurrence formulas. First we need 

and 

f(t) --q/77. 
f’(t) 

Then (6.4) gives 

ns,(x) = XD ms,(x) + + A,ls, _ ,(x). 
n-1 

Since (9.3) holds for s,(x) we obtain 

(n - xD)(A + xD) s,(x) - ~ + z _ 1 (A, + xD) Ds,m ,(x) = 0. 

In case A= A,, for the Gegenbauer polynomials this becomes 

.uDs,(x) + )i + ,” _ 1 Ds, _ I(x) - ns,(x) = 0. (9.9) 

We remark that Eqs. (9.8) and (9.9) are independent and can be used to 
derive all of the recurrences for Gegenbauer polynomials appearing in Rain- 
ville [ 4 1 including the second-order differential equation. 

Finally, Eq. (6.6) gives 

(11 - xD) s,(x) = 2(xD + Lo) 

Sheffeer Sequences: Chebwhetl Case 

If 1 = 1. then 

c, = (-1)” 
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and 

and so 

tx” = -.$-’ 

Q(X) = (-x) - ’ p(x). 

The recurrence (9.5) becomes 

w%(x) + Pn + L(X) + Pn - I(X) = 0. 

The Sheffer sequence T,(x) for the pair (g(t), f(t)) where 

(9.10) 

is related to the Chebyshev polynomials of the first kind. In fact we have 

and so the generating function for s,(x) is 

(1 - P)(l - 2yt + t*)-’ = G (-l)k TJX) tk. 
k:O 

From T,(x) = g-‘(t) p,(x) we get T,,(x) = dm p,(x) and (9.3) gives 

T”(.U) = x - ‘I?- ,(x) + P,(X) (9.11) 

and (9.4) gives 

T,(x) = -x-‘P,, I(X) - PAX). (9.12) 

The conjugate representation for p,(x) 

PAX) = (-2x)f7 -2 

then gives direct formulas for T,,(x). 
The Sheffer sequence U,(x) for the pair (g(t),f(t)) where 

t.?(t) = 2-2d==-2f([) 
t* t 
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is related to the Chebyshev polynomials of the second kind. We have 

g(j;(t)) = 1 + f? 

and so 
% 

(1 - 2J’f + P-1 = “ (-l)k I;,(.u)t! 
k=u 

1 f(t) 
2 C-1 

-. ’ 
t PII 

1 f(t) -’ 
=- 2 ( - 1 t f(r) P,+ 1(-v) 

= h%+ l(X) 
= -jX-‘pn+,(X) 

and so we see that the Chebyshev polynomials of the second kind are 
intimately related to the associated sequence p,(x). 

Combining (9.11) and (9.12) with (9.13) gives equations connecting T,,(x) 
and U,,(x). 

and hence 

We conclude with the connection-constants problem 

U,(x) = ;. an.k T,(s). 
k-0 

From Theorem 8.5 we see that t,(x) = r;lYo a,.,.? is Sheffer for ( 1 - f ‘. t) 
and so 

fn(X) = (1 - I:)- ’ xn 
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Thus an,n-U = (-1,’ and a,, n-zj+, = 0 so 

In/21 

Lm(x) = s (-1y I-“&). 
j=O 

10. EXAMPLES: JACOBI AND OTHERS 

In this section we study the delta series 

f(r)= 
l+t-dGz 

t 

Associated Sequence 

First we have 
2t 

f(t)= (1-t)2 ' 

f'(f)= l 
rlj3-a f(t)- 

We shall denote the associated sequence for f (t) by p,(x). The generating 
function is 

The conjugate representation for p,(x) is 

p,(x) = + 
(2Qk(l - t)-2k 1 x”) Xk 

k=O ck 

Now 

and so 

p,(x) = + 
k=O 
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Our first recurrence comes from the equations 

dm P,(X) = (1 + f + &-mp,(x) - (1 + t)p,(x) 

=c”(l +t+\/l+r)f(t)p,,+,(x)-(1 +t)p,(x) c PI+1 

=LrP,+,w-(l +f)Pn(x) (10.1) 
c nt1 

and 

\/1+2r P,(X) = ( 1 + c - ASP, 

=(l +Qp,(x)-+P”&) (10.2) 
n-l 

From these equations we obtain 

cn --Ipn+,(x)+~ tp,- ,(x) - I(1 + t)P,(-y) = 0 (10.3) 
Crft1 n I 

which holds for all Sheffer sequences using the delta series f(t). 
We obtain another recurrence from (6.4) by noticing that 

and so 

rip,(x) = XD dm p,(x). 

Using (10.2) we obtain 

-k- xDr p, ~ ,(x) - xD( 1 + t) p,,(x) - r&(x) = 0. 
c n+ I 

(10.4) 

Shefleer Sequence: Jacobi Case 

We shall take 

(1 + a)‘“’ 
cn = (( 1 + u + P)/2)‘“‘((2 + a + B/2)‘“’ 

271 f a)'"' 

= (1 + a +py2") . 
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c “= 4(u + n) 
C no-, (U+p+2n-l)(a+p+24' 

one can readily check that 

r=4(1 +a+j3+2xD)-‘(2+a+/?+2xD)-‘x-‘(a+xD). (10.5) 

“, 
Ep(f> = \ 

k:O 

((1 + cf +PvwW + a +PWk’ yktk 
(1 + a)(k) 

l+a+B 2+a+p 
2 ) 2 ; 

= 2F, ; yr . 

1 +a; 1 

We denote by J,(x) the Sheffer sequence for the pair (g(f), f(t)) where 

g(t) = 

Then since 

gdf(t)) = (1 - f)‘+*+D, 

the generating function for J,(x) is 

l+a+P 2+a+/3; 
2 ’ 2 24’1 

(1 - t)-‘-a--4 ,F, (1 -q* 

1 +a; 

_ \“- ((l + a + b)/2)‘k’((2 + a + z@/~)‘~’ 

kT0 (1 + cl)(k) 
J ( v) [k 

k- . 

Referring to Rainville [4, p. 2561, where the classical Jacobi polynomials are 
denoted by P)p*4’(x), we have 

(1 + a +pp 
Jr&)= (l+a)‘“’ n c Pyyx + 1). 
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The conjugate representation for J,(X) is obtained from 

(s(f(l))~‘f(t)kI-~flj=(2ktk(l -t)P’-n-B~zAIx”,~ 

<. -1 -a-/3-2/k 
- (-1)’ 

j-0 j 
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-1 -a-p-2k, 

n - k ) 
(-1y 2%,, 

a+P+n+k = 
n-k 2 kG 

and gives 

J,(x) = 6 
k:O 

= 6 
a+P+n+k ta + n)n-k 

k=O n-k [a +p+ 2n)zn-2k 2 
?n-ksyk 

’ 

We wish to express xn as a linear combination of Jk(x). From Corollary 2 
to the Expansion Theorem (Theorem 5.2) we have 

Now by (9.1) we have 

(I +t+\/1+Zt)-“=2”(1 +Jm,mTu 

= <. NQ + 2j- l).i-, 

.,G 2” +.;- Y 
(--I 1’ 

and so 

g(t )f(f )A = 2’+n+fitk(j +t+dEj-~-n-~-~ 

= 2 (-1)’ (1+a+p+k)(l+2a+2P+2k+2j),i~, tk+i 
i 0 2kfi-I” 

J. 

and 

(g(l)f(Iy 1 xn:\ = 
(-l)“pk(l +a+P+k)(l +2u+2/?+2n),, .&-, 

2”m’(?z -k)! c,, . 
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Thus 

x"= %+ (-l>n-“(l+a+p+k)(l f2at2Pth),-,-, c, 
k:O 2”-‘(n -k)! <J/b) 

= + (1 +a+P+k)(l +2a+2P+2n),-k-,(a+n),-k 

k:O (n - k)! (a +p + 2n)2n-2k 

x (- l)n-k 2n+Zk+’ Jk(x). 

We conclude our discussion of the polynomials J,(x) with some 
recurrence formulas. Equation (10.3) holds for J,(x) where t is given by 
(10.5). Let us derive Eq. (6.6) of Theorem 6.7. From f(t) = 2t( 1 - t) -’ we 
obtain 

and so 

bo=q,, 

bk=2ck. 

Also, from g(J;(t)) = (1 - t)‘+“+’ we obtain 

=-(1 +a+/3) F Ck 
kzl 

and so 

do = 0, 

dk=-(1 +a+p)c,. 

Therefore Eq. (6.6) becomes 

(n -xD)J,(x)= + ” ___ (2ckxD + (1 f a + p)Ck) Jnmk(X) 
k=l ckcn-k 

=(l +a tP+2xD) k$, kJnpk(X). 
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Il. EXAMPLES: THE q-CASE 

In this section we shall briefly discuss the q-theory. We take 

(1 -q)(l -q2) ... (1 -q”) 
c, = 

(l-q)” 

Then 

and so 

C 1-q” II=- 
C n- I 1-q 

1-q” ,,-, I.? = ___ Ipq x 
_ -WY x” 

x - qx 

and so 

rp(x) = P&U) - p(qx) 
. x - qx 

The q-binomial coefCcient is 

(1 -4) ... (1 -4”) 
=(l-q)...(l-qk)(l-q).*.(l-qn-k)’ 

Thus we have 

. 

From (3.5) and the equations 

1 -qk 
‘ttk= cl -q>k 

[k-i 
’ 

2 f(t) = J-0) -J-W) 
I t -qt 

we obtain 

(11.1) 

(11.2) 

y&).(t) = &J’) - E,(@) 
t - qt 
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EyW = (1 - (1 - 4)H) ~,iO 

Sheffer sequences for the delta seriesf(t) = t satisfy 

B,(X) = 
l-q” 

----s,-,(x) 
1-q 

and in view of (11.1) we get 

s,(x) - s,(w) = (1 - (I”) xs,- I(X). 

(11.3) 

(11.4) 

We define the sequence [x]~.~ by 

M.0 = 1, 

and write [x] ,,n as [xl”. 
Then using (11.1) it is straightforward to verify that 

(11.5) 

and so I-+,, is Sheffer for the delta seriesf(t) = f. Therefore (11.4) gives 

[xlm - bF4JI = (1 -q”)xlxla,,-1. 
Since 

the sequence [x]~,” is Sheffer for the pair (E,(I), t). From Theorem 5.5 and 
(11.5) we obtain 
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The generating function for [.x]~,~ is 

1 -E),(f) = \“- 
df) kyo (1 -,‘:.:;I”-,k) lYlo.kfh. 

Letting 1’ = 0 and noticing that [O],., = (-a)& y( : ) gives 

1 “, (1 -4)” 
-= k?. (1 -q) . . . (1 -qk) q &7(f) 

(1 )(-a@. 

Since 

(to I 14.“> = PI,,, 
= (-a)” q( i! 1 

and using Theorem 4.1 we get 

tfk 1 [xla.,> = 5 cfo 1 [Xla,n-k> 
n k 

AL(-a)“-*q(‘I*), 

Thus by Corollary 2 of the Expansion Theorem 

Replacing x by E,(C) gives the formula 

n 

(E,(f)- 1) ... (s,(t)-qn-‘)= \’ 
k=O 

Applying this to a polynomial p(x) gives a formula which appears frequently 
in the literature in the somewhat confusing form 

d”P(X)= k$o ; ( ) (-l)“~kq(nTk)p(x+k). 
4 
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This same Corollary also gives 

[x~b,n = + (E.(‘)‘~; [‘lb,,) [x~a,k 
k=O 

[a~b.n-k[Xlo.k* 
4 

This is actually the q-Vandermonde convolution formula in disguise. To see 
this notice that 

and so (11.6) gives, with x replaced by ax and b = 1, 

[axln= ’ (“k ) akk-h,[X]k* 
k:O 4 

We wish to make the substitutions 

x = q’, 

a=q”, 

ax = q’+m. 

Now if i < j we have 

[q’]i= tqj _ I)(# -4) . . . c4.’ .-&I) 

_ lt2t...+i-l(,j_l)(qj~l--~... (&i+l- 1) 

=4 

(;) (f- I)..- (4- 1) 

(qJ-i- 1) .*. (q - 1) 

_ (1) (4- I)’ cj .- 
(q - 1)/-I cjm; 

=,(iQq- l)idL 
Cj-i 

and if i > j, then [&Ii = 0. Using this in (11.7) gives 

,(I)(,- +i%= + c, qk”q(“;k )(q - q-k 
c/+m -n k:O ckc,-k 

C, X---- q( : )(q - 1 )k - C/ 

C m-n tk CI-k 

(11.7) 
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which becomes, in view of ( “yk) + (t ) - (! ) = -k(fl - k). 

l+UZ 

i 1 
n 

= 

rr 4 

L‘ qk-ftk) (: ),( ,2 yk ),. 
kT0 

(1 1.8) 

Next we touch briefly on the q-Bernoulli polynomials. We define the q- 
integral bl 

i 
C” _y” = -_.y n+ I 

9’ c rtfl 

1-q 
= 1 _qn+l -y 

II + I 

and 

i 

.) 

.p= l-q .nt I 

q-0 
l_qntl J . 

The q-Bernoulli polynomials have the generating function 

t 
e,(r) = F (1 -dk 

&l(t) - 1 kyO (1-q) . . . (1 -qk) Bk(Jw 
That is. B,(x) is Sheffer for the pair 

i 

&,(I) - 1 
,t * 

t 1 

By Theorem 5.5 we have 

Cl(t)i- 1 B,(x) = 2’. 

But 

=-$&,(t)- 1 /_P+‘) 

c?l =- 1 n+ I 

C II + I 

-I 
1 

I x * .P 
q-0 
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and so 
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y;- l / p(x))= ,1.‘xp(x>. 

In particular, 

Corollary 2 of the Expansion Theorem is the q-Euler-MacLaurin Expansion 

p(x)= ?+ (1 - dk 
k:O t1 -4)“’ (l -qk) 

(“@;- ’ tk ( p(x)) Bk(x) 

m 
(1 - dk 

- k;o (1 -q)*** (1 -qk) 
B/c(X) ,!I tkP(X>. 

We can also connect the two sequences B,(x) and [xl,,, 

B,(x) = ‘T ’ W)fk IB,(x)) ,xl 
k:O ck 

k 

and 

ixln = ‘+ 
k=O 

e’(i)r- ’ tk ( ,x],)!!$i 

= k$o (I ), (“I”;- ’ ( Ixl.-k) Bk(X) 

= k$o (; ), Bk(X) ,j; xixln-k. 

We now turn to the q-Leibniz formula. First we need a lemma. 

LEMMA. For any series f (t) and polynomial p(x), 

Wf 0) I P(q’x)) = (I -j”(w(sj~) I P(X)> 

Proof. By linearity we need only check this forf(t) = tk and p(x) =x"'. 

But then 
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(ayr” I (q&y) = 

The q-Leibniz formula is 

qv-(t) g(t)) = + 
k=O 

( ; ) q -ktn -k) a;f(c) tyg(qt). 
9 

The proof consists of the following calculations. in which we use the q- 
Vandermonde convolution (11.8) and Theorem 5.9, 
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12. FUTURE DIRECTIONS 

We intend this paper to be the first in a series of 
brief description of the subject of two future papers. 

papers. Let us give a 

First is the idea of replacing the algebra of polynomials P by the field of 
formal Laurent series of the form 

p(x)= f agk. 
k=-cc 

The entire theory goes through in this new setting. Each Sheffer sequence 

s,(x)= i a,,kxk 
k=O 

is replaced by a sequence of formal Laurent series 

s,(x) = + ci,,kXk, 
k=ioo 

where a,,, = an,k for n, k > 0. For n < 0, the sequence fn(x) has been termed 
a factor sequence and several examples have appeared in the classical 
literature. However, for n > 0 the sequence S,,(x) has never been studied. 

The second direction for future work comes from the observation that the 
present theory is somehow “centralized” at 0. This is evident from the fact 
that to is essentially evaluation at 0 and (f(t) ) p(x)) = (to 1 f(t)p(x)). We 
may “decentralize” the umbra1 calculus as follows. Let a,, a, ,... be a 
sequence of independent transcendentals. Then the role of the sequence tk is 
taken by the sequence ~,~(t) tk, where c,,(t) is evaluation at ak. A large part 
of the present theory still goes through. Some interesting new polynomial 
sequences now come to light, for example the sequence 

s,(x) = (x - a,)(x - a,) a.. (x - a,) 

and the GonEarov polynomials G,(x). The latter are defined as the unique 
polynomials for which Gik’(ak) = a,,,. Both these sequences are important in 
the theory of interpolation. 

REFERENCES 

I. S. M. ROMAN AND G.-C. ROTA, The umbra1 calculus, Adc. in Math. 27 (1978), 95-188. 
2. G.-C. ROTA, D. KAHANER. AND A. ODLYZKO, Finite operator calculus, J. Marh. Anal. 

Appl. 42 (1973). 684-760. 



THEORY OF THE UMBRAL CALCULUS. 1 I15 

3. R. P. BOAS AND R. C. BUCK, “Polynomial Expansions of Analytic Functions.” Academic 
Press, New York, 1964. 

4. E. RAINVILLE, “Special Functions,” Chelsea, New York, 197 I. 
5. S. M. ROMAN. The algebra of formal series. A&l. in J4urh. 3 I i 1979). 309-329 (Erratum 

35 (1980). 274 1. 
6. S. M. ROM.AN, The algebra of formal series. II. Sheffer sequences. J. .Warh. Anal. Appl. 7-l 

(1980). 120-143. 
7. S. M. ROMAN. The algebra of formal series. III. Several variables. J. Appmr. Theor! 26 

(1979). 340-381. 
8. S. M. ROM.AN. Polynomials, power series and interpolation. J. Ma/h. .4nal. dppl. 80 

(1981). 333-371. 
9. S. M. ROWAN. The formula of Faa di Bruno. Amer. Marh. ,Ifonrhll~ 87 ( 1980). 805-809. 


