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SUMMARY
Mesenchymal progenitor cells have great therapeutic potential, yet incomplete characterization of their cell-surface interface limits their

clinical exploitation.We have employed subcellular fractionationwith quantitative discovery proteomics to define the cell-surface inter-

face proteomeof humanbonemarrowmesenchymal stromal/stem cells (MSCs) andhumanumbilical cord perivascular cells (HUCPVCs).

We compared cell-surface-enriched fractions from MSCs and HUCPVCs (three donors each) with adult mesenchymal fibroblasts using

eight-channel isobaric-tagging mass spectrometry, yielding relative quantification on >6,000 proteins with high confidence. This

approach identified 186 upregulated mesenchymal progenitor biomarkers. Validation of 10 of these markers, including ROR2, EPHA2,

and PLXNA2, confirmed upregulated expression in mesenchymal progenitor populations and distinct roles in progenitor cell prolifera-

tion, migration, and differentiation. Our approach has delivered a cell-surface proteome repository that now enables improved selection

and characterization of human mesenchymal progenitor populations.
INTRODUCTION

Mesenchymal progenitor cells have major therapeutic po-

tential, exemplified by their beneficial effects in preclinical

and phase I/II clinical trials after stroke and myocardial

infarction (Honmou et al., 2012; Lee et al., 2009) and in

ameliorating immune responses in graft-versus-host dis-

ease (Kim et al., 2013). Differentiation of these cells along

mesenchymal lineages is a major therapeutic feature (Pit-

tenger et al., 1999). They also secrete a potent mix of solu-

ble factors that can regulate inflammation and stimulate

endogenous repair (Prockop, 2013); however, poor defini-

tion of their cell-matrix interface limits their clinical value.

In adults, multipotent mesenchymal progenitors reside

within perivascular niches, notably bone marrow, adipose

tissue, and umbilical cord. Although bone marrow is the

most frequent therapeutic source of mesenchymal progen-

itor cells, isolation is invasive, and cell numbers decline

with age. The umbilical cord is an attractive alternative

allogeneic source of mesenchymal progenitors, with typi-

cally higher progenitor to differentiated cell ratios and

increased proliferation rates (Batsali et al., 2013). Bone

marrow mesenchymal stromal/stem cells (MSCs) and hu-

man umbilical cord perivascular cells (HUCPVCs) display

some similar phenotypic and functional characteristics

in vitro (Sarugaser et al., 2005), with transcriptome analysis

highlighting striking similarities in gene expression (Pane-

pucci et al., 2004). However, cell-type-specific differences
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are also apparent, making the definition of a progenitor

cell challenging. Deciphering their cell-surface proteomes

is an essential step in enabling the rigorous selection of pro-

genitor populations and understanding their biology, both

essential for controlling cell fate and tissue repair.

Mass spectrometry (MS)-based proteomics is a powerful

approach for the comparative analysis of protein expres-

sion between cell populations. Global approaches have

been used to define the MSC proteome (Delorme et al.,

2008; Mareddy et al., 2009; Mindaye et al., 2013a, 2013b)

and to track the changes in membrane protein expression

upon differentiation (Foster et al., 2005). However,

comprehensive identification of specific surface markers

has been limited by a lack of enrichment ofmembrane pro-

teins, insufficient resolution of peptides prior to MS, and

inability to compare protein levels between progenitors

and differentiated cells.

In this study, we combined enrichment of cell-matrix

interface proteins with quantitative MS using eight-plex

isobaric tags for relative and absolute quantification

(iTRAQ) to compare the proteomes of bone marrow MSCs

and HUCPVCs. Our approach identified 186 proteins that

were significantly enriched in multiple MSC and HUCPVC

cultures compared with differentiated mesenchymal cells

(adult human dermal fibroblasts [HDFs]), and 216 proteins

that were significantly downregulated. Cell-type-specific

protein differences were also quantified. Proteins identified

as enriched in bone marrowMSCs and HUCPVCs included
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knownMSCmarkers CD106, CD49c, and CD58 and novel

markers. Validation of tenmarkers confirmed their upregu-

lation in MSCs and HUCPVCs, expression in freshly iso-

lated MSCs (bone marrow, adipose, and umbilical cord),

and downregulation upon multilineage differentiation.

Loss-of-function studies in MSCs demonstrated marker-

specific differences in proliferation, migration, and differ-

entiation, indicating that they differentially regulate MSC

fate. Thus, we have generated a comprehensive repository

of MSC and HUCPVC cell-surface proteins that enables

improved cell selection, tracking, and functional analysis.
RESULTS

Characteristics of MSCs, HUCPVCs, and HDFs

First, we compared the expression of known MSC sur-

face markers and multilineage potential of primary bone

marrowMSC,HUCPVC, andHDF cultures, each from three

donors. MSCs and HUCPVCs expressed the mesenchymal

progenitor markers CD73, CD90, and CD166 at similar

levels, but not CD14, CD34, or CD45, as expected (Fig-

ure 1A). Stro-1 was also expressed weakly by MSCs, yet

was absent in HUCPVCs and HDFs (Figure 1A). Under

defined culture conditions,MSCs andHUCPVCs differenti-

ated into adipocytes, chondrocytes, and osteocytes (Fig-

ure 1B; results using MSCs from a different donor are

shown in Figure S1A). HDFs expressed similar levels of

CD73, CD90, and CD166 compared with MSCs and

HUCPVCs (Figure 1A), but they did not exhibit multipo-

tency (data not shown). Passage 5 MSC or passage 6

HUCPVC cells were used for all experiments, as no differ-

ence in marker expression or multipotency was evident

compared with early passages (Ball et al., 2012, 2014; Cai

et al., 2014).
Enrichment and Validation of the Cell-Matrix

Interface

Unbiased hypothesis-generating proteomics is essential

for the objective identification of cell-surface markers of

mesenchymal progenitor cells. As plasma membrane pro-

teins are at relatively low abundance in whole-cell lysates

(Weekes et al., 2010), two approaches were used to increase

the likelihood of identifying unique cell-surface markers.

First, plasma membranes were enriched using sucrose

density ultracentrifugation optimized for cell-surface

biomarker studies (Holland et al., 2011) (Figure S1B). The

membrane fraction yield was �0.5%–1% of whole-cell

lysate; thus, a large number of starting cells (�53 107 cells)

was required. Confirmation of plasma membrane enrich-

ment was achieved by blotting for surface markers,

including platelet-derived growth factor receptor-b

(PDGFRb), ATPase, and neuropilin-1, with decreased cyto-
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skeletal b-actin observed (Figures 1C and 1D). Other intra-

cellular proteins were unchanged, reduced, or minimally

enhanced (Figures S1C and S1D).

Second, proteins present in the cell-matrix interface were

enriched by isolating the extracellular matrix (ECM) with

associated receptors (Soteriou et al., 2013). The cell layer

was removed using ammonium hydroxide (Figures 1E

and 1F) and residual matrix solubilized for iTRAQ labeling,

with Coomassie blue staining confirming different protein

composition compared with whole-cell lysates (Figure 1G).

Immunoblotting or immunostaining for ECM proteins

fibronectin and fibrillin-1 confirmed their enrichment

within matrix fractions (Figures 1F–1H).

Quantitative Proteomic Analysis of the Cell-Matrix

Interface

We employed an eight-channel isobaric tagging system

with tandem MS to simultaneously compare fractionated

proteins from HDFs from two donors (controls) with

MSCs and HUCPVCs, each from three donors (Figure 1I).

Each individual protein sample was denatured, reduced, al-

kylated, trypsinized, and labeled with unique isobaric tags

(for schematic of iTRAQ method, see Figure S2A). Each set

of membrane-enriched or matrix-enriched fractions was

combined (i.e., mixing individually iTRAQ-labeled samples

together) and separated using reverse-phase high-perfor-

mance liquid chromatography into 90+ fractions, which

were then individually analyzed by MS. This step mini-

mized peptide complexity and increased the likelihood of

identifying rare peptides. From membrane-enriched sam-

ples, we identified 5,688 proteins (more than peptides/

protein and unused score of >1.3), of which 5,489 had

quantification (Table S1). From matrix-enriched samples,

we identified 1,320 proteins, 1,251 with quantification

(Table S2). Distributions of protein ratios for individual

MSC donors versus HDFs and for individual HUCPVC do-

nors versus HDFs indicated little variation between donors

of the same cell type (Figures 2A, 2B, and S2B–S2D). Some

cell-type-specific variations between MSCs and HUCPVCs

were, however, apparent (Figures 2C and S2D).

Identification and Validation of Cell-Surface Markers

Using two HDF donors as internal controls enabled the

calculation of intra-experiment 95% confidence limits,

which allowed us to determine whether a protein was

significantly altered in MSCs or HUCPVCs. Practically,

this gave values within the membrane-enriched fractions

as 1.51 (upregulated proteins) and 0.66 (downregulated

proteins) and for matrix-enriched fractions as 1.96 and

0.51, respectively. Comparing MSCs or HUCPVCs against

HDF preparations allowed identification of 153 proteins

inmembrane-enriched and 38 proteins in matrix-enriched

fractions that were significantly increased in all MSCs and
ors



Figure 1. Method to Identify Mesenchymal Progenitor Cell-Specific Markers at the Stem Cell Niche Interface
(A) Flow cytometry for known MSC markers in HDFs (black), MSCs (green), and HUCPVCs (blue). Plots shown are representative of results
from three different donor MSC, HUCPVC, and HDF cultures (n = 3). Red filled, isotype control; black line, antibody as indicated.
(B) Immunofluorescence staining for indicated markers (green) after differentiation under adipogenic (16 days), chondrogenic (21 days),
and osteogenic (18 days) conditions. DAPI (blue, nuclear); F-actin (red, cytoskeleton). Images are representative of results from three
donors (n = 3), with magnified inserts.
(C) Immunoblotting for neuropilin 1, PDGFRb, ATPase, and b-actin in whole-cell lysate and membrane-enriched (PM) protein samples.
Results are representative of three different donor preparations.
(D) Quantification of immunoblot results shown in (C).
(E) Phase images of MSCs pre-denudation and post-denudation.
(F) Fibronectin (green) and DAPI (blue) staining of pre-denuded and post-denuded MSCs.
(G) Coomassie stained gels of whole-cell lysates and matrix-enriched protein samples.
(H) Immunoblotting for fibronectin, fibrillin-1, and b-actin in whole-cell lysates and matrix-enriched protein samples.
(I) Schematic of experimental proteomic workflow. HDF1 and HDF2 represent biological internal replicates with proteins isolated from two
donors. Protein samples from three different MSC and HUCPVC donor populations were used.
See also Figure S1.
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Figure 2. Identification of Mesenchymal Progenitor Cell-Specific Markers Using Eight-Plex Isobaric Tagging and LC-MS/MS
(A and B) Histograms showing the distribution of (log) quantification protein ratios for individual MSC donors versus HDF (A) or HUCPVC
donors versus HDF (B) in membrane-enriched fractions. MSC2 was excluded as ITRAQ labeling of this sample was inefficient. Error bars
are + SD.
(C) Histogram comparing the distribution (log) of the average protein ratios for MSCs versus HDF and HUCPVCs versus HDF in membrane-
enriched fractions. Error bars are + SD.
(D) Venn diagram for membrane-enriched protein fractions illustrating overlapping protein changes seen when comparing all individual
MSC cultures versus HDF (MSC up or MSC down) and individual HUCPVC cultures versus HDF (HUCPVC up or HUCPVC down).
(E) Heatmap illustrating clustering of changing genes in membrane-enriched fractions.
(F) Venn diagram for changes seen in matrix-enriched protein fractions.
(G) Heatmap illustrating clustering of changing genes in matrix-enriched fractions.
See also Figure S2.
HUCPVCs versus HDFs (Figure 2D–2E; Tables 1, S3, and

S4). Comparing both methods of pre-MS protein enrich-

ment identified that five of these proteins (BGN, SLC3A2,

PDLIM5, TINAGL1, and KRT18) were upregulated in

both MSCs and HUCPVCs, in both cell fractionation

approaches, leading to the combined identification of

186 proteins enriched within progenitor cells.

Our ability to directly compare multiple MSC and

HUCPVC samples within the same MS experiment also

enabled us to define intra-sample variation between

individual cultures. Although numbers of upregulated or

downregulated proteins in individual cultures of the
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same origin versus HDFs varied, a high percentage of

proteins were similarly upregulated or downregulated in

MSC or HUCPVC cultures (Figures 2E, 2G, and S2E–S2H).

For example, comparing each of the three individual

HUCPVC cultures in membrane-fractionated samples,

>36% of proteins upregulated in one HUCPVC culture

were also upregulated in the other two cultures (Figure S2E).

Heat maps of significantly altered genes highlight the

efficacy of comparing multiple primary cultures (Figures

2E and 2G) to identify global mesenchymal stromal cell

markers and eliminate identification of donor-specific

proteins.
ors



In the membrane-enriched fractions, 60 of the 153

mesenchymal-specific proteins were identified as plasma

membrane proteins (of which 26 had extracellular do-

mains), and 15 were ECM components; the remaining

proteins comprised mainly cytoskeletal proteins with

membrane connectivity or internal membranous proteins.

Gene ontology analysis suggested enrichment of proteins

involved in antigen presenting, metabolic and membrane

targeting pathways, as well as protein synthesis and degra-

dation (Figure S3). Matrix-enriched fractions provided

further information on the composition of the pericellular

niche. COL4A1 was enriched in MSC and HUCPVC cul-

tures, and gene ontology suggested alterations in integrins

and cytoskeleton composition (Figure S3B).

Our proteomic workflow also identified proteins specif-

ically downregulated within MSC and HUCPVC popula-

tions, with 172 proteins identified in membrane-enriched

fractions and 54 in matrix-enriched fractions, 10 of which

occurred in both analyses (Figures 2D and 2F; Table S5).

There was a significant decrease in proteins involved in

a multitude of metabolic or transport functions together

with niche proteins involved in collagen fibers (e.g., type

II collagen a1), microfibrils and elastic fibers (e.g., fibril-

lin-2, fibulin-2), and basement membranes (e.g., laminin

a-4, a-5, b-2).

Several proteins were upregulated in MSCs relative to

both HDFs and HUCPVCs (MSC specific) or were identified

as HUCPVC specific (Figures 2D and 2F; Tables S6 and S7).

These differences likely highlight the different origins

of these two mesenchymal stem cell populations. Flow

cytometry for membrane proteins BST1 (MSC specific)

and CD54 (HUCPVC specific) (Figure 3B) validated these

cell-type-specific differences. Notably, only 11 proteins

were upregulated in one mesenchymal cell type yet were

downregulated in the other.

Identification of Mesenchymal Progenitor Markers

Twenty nine of the 186 proteins specifically enriched

within MSCs and HUCPVCs were plasma membrane

proteins with extracellular domains (Table 1). Importantly,

this group included CD9, ITGA3 (CD49c), CD58, VCAM1

(CD106), MCAM (CD146), and CDH2 (N-cadherin),

which are often cited as markers of MSCs. Flow cytometry

verified enrichment of these markers in both MSCs and

HUCPVCs compared with HDFs (Figure 3A), confirming

the efficacy of the relative quantification MS method

used. From this dataset, we selected a further ten proteins

for validation as progenitor markers: type I transmem-

brane receptor tyrosine kinase-like orphan receptor 2

ROR2, Eph receptor tyrosine kinase EPHA2, semaphorin

co-receptor PLXNA2, atypical member of the cadherin

family CDH13 (H-cadherin), transmembrane transporters

SLC3A2 and SLC7A5 (heavy and light chains of CD98),
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endothelial tyrosine kinase TEK (Tie2), disintegrin and

metalloproteinase ADAM12, transmembrane transporter

SLC39A14, and the proteoglycan biglycan (BGN). Six of

these markers, CD98, ROR2, PLXN2, ADAM12, SLC7A2,

and CD9, were also identified by Mindaye et al. (2013a,

2013b).

Using flow cytometry and/or immunoblotting, we

compared the expression of these proteins in MSCs and

HUCPVCs with HDFs, including at least one MSC and

HUCPVC donor culture that had not been used in the

original MS experiment (Figures 3C and 3D). Smooth

muscle cell (SMC) lysates (aortic and coronary) and

HUVECs were included in immunoblot analysis to deter-

mine whether these markers were also expressed by cells

likely to be proximal to the perivascular mesenchymal

progenitor cell niche in vivo. This analysis confirmed

enrichment for these ten markers within progenitor cell

cultures.

To confirm whether the identified protein markers were

expressed by tissue mesenchymal progenitor cells, we per-

formed flow cytometry on freshly isolated HUCPVCs (pas-

sage 0, released from perivascular regions of the umbilical

cord with collagenase; Ennis et al., 2008) or bone marrow

MSCs (passage 0 [n = 3 donors], after replating of fraction-

ated mononuclear cells on tissue culture plastic; Strassburg

et al., 2010). These cells expressed similar high levels of the

markers EPHA2, TEK, CDH13, andCD98 by flow cytometry

to the MSCs and HUCPVCs at passages 5 and 6 (compare

Figure 3C with Figures 4A, 4B, S4A, and S4B). Flow cytom-

etry for these markers was performed on MSCs derived

from subcutaneous fat (adipose tissue-derived MSCs, an

alternative MSC source) of matched donors at passage

0 (n = 3 donors; Figures 4C, S4C, and S4D). Analysis

confirmed expression of CD9, CD98, ROR2, EPHA2

PLXNA2, and CDH13 alongside known mesenchymal

markers, including CD73, CD90, and CD105 in adipose-

derived MSCs. We also used flow cytometry to determine

the percentage of cells in the mononuclear fraction of

freshly isolated bone marrow aspirates, which expressed

ROR2, PLXNA2, and CDH13. This analysis revealed restric-

tion of expression of these markers to a small subset of cells

(<0.4%), which also expressed the known MSC marker

CD105 (Figures S4E–S4I).

To determine whether mRNA expression correlated with

protein levels, we used real-time qPCR to compare MSC

and HUCPVC mRNA levels with HDFs (Figure 3E). Signifi-

cant increases in the mRNA levels of EPHA2, SLC3A2,

SLC7A5, and TEK were shown. However, minimal changes

in mRNA levels of PLXNA2 and CDH13 were detected,

highlighting the need for proteomics alongside mRNA

expression.

To determine whether these markers were also down-

regulated as progenitor cells commit to differentiation,
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Table 1. Proteins with Extracellular Domains Identified in Proteomics Screen that Are Significantly Enriched in Mesenchymal
Progenitor Cells

Accession Number
Gene
Symbol Name

HDF1 versus
HDF2a

Average MSC
versus HDFa

Average HUCPVC
versus HDFa

ENSP00000264036 MCAM cell-surface glycoprotein MUC18 1.00 3.21 (0.15) 3.64 (0.64)

ENSP00000294728 VCAM1 vascular cell adhesion protein 1 1.11 3.34 (0.25) 2.08 (0.50)

ENSP00000371958 CD9 CD9 antigen 1.11 3.41 (0.48) 4.4 (0.86)

ENSP00000432773 CD58 CD58 molecule 0.85 1.79 (0.27) 2.15 (0.39)

ENSP00000269141 CDH2 cadherin-2, N-cadherin 0.97 1.9 (0.15) 1.78 (0.28)

ENSP00000439248 ITGA3 integrin, alpha 3 antigen CD49C 0.90 1.68 (0.29) 1.66 (0.17)

ENSP00000428337 TEK TEK tyrosine kinase, CD202b, Tie2 0.97 1.99 (0.25) 3.13 (0.60)

ENSP00000351209 EPHA2 ephrin type A receptor 2 0.98 2.13 (0.14) 1.95 (0.12)

ENSP00000357668 ADAM12 disintegrin and metalloproteinase

domain-containing protein 12

0.99 1.81 (0.31) 2.19 (0.55)

ENSP00000240095 SLC39A14 solute carrier family 39 (zinc transporter),

member 14

0.83 2.23 (0.38) 1.97 (0.54)

ENSP00000261622 SLC7A5 solute carrier family 7 (amino acid

transporter light chain, L system),

member 5; CD98LC

0.84 3.63 (0.37) 4.68 (2.12)

ENSP00000340815 SLC3A2 4F2 cell-surface antigen heavy chain,

CD98HC, solute carrier family 3 member 2

0.89 2.55 (0.18) 2.64 (0.69)

ENSP00000387253 SLC20A1 solute carrier family 20 (phosphate

transporter), member 1

1.17 1.63 (0.11) 2.64 (0.34)

ENSP00000444408 SLC1A5 solute carrier family 1 (neutral amino acid

transporter), member 5

0.80 2.15 (0.31) 1.65 (0.23)

ENSP00000377524 LRFN4 leucine-rich repeat and fibronectin type III

domain containing 4

0.79 1.82 (0.27) 3.02 (0.67)

ENSP00000437639 LDLR low-density lipoprotein receptor 1.15 1.64 (0.28) 2.14 (0.48)

ENSP00000403082 C3orf75 uncharacterized protein 1.15 1.61 (0.39) 2.06 (0.29)

ENSP00000356000 PLXNA2 plexin-A2 1.13 1.83 (0.12) 1.51 (0.34)

ENSP00000445108 GPRC5B G-protein-coupled receptor, family C, group 5,

member B

0.93 1.71 (0.34) 4.62 (0.58)

ENSP00000366157 GPR180 integral membrane protein GPR180 0.99 1.52 (0.11) 2.53 (0.37)

ENSP00000375989 SLC22A3 organic cation transporter 3 0.99 3.22 (0.31) 3.78 (2.81)

ENSP00000364860 ROR2 tyrosine-protein kinase transmembrane

receptor ROR2

0.98 1.62 (0.53) 2.58 (0.23)

ENSP00000394557 CDH13 cadherin-13; H-cadherin 0.97 4.6 (0.32) 1.66 (0.33)

ENSP00000438512 THSD1 thrombospondin, type I, domain containing 1 0.95 2.28 (0.71) 1.73 (0.40)

ENSP00000339686 CD82 CD82; uncharacterized protein 0.77 1.56 (0.35) 2.2 (0.81)

ENSP00000280612 SLC7A11 cysteine/glutamate transporter 0.82 1.55 (0.41) 2.12 (0.47)

ENSP00000359223 BGN biglycan 1.06 2.05 (0.13) 1.62 (0.30)

(Continued on next page)
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Table 1. Continued

Accession Number
Gene
Symbol Name

HDF1 versus
HDF2a

Average MSC
versus HDFa

Average HUCPVC
versus HDFa

ENSP00000327336 BGN biglycanb 1.171 13.17 (7.10) 3.66 (2.23)

ENSP00000386896 ITGA6 integrin alpha-6b 0.511 2.74 (1.47) 3.25 (1.26)

ENSP00000319281 BASP1 brain acid soluble protein 1b 0.86 2.09 (0.3) 1.76 (0.56)

ENSP00000444236 SLC3A2 4F2 cell-surface antigen heavy chain, CD98HC,

solute carrier family 3 member 2b
1.271 1.99 (0.44) 2.60 (1.00)

aiTRAQ scores >1.51 and >1.96 in membrane-enriched andmatrix-enriched fractions, respectively, are significantly upregulated proteins. HDF1 v HDF2 iTRAQ

ratios act as an internal control.
bProteins were identified frommatrix-enriched fractions; all other proteins were identified frommembrane-enriched fractions. See also Tables S1, S2, S3, S4,

S5, S6, and S7.
MSCswere differentiated into adipocytes, chondrocytes, or

osteoblasts (Figure 1B), and protein levels pre-differentia-

tion and post-differentiation compared by immunoblot-

ting (Figure 3F). For all proteins investigated, expression

was markedly reduced after differentiation along all three

lineages. These results confirm that these markers reflect

the multipotent mesenchymal state and are decreased in

expression once cells commit to differentiation.

Investigating Marker Function in MSCs by siRNA

Using an siRNA approach, we investigated how each of

the transmembrane molecules ROR2, EPHA2, PLXNA2,

CDH13, SLC3A2, and SLC7A5 and the known mesen-

chymal marker CD9 influence MSC fate. qPCR, immuno-

blotting, and/or flow cytometry were used to confirm

efficient mRNA and protein knockdown (Figures 5A–5G).

Changes in MSC morphology were apparent 3 to 5 days

after siRNA treatments, with marked alterations clearly

visible by day 7 (Figure 5H). The most dramatic shape

changes were noted after depletion of CD9 or EPHA2,

which resulted in the cells becoming elongated. Cells

depleted of ROR2 became large and flattened (Figure 5H).

Knockdown of SLC3A2 and SLC7A5 had little effect, with

cells remaining spindle shaped.

Proliferation assays demonstrated that cell numbers were

significantly reduced after CD9, ROR2, and EPHA2 siRNA

treatments, all resulting in a 74%–77% reduction in growth

by day 8, compared with cells treated with control siRNA

(Figure 5I). Proliferation was less affected after knockdown

of PLXNA2, SLC3A2, and SLC7A5 (�50% reduction) or

CDH13 (25%).

A therapeutic feature of MSCs is their mobilization to

sites of damage, in response to injury, where they partici-

pate in repair. We used a wound assay to investigate

whether cellular migration was affected after knockdown

of these proteins (Figure 5J). A small but statistically signif-

icant decrease inmigration was detected after PLXNA2 and

EPHA2 siRNA treatments. However, CD9 and ROR2 knock-
Stem C
downs caused significant migration defects, with only 62%

and 46% wound coverage at 24 hr, respectively, compared

with 96% after control siRNA treatment. No effect on cell

migration was apparent after CDH13 knockdown (Fig-

ure 5J) or with SLC3A2 or SLC7A5 (data not shown). Exten-

sive analysis of cell migration at subconfluence, using live

cell imaging to track large numbers of individual cells for

48 hr to 6 days after siRNA knockdown, revealed similar

effects (data not shown).

To investigate whether morphological changes after

siRNA reflected phenotypic alterations, cells were first

immunostained with phalloidin and vinculin to highlight

F-actin organization and focal adhesions (Figure 6A).

This analysis confirmed gross elongation after CD9 and

EPHA2 knockdown, with F-actin staining emphasizing in-

creases in cell length compared with control siRNA-treated

cells. There was also a marked decrease in focal adhesion

formation in both knockdown cultures. Despite an obvious

increase in the area of ROR2 siRNA-treated cells, F-actin

and vinculin organization appeared similar to control cells.

SLC3A2 and SLC7A5 siRNAs had no apparent effects on

these features (data not shown).

Second,weused cell image analysis software (CellProfiler)

to quantify size and shape (Figures 6B–6G), after staining

of cells with wheat germ agglutinin and F-actin (Figure S5)

(Ball et al., 2012). Since cell density can affect cell shape,

MSCs were plated at matching densities and allowed to

attach for 24 hr prior to analysis. Increased length/width

ratios were visible after CD9 and EPHA2 knockdowns (Fig-

ure 6D), confirming cell elongation. This linearity was

further verified by significant changes in eccentricity (cir-

cle = 0, line = 1), extent, and form factor in CD9 and

EPHA2 siRNA-treated cells compared with controls (Fig-

ure 6E). Area measurements emphasized the greater than

2-fold increase in cytoplasmic area in ROR2 knockdown

cells versus controls (Figure 6F), with a 33% decrease in nu-

clear/cytoplasm ratio (Figure 6G). A 1.8-fold increase in

cytoplasmic area was also apparent after PLXNA2 and
ell Reports j Vol. 4 j 473–488 j March 10, 2015 j ª2015 The Authors 479



Figure 3. Validation of Mesenchymal Progenitor Cell Targets
(A) Flow cytometry for known mesenchymal progenitor cell markers identified as being enriched within both MSCs and HUCPVCs in the
eight-plex iTRAQ LC-MS/MS experiment. Plots are representative profiles from MSC, HUCPVC, and HDF cultures (n = 3–4 donors of each cell
type).
(B) Flow cytometry for CD54 and BST1 in MSC, HUCPVC, and HDF cultures. Plots are representative profiles (n = 3–4 donors of each cell
type).
(C) Flow cytometry validation of EPHA2, TEK, CDH13, and CD98 identified to be enriched within mesenchymal progenitor populations by
MS. Plots are representative profiles (n = 3–4 donors of each cell type).
(D) Immunoblot validation of newmarkers identified to be enriched within mesenchymal progenitor populations by MS. Blots show protein
extracts from HDF, two MSC donors, two HUCPVC donors, human coronary artery, and aortic SMC and HUVEC cultures.
(E) qRT-PCR for markers identified to be enriched within mesenchymal progenitor populations. Results are averages with error bars
representing SEM. Expression was normalized relative to housekeeper genes TBP and b2M, using averages from three individual HDF, four
MSC, and four HUCPVC donors.
(F) Immunoblots showing expression of new markers by MSC cultured under normal growth conditions (MSC) or under adipogenic con-
ditions (adipo, 21 days) in pellet chondrogenic conditions (chondro, 24 days) or osteogenic conditions (osteo, 24 days). Blots are
representative of results from two donor MSCs.
See also Figure S3.
CD9 knockdown, with smaller (1.3- to 1.4-fold) increases

detected as a result of EPHA2 andCDH13 knockdowns (Fig-

ure 6F). Thus, whereas all siRNA treatments increased cell
480 Stem Cell Reports j Vol. 4 j 473–488 j March 10, 2015 j ª2015 The Auth
size, CD9 and EPHA2 depletion induced significantly elon-

gated phenotypes, and ROR2 depletion resulted in larger,

more rounded cells.
ors



Figure 4. Expression of Markers by Freshly Isolated HUCPVCs, Bone Marrow MSCs, and MSCs from Adipose Tissue
(A) Flow cytometry for the indicated markers using freshly isolated HUCPVCs, at passage 0, after cell release from perivascular regions of
the umbilical cord with collagenase. Plots are representative profiles (n = 2 donors). Red filled, isotype control; black line, antibody as
indicated.
(B) Flow cytometry for the indicated markers using freshly isolated bone marrow MSCs, at passage 0, after plating of bone marrow cells on
tissue culture plastic, analyzing adherent populations. Plots are representative profiles (n = 2 technical repeats). Red filled, isotype
control; black line, antibody as indicated. Plots from two further MSC donors at passage 0 are given in Figure S4.
(C) Flow cytometry for the indicated markers using freshly isolated adipose-derived MSCs, at passage 0, after plating of isolated cells from
subcutaneous fat on tissue culture plastic, analyzing adherent populations. Plots are representative profiles (n = 2 technical repeats). Red
filled, isotype control; black line, antibody as indicated. Plots from two further adipose-derived MSC donors at passage 0 are given in
Figure S4.
See also Figure S4.
Effects of Depleting Cell-Interface Markers on Cell

Lineage

MSCs can be induced to differentiate in vitro along mesen-

chymal lineages such as bone, cartilage, tendon, muscle,

and fat, and they may also differentiate into non-mesen-
Stem C
chymal cells such as neural, endothelial, and SMCs (Ball

et al., 2014). qPCR was used to investigate whether knock-

down of the selected progenitor cell markers changed gene

expression profiles of markers that would indicate differen-

tiation, after siRNA treatment for 12 days (Figures 6H–6O).
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Figure 5. siRNA against Newly Identified Mesenchymal Progenitor Markers Reveals Functional Roles
(A–G) Validation of knockdown using siRNA. (Left) qRT-PCR results for the indicated gene after 24 hr treatment with each siRNA. (Right)
Flow cytometry or immunoblots for the protein indicated after 7 days of siRNA treatment (n = 3 independent experiments using two
different donor-derived MSC cultures; error bars represent + SD.). Cells were transfected at days 0, 2, and 5.
(H) Phase-contrast images of cells at day 7 after siRNA additions (representative images from three independent experiments all with two
different donor-derived MSC cultures). Cells were transfected at days 0, 2, and 5.

(legend continued on next page)
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CD9 knockdown resulted in a significant increase in adi-

pogenic markers C/EBPa, FABP4, and PPARg (Figure 6H).

Significant increases in FABP4 and PPARg were also detect-

able after EPHA2 siRNA treatment (Figure 6H). In contrast,

osteogenic marker expression (ALPL/Col1a1/RUNX2)

was significantly reduced with EPHA2 and CD9 siRNAs

(Figure 6I). EPHA2 knockdown also resulted in significantly

reduced expression of the chondrogenic marker

AGGRECAN, whereas a 68-fold increase in AGGRECAN

expression was detected after knockdown of CD9 (Fig-

ure 6J). Ectodermal markers, NEUROD2 and SOX1, and

endodermal marker, FOXA2, were also increased in CD9-

siRNA-treated cells. Mesodermal markers ACTA2 and

SNAI1 were significantly downregulated (Figures 6K–6M)

in CD9 and EPHA2 knockdown cells (Figure 6M). The oste-

ogenic markers, COL1A1 and osteocalcin (BGLAP), were

significantly downregulated in ROR2 and PLXNA2 knock-

down cells (Figure 6I), with significant upregulation of

ectodermal and endodermal genes in ROR2 siRNA-treated

cells (Figures 6K and 6L).

We also investigated whether individual knockdown of

mesenchymal markers ROR2, EPHA2, CDH13, or PLXNA2,

together with knownMSCmarker CD9, altered the expres-

sion of the other selected multipotency MSC markers (Fig-

ures 6N and 6O). At 6 hr after siRNA addition, little effect

on expression of the other markers was detectable in each

set of knockdown cells, highlighting the specificity of

each siRNA (Figure 6N). However, after 3 days or longer,

marked alterations in the expression of each of the other

genes were detected (Figures 6O and S5B). For example,

CD9 expression was significantly decreased after EPHA2

knockdown, and EPHA2 mRNA levels were also decreased

in CD9 knockdowns (Figures 6O, S5B, and S5C). In addi-

tion, ROR2, PLXNA2, and CDH13 were reduced after

EPHA2 knockdown (Figure 6O). Thus, knockdown of

one marker affects the mRNA expression levels of other

markers, emphasizing their interlinked roles in mesen-

chymal progenitor cell biology.
DISCUSSION

Defining the composition of the pericellular interface of

mesenchymal progenitor cells is essential to understand

their biology and for reproducible therapies. In this study,
(I) Cell proliferation assay results. Cells were plated at 1,800 cells per c
before assessing cell numbers. Cells were transfected with siRNAs at
experiments using two different donor-derived MSC cultures). *p < 0
(J) Cell wound assay migration results. Cells were grown to confluency
single wound was made and wound closure was monitored for 24 hr. D
after injury. Plots show error bars +SD (n = 4 independent experim
compared with control siRNA.

Stem C
we defined the cell-surface-matrix proteome of MSCs and

HUCPVCs using relative quantitative MS of highly en-

riched membrane and matrix fractions. Our data reveal

many novel surface markers and have shown how these

markers affect cell shape, proliferation, and migration.

The complexity of the pericellular proteome of mesen-

chymal progenitor cells revealed by our study provides a

basis for future analyses of its functional and therapeutic

importance.

To achieve deep proteomic mining, our strategy needed

several elements. First, high-quality plasma membrane

and matrix-enriched preparations were prepared that

enabled the mass spectrometer to detect low level ex-

pressed peptides, by reducing background high-abundance

peptide interference. This step is essential, as cell-surface

biomarkers are often expressed at low copy number. Sec-

ond, 2D liquid chromatography prior to liquid chromatog-

raphy-tandem mass spectrometry (LC-MS/MS) enabled

tryptic peptides to be sufficiently separated and individu-

ally loaded on to the MS instrument. This allowed us to re-

cord data on 48,169 peptides for membrane-enriched and

9,970 inmatrix-enriched fractions and permitted data inte-

gration for high-confidence assignment of peptides to over

6,000 and 1,300 proteins, respectively. Without this level

of quantification, test data are relatively intractable. Third,

we used eight-channel isobaric tagging to identify lead

biomarker candidates with high confidence in relative

quantification across samples, which, given the run times

needed, would not be possible with label-free methods.

Our post-MS validation procedures confirmed the robust-

ness of our approach in identifying new surface proteins

of progenitor cells. Importantly, the method allows several

samples to be analyzed concurrently to identify variance

(e.g., between three HUCPVC populations), which pro-

vides exclusion criteria for candidate biomarker selection

and avoids identifying donor-specific markers.

Our identification of proteins, with at least a 10-fold

improvement in quantification compared with previous

published studies, is a major leap in defining the mesen-

chymal progenitor cell-matrix interface proteome. Other

groups have identified similar overall protein numbers

and some similar markers when studyingMSC populations

(Mindaye et al., 2013a, 2013b), but previous attempts at

quantifying differences in marker protein levels between

cell types have been limited. One study, which used
m2 and incubated with specific siRNAs for the indicated time periods
days 0, 2, 5, and 7. Plots show error bars + SD (n = 4 independent
.05 compared with control siRNA.
for 5 days with siRNA addition (transfected day 0, 2, and 5) before a
ata are represented as percentage wound coverage at 12 and 24 hr
ents using two different donor-derived MSC cultures). *p < 0.05
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Figure 6. Mesenchymal Progenitor Cell Marker siRNAs Affect Focal Adhesion Formation, Cell Shape, and Gene Expression Profiles
of MSCs
(A) Representative immunofluorescence staining for vinculin (green), F-actin (red), and nuclei (DAPI, blue) after siRNA treatment for
7 days (n = 3 independent experiments using two different donor-derived MSC cultures). Cells were plated at equivalent densities 48 hr
prior to imaging.
(B–G) Cell image processing to determine the size and shape measurements of MSCs after staining with wheat germ agglutinin, F-actin, and
DAPI on day 7 of siRNA-treated cultures plated at equivalent densities 24 hr prior to imaging (B). Processed CellProfiler output files
determining cell boundaries are shown. Full images are shown in Figure S5A. Representative length and width measurements (C), length to
width ratios (D), cytoplasm and nuclei measurements (E), nucleus to cytoplasm ratios (F) and two distinct shape features, eccentricity,
extent, and form factor (G) taken from six to ten processed images from two independent experiments both using two different MSC
cultures (n = 4). Plots show error bars + SEM. *p < 0.05 compared with control siRNA.
(H–M) qRT-PCR to define the changes in expression of adiopogenic (H), osteogenic (I), chondrogenic (J), ectodermal (K), endodermal (L),
and mesodermal (M) markers after siRNA treatment for 12 days under multipotent growth conditions relative to control siRNA treated
cultures (n = 4 from two independent experiments using two different donor-derived MSCs). Plots show error bars + SD.
(N and O) Expression of CD9, ROR2, EPHA2, PLXNA2, and CDH13 after treatment with the indicated siRNA for 6 hr (N) or 12 days (O) relative
to control siRNA. Expression is normalized to housekeeper genes TBP and b2M. Error bars + SEM (n = 4 from two independent experiments
using two different donor-derived MSCs); *p < 0.05 compared with control siRNA.
See also Figure S5.
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isotypic cysteine labeling to compare bone marrow and

umbilical cord veinmesenchymal progenitor cells, enabled

the quantification of 545 proteins, but represented a global

proteomic approach with no pre-fractionation of mem-

brane proteins prior to LC-MS/MS (Miranda et al., 2012).

Using iTRAQ to simultaneously deliver relative quantifica-

tion of multiple samples has major advantages over other

MSmethods for analyzing themembrane proteome, which

are often poorly resolved using gel-based methods and, in

the case of 2D-PAGEMS comparisons, rely on visible differ-

ences in silver stain intensity prior to protein identification

(Kim et al., 2012).

The identification of known MSC markers within our

panel of biomarkers endorses our method, with validation

by flow cytometry or immunoblotting, confirming that the

markers are largely restricted to MSCs and HUCPVCs.

Further confirmation of their selective expression by

mesenchymal progenitor cells was demonstrated using

fresh bone marrow aspirates and adipose-derived MSC

cultures. Knockdown experiments on selected markers

demonstrated that each influences MSC fate, exerting dif-

ferential effects on cell shape, proliferation, and migration

and on expression of both known progenitor/differenti-

ated cell markers and the progenitor-specific molecules

identified here.

Progenitor cells from different tissue sources can exhibit

phenotypic variations. Here, we have identified a num-

ber of cell-type-specific differences between MSCs and

HUCPVCs; however, the fact that only 11 proteins were up-

regulated in one progenitor cell type and downregulated in

the other strongly suggests that these cells are functionally

related. Nevertheless, it will be interesting to investigate

further the HUCPVC- and MSC-specific proteins in order

to define their cellular roles.

We and others have shown that protein andmRNA levels

are not directly comparable (Miranda et al., 2012; Unwin

and Whetton, 2006). Although published transcriptomic

analyses comparing bone marrow MSCs with HDFs have

identified some similar markers to those identified in this

study, e.g., enrichment in ADAM12, VCAM1, and ALPL

(Ren et al., 2011), there were alsomarked variations, under-

lining the essential need to define protein levels.

Although well beyond the remit of this study to define

the full significance of the expression of all identified

MSC markers, we conducted selected knockdowns to gain

initial insights. Knockdown of CD9, ROR2, and EPHA2 re-

sulted in dramatic alterations in MSC phenotype. Compa-

rable siRNA analyses of HUCPVC donor cultures showed

similar results (unpublished data). CD9 is a tetraspanin

receptor that interacts with and activates b1 integrin adhe-

sion receptors, altering integrin-dependent cell migration

(Kotha et al., 2008). Although CD9 is widely reported

to be expressed by mesenchymal progenitor cells from
Stem C
different tissues and to influence integrin signaling,

investigations into its function in MSCs are limited. We

found that depletion of CD9 alters MSC proliferation,

shape, and migration and blocks focal adhesions, thereby

modifying cell fate.

ROR2 is a member of an orphan receptor tyrosine kinase

family. Ror2-deficientmice are neonatal lethal due to severe

skeletal and heart defects (Takeuchi et al., 2000). Mutations

in Ror2 in humans cause skeletal dysplasias (Afzal and

Jeffery, 2003). ROR2 has been proposed to regulate osteo-

genic differentiation of MSCs in vitro possibly by acting

as a Wnt co-receptor (Yun et al., 2014). We have shown

that depletion of ROR2 not only downregulates osteogenic

markers (COL1A1, BGLAP, RUNX2) in multipotent growth

conditions, but also dramatically changes cell shape

and inhibits cell proliferation and migration, suggesting

that ROR2 crosstalk with Wnts may regulate mesodermal

development.

EPHA2 is amember of the family of Eph receptor tyrosine

kinases that influence development and is often deregu-

lated in cancer cells. It binds membrane-bound ephrin-A

family ligands residing on adjacent cells, leading to con-

tact-dependent bidirectional signaling that can modulate

expression of mesodermal genes. EPHA2 may negatively

regulate cell-ECM adhesion and cell growth due to suppres-

sion of focal adhesion kinase (Miao et al., 2000), whereas

others have shown that ephrin-A-EphA2 signaling pro-

motes FAK- and p130cas-dependent cell adhesion and

cytoskeletal assembly (Carter et al., 2002). In agreement

with the latter study, downregulation of EPHA2 in MSCs

reduced focal adhesion formation, altering cell shape,

inhibiting migration, and downregulating mesodermal

gene expression. Similarities in knockdown phenotypes

of CD9 and EPHA2 suggest that these proteins may func-

tion in overlapping pathways to maintain MSC fate.

In summary, we have applied state-of-the-art quantita-

tive proteomics to define the cell-matrix interface of multi-

potent mesenchymal progenitor cells and identify markers

that influence cell fate. Aswell as the universal applicability

of this approach to stem cell analysis, our proteomic data

deliver a step advance toward improved therapeutic MSC

applications by providing a basis for better selection and

understanding of their biology.
EXPERIMENTAL PROCEDURES

Cells and Cell Culture
MSCs (donors: 7F3674 [22-year-old black female], 6F4085 [33-year-

old black male], 183402 [21-year-old white female], and 6F3502

[21-year-old black male], all purchased from Lonza at passage 2)

were cultured on gelatin-coated plastic in MesenPRO RS Medium

(Gibco), essentially as described (Ball et al., 2012). In brief, cells

cryo preserved at P2 were expanded at a ratio of 1:5 when �90%
ell Reports j Vol. 4 j 473–488 j March 10, 2015 j ª2015 The Authors 485



confluent and used in all experiments at passage 5. This protocol

was needed to provide sufficient cells for the proteomic analysis

and validation experiments. HUCPVCs from six donors isolated

as described (Sarugaser et al., 2005) (gift from Professor J. E. Davies,

University of Toronto) were cultured in alpha-minimum essential

medium (a-MEM) (Sigma), 10% v/v batch-tested fetal calf serum

(FCS), and 2 mM L-glutamine and used at passage 0 (outgrowth

from primary tissue) or passage 6. Matched adipose-derived

MSCs and bone marrow-MSCs from four donors were isolated

from subcutaneous fat and bone marrow removed from the prox-

imal femur during hip-replacement surgery (average age 54 years

[47 to 61 years]; two women and twomen) as previously described

(Strassburg et al., 2010). Cells were obtained in accordance with

local ethical approval and with the fully informed consent of

patients. Cells were either used for flow cytometry immediately

(freshly isolated mononuclear cells) or plated in a-MEM with

20% FCS, discarding non-adherent cells after 5 days and retaining

adherent cells for flow cytometric analysis at passage 0. Adult HDFs

(Cascade Biologic) from three donors were cultured in Dulbecco’s

modified Eagle’s medium (Biowhittaker), 10% FCS, L-glutamine

and used at passage 6. Differentiation toward adipogenic, osteo-

genic, or chondrogenic lineages was performed using defined

differentiation media and cell identification methods (RnD

Systems/StemPro). HUVECs were maintained in Endothelial Cell

Growth Medium (Promocell). Passage 5 aortic SMCs and coronary

artery SMCs were maintained in Medium 231 supplemented

with smooth muscle growth supplement (Life Technologies) and

L-glutamine.

Flow Cytometry
Cells were collected after detachment with cell dissociation buffer

or trypsin and processed for flow cytometry. For details of anti-

bodies, see Supplemental Experimental Procedures. Samples were

analyzed using a Beckman Coulter Cyan ADP and Summit v.4.3

software, or BD FACSCanto using BD FACSDIVA software process-

ing with WinMidi 2.8.

Preparation of Enriched Plasma Membranes
Cells were grown to 90% confluence, washed in PBS, and collected

by gentle scraping. Cells were pelleted at 800 g for 3 min, washed

in PBS, repelleted, and resuspended in precooled lysis buffer

(10mMHEPES/1mMEDTA/pH 7.5/1X protease inhibitors; Sigma)

at 107 cells/ml and disrupted with a dounce homogenizer. Cells

were centrifuged (10 min, 500 g) to pellet the nucleus. Membranes

were enriched as described (Holland et al., 2011), with slight

modification as described in the Supplemental Experimental

Procedures.

Preparation of Pericellular Matrix-Enriched

Preparations
Cells grown to confluence werewashedwith PBS (no Ca/Mg). Lysis

buffer (20mMNH4OH/0.5%NP40/PBS) was added to the cell layer

and incubated at room temperature until cells detached (�5 min).

Remaining matrix was washed in PBS+Ca/Mg and then incubated

with benzonase (25 U/ml; Merck)/PBS + Ca2+/Mg2+ at 37�C for

30 min, before washing with PBS. Matrix was solubilized in

0.5 M triethyl ammonium bicarbonate (TEAB)/0.05% SDS/prote-
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ase inhibitors and incubated at 70�C for 30min. Insolublematerial

was removed by centrifugation.

iTRAQ Labeling and MS
Protein (100 mg) from each sample underwent reduction in 0.1

volumes of 50 mM tris-(2-carboxyethyl) phosphine (Sigma) at

60�C for 1 hr. Reduced cysteine residues were alkylated using

0.05 volumes of 200 mM methylmethanethiosulphate/isopropa-

nol (Thermo Fisher Scientific). Protein samples were digested

with trypsin (1:10, enzyme:protein) at 37�C overnight before

labeling with iTRAQ reagent (Applied Biosystems). Samples were

pooled prior toMS analysis, as detailed in the Supplemental Exper-

imental Procedures.

Immunoblotting
For whole-cell lysates, cells were washed with PBS and scraped

into RIPA buffer (Sigma)/protease inhibitors and centrifuged at

14,000 g, 10 min, 4�C. Protein concentration was determined

using the Pierce BCA protein assay. For immunoblotting, 2- to

20-mg protein was loaded per well of an SDS-PAGE gel and then im-

munoblotted as described (Ball et al., 2004). For antibodies, see the

Supplemental Experimental Procedures. InstantBlue (Expedeon)

was used for Coomassie blue staining. GeneTools (Syngene) was

used for quantification.

RNA Isolation and qRT-PCR
RNAwas isolated using the ReliaPrep RNAMiniprep System (Prom-

ega) and converted into cDNA using the Tetro cDNA Synthesis Kit

(Bioline). qPCR was performed using the GoTaq qPCR kit (Prom-

ega) on a Bio-Rad CFX touch 1000 qPCR machine. Gene expres-

sion was normalized relative to housekeeping genes TBP and

b2M. Expression relative to control was determined using the

DCt method using Bio-Rad CFX Manager software. Primers are

listed in the Supplemental Experimental Procedures; QuantiTect

Primer Assays (QIAGEN) were used for unlisted genes.

siRNA Experiments
GeneSolution siRNAs were purchased from QIAGEN. siRNAs were

used at a final concentration of 40 nM. Lipofectamine RNAiMAX

transfection reagent (Invitrogen) was used, transfecting cells every

2 to 3 days.

Cell Proliferation Assay
Cellswereplatedat1,800cellspercm2, andsiRNAtransfectionswere

performedas described.Cell densitywasmeasured every 24hrusing

the CyQUANT Cell Proliferation Assay (Life Technologies).

Migration Assay
MSCs were plated at 6,000 cells/cm2 and transfected with siRNAs

as described. On day 5, a wound was made using a pipette tip,

and plates were imaged using an inverted live cell imaging micro-

scope (203/0.5 HC Plan Fluotar objective, Leica DMIRE), main-

tained at 37�C/5% CO2 in a humidified atmosphere. A motorized

XYZ stage allowed multiple positions to be imaged, collecting

images every 10 min over 24 hr through Image Pro 6.3 software

(Media Cybernetics).
ors



Immunofluorescence Staining
Cells were fixed with 4% paraformaldehyde and processed for

immunofluorescence staining. Antibodies/dyes are listed in the

Supplemental Experimental Procedures. Images were captured on

anOlympus BX51 upright microscope using a Coolsnap ES camera

(Photometrics) throughMetaVue Software (MolecularDevices). Im-

ageswere processed and analyzed using ImageJ (http://rsb.info.nih.

gov/ij). Cell shape measurements used CellProfiler image analysis

software (Carpenter et al., 2006) as described (Ball et al., 2012).

Statistical Analyses
A Student’s t test or two-way ANOVA was used to calculate signifi-

cance using a p value of less than 0.05.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures, five figures, and seven tables and can be found

with this article online at http://dx.doi.org/10.1016/j.stemcr.

2015.01.007.
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