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Abstract

Let IM andIN be defining ideals of toric varieties such thatIM is a projection ofIN , i.e.IN ⊆ IM .
We give necessary and sufficient conditions for the equalityIM = rad(IN + (f1, . . . , fs)), where
f1, . . . , fs belong toIM . Also, a method for finding toric varieties which are set-theoretic complete
intersection is given. Finally, we apply our method in the computation of the arithmetical rank of
certain toric varieties and provide the defining equations of the above toric varieties.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

One of the classical problems ofAlgebraic Geometry with a long history, see[3, Chapter
15], is to determine the minimal number of equations needed to define set-theoretically an
algebraic variety over analgebraically closed field. Evenmoredifficult is to provideminimal
sets of equations that define the algebraic variety. The problem is open even for very simple
cases, like the Macaulay curve(t4, t3u, tu3, u4) in the three-dimensional projective space.
This article addresses these two problems for toric varieties and in several cases we are
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able to compute the minimal number, but also provide the equations that define the variety
set-theoretically.
LetM = (ai,j ) be anm × nmatrix with integer entriesai,j , such that every column has

atleast one non-zero entry. LetK be a field and letA= {a1, . . . ,an} be the set of vectors in
Zm, whereai = (a1,i , . . . , am,i) for 1� i�n. Thetoric ideal IM associated withM is the
kernel of theK-algebra homomorphism

� : K[x1, . . . , xn] → K[t1, . . . , tm, t−1
1 , . . . , t−1

m ]
given by

�(xi) = tai : =t
a1,i
1 · · · tam,i

m for all i = 1, . . . , n.

The idealIM is prime and thereforerad(IM) = IM . A difference of two monomials is
called abinomial. Every vectoru in Zn can be written uniquely asu = u+ − u−, where
u+=(u+,1, . . . , u+,n)andu−=(u−,1, . . . , u−,n)arenon-negativeandhavedisjoint support.
If D is anm × n matrix with rational entries and columns{d1, . . . ,dn}, then the kernel of
D is

ker(D) = {u = (u1, . . . , un) ∈ Qn|u1d1 + · · · + undn = 0}.
SetkerZ(D)=ker(D)∩Zn. The heightht(IM) of IM equals the rank of the latticekerZ(M)

(see[12]).

Lemma 1.1(Sturmfels[12]). The toric idealIM is generated by the binomialsxu+ −xu− ,
whereu belongs tokerZ(M).

We grade the polynomial ringK[x1, . . . , xn] by settingdegA(xi) = ai for i = 1, . . . , n.
We define theA-degreeof the monomialxu to be

degA(x
u) : =u1a1 + · · · + unan ∈ N(A),

whereN(A) is the semigroup generated byA. Every toric idealIM is A-homogeneous,
since it is generated by binomials and every binomialxu+ − xu− isA-homogeneous.
The toric varietyXM associated withM is the setV (IM) ⊂ Kn of zeroes ofIM in the

sense of[12], which also includes non-normal varieties. Thetoric set�(M) determined by
M is the subset ofKn defined parametrically byxi = t

a1,i
1 · · · tam,i

m for all i, i.e. it is the set
of points that can be expressed in the form

(t
a1,1
1 · · · tam,1

m , . . . , t
a1,i
1 · · · tam,i

m , . . . , t
a1,n
1 · · · tam,n

m )

for someti inK. Note that�(M) is a subset ofXM .Whenm=1 anda1,1<a1,2< · · ·<a1,n
are positive integers, the g.c.d. of which equals 1, then�(M) is known as amonomial curve
andIM as the ideal of the monomial curve.
We associate to the toric varietyXM the rational polyhedral cone� = posQ(A) :

={∑n
i=1diai |di ∈ Q anddi �0}. The dimension of� is equal to the dimension of the

vector spaceQA = {∑n
i=1diai |di ∈ Q} and also is equal to the dimension ofXM .
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In this paper we consider the following two problems related to the toric idealIM :
(I) Given a toric idealIN , such thatIN ⊆ IM , and a set of binomials{f1, . . . , fs} in IM ,

formulate a criterion for deciding the equalityIM = rad(IN + (f1, . . . , fs)).
(II) Find the smallest number of polynomials needed to generateIM up to radical. This

problem is more general than the corresponding problem in Algebraic Geometry of the
determination of the minimum number of equations needed to define a toric varietyXM

set-theoretically, over an algebraically closed field. This number is calledarithmetical rank
of XM and will be denoted byara(XM). The generalized Krull’s principal ideal theorem
provides a lower bound for the arithmetical rank ofXM , namely the height ofIM . When
ht(IM) = ara(XM) the idealIM (and the varietyXM as well) is called aset-theoretic
complete intersection.
Problem (I) was studied by Eliahou–Villarreal in[7] in the special case thatIN = (0).

There they give a necessary and sufficient condition for the equalityrad(f1, . . . , fs)= IM .
More precisely they prove that:

Theorem 1.2(Eliahou and Villarreal[7] , Villarreal [15]). Let {f1, . . . , fs} be a set of
binomials in the toric idealIM . SetJ = (f1, . . . , fs) andG = 〈f̂1, . . . , f̂s〉 ⊂ kerZ(M),
where for abinomialf=xu−xv ∈ K[x1, . . . , xn]we letf̂=u−v ∈ Zn. If char(K)=p �= 0
(resp. char(K) = 0), thenrad(J ) = IM if and only if:

(a) pkkerZ(M) ⊂ G for somek ∈ N (resp. kerZ(M) = G),
(b) rad(J, xi) = rad(IM, xi), for all i = 1, . . . , n.

We generalize (seeTheorem4.4) this result in terms of projections of ideals. Our criterion
can be used also to determine different binomial generators for the radical of the ideal of
a toric variety (see Example 4.6). However in the case that we can make a good choice
of a projectionIN , minimal binomial generators up to radical for the idealIM of the toric
variety are derived.
Basic ingredient of our approach is the notion of projections of toric ideals. This notion,

although it was never before explicitly defined, has been used for the first time by Herzog
in [9] to prove that the ideal of the monomial curve(ta1, ta2, ta3) is set-theoretic complete
intersection. In[13], the same notion has been used to prove that, whenchar(K) = 0,
smooth monomial curves are not binomial set-theoretic complete intersections, except for
the twisted cubic. Finally in[14], Thoma used this notion to deduce that certain ide-
als of monomial curves(ta1, . . . , tan) are set-theoretic complete intersections. The tech-
niques developed there cannot always be applied, for example the ideal of the mono-
mial curve (t4, t6, t11, t13) was generally unknown whether or not it is a set-theoretic
complete intersection. Our method begins with a toric ideal which is set-theoretic com-
plete intersection and it produces a large number of toric ideals which are set-theoretic
complete intersections. This method also provides the defining equations of the toric
variety.
In Section 2 we introduce the basic notion of this paper, the notion of projections of toric

ideals, and present its connection with the geometric notion of projections of cones.
In Section 3 we give necessary and sufficient conditions for the equalityrad(IN +

(f1, . . . , fs)) = IM , whereIM is a projection ofIN andf1, . . . , fs belong toIM .
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In Section 4 we study the previous equality in the special case thatf1, . . . , fs are bino-
mials.
In Section 5we develop amethod for finding toric ideals which are set-theoretic complete

intersections.
In Section 6 we apply the theory developed in Section 5 in the computation of the exact

value of the arithmetical rank of certain toric ideals. Among other results, we prove that
the ideal of the monomial curve(t4, t6, ta, tb) is set-theoretic complete intersection, so for
a = 11, b = 13 the ideal of the monomial curve(t4, t6, t11, t13) is set-theoretic complete
intersection.

2. Projections of toric ideals

We consider the toric idealsIM , IN associated with them × n matrixM = (ai,j ) and
l × n matrix N = (bi,j ), respectively. LetA = {a1, . . . ,an}, B = {b1, . . . ,bn}, where
ai = (a1,i , . . . , am,i) andbi = (b1,i , . . . , bl,i ) for 1� i�n.

Definition 2.1. We say thatIM is aprojectionof IN if IN ⊆ IM .

Let �̂ : Ql → Qm be a rational affine map witĥ�(posQ(B)) = posQ(A). We call

� : =�̂|posQ(B) : posQ(B) → posQ(A)

aprojection of cones. The next theoremmakes the connection between the algebraic notion
of projections of toric ideals and the geometric notion of projections of cones.

Theorem 2.2. The following are equivalent:

(a) IM is a projection ofIN .
(b) The latticekerZ(N) is a subset of the latticekerZ(M).
(c) Every B-homogeneous ideal inK[x1, . . . , xn] is also A-homogeneous.
(d) There is a projection of cones� : posQ(B) → posQ(A) given by�(bi ) = ai for all

i = 1, . . . , n.
(e) There is anm × l matrix D with rational entries such thatDN = M.

Proof. (a)⇒ (b) Letu=u+ −u− be an element ofkerZ(N). Then the binomialxu+ −xu−

belongs toIN which, from the assumption, is a subset ofIM . Consequentlyu is inkerZ(M).
(b) ⇒ (c) Let I ⊆ K[x1, . . . xn] be aB-homogeneous ideal andxu, xv two monomials

of aB-homogeneous generatorf of I , whereu = (u1, . . . , un) andv = (v1, . . . , vn). Set
g = xu − xv. We have

u1b1 + · · · + unbn = v1b1 + · · · + vnbn,

which implies that̂g belongs to the latticekerZ(N). As kerZ(N) ⊆ kerZ(M), we obtain
that the vector̂g belongs tokerZ(M) and so

u1a1 + · · · + unan = v1a1 + · · · + vnan.

HenceI isA-homogeneous.
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(c) ⇒ (d) It is enough to consider the casedim(posQ(B)) = l. Let {bj1, . . . ,bjl } be a
base for theQ-vector spaceQl and definê� : Ql → Qm by �̂(bji )=aji for all i=1, . . . , l.
Set� = �̂|posQ(B). Obviously,�(bji ) = aji for everyi = 1, . . . , l. Letbji =∑l

k=1�kbjk ∈
posQ(B) for some�k ∈ Q andi ∈ {l + 1, . . . , n}. Clear the denominators to obtain an

equality�bji =
∑l

k=1�kbjk , where� and�1, . . . , �l are integers. Suppose that� is positive,

the case�<0 is essentially the same. The idealI = (x
�1,−
j1

· · · x�l,−
jl

x�
ji

− x
�1,+
j1

· · · x�l,+
jl

) is

B-homogeneous and thereforeA-homogeneous. Thus�aji = ∑l
k=1�kajk , which leads to

aji =∑l
k=1�kajk . Hence�(bji ) = aji , for everyi ∈ {1, . . . , n}.

(d)⇒ (e) The matrixD is the matrix of̂� in the canonical bases ofQl andQm.
(e) ⇒ (b) Let u = (u1, . . . , un) be an element ofkerZ(N). ThenD(NuT) = 0T , and

thereforeMuT = 0T . SokerZ(N) ⊆ kerZ(M).
(b)⇒ (a) Letf =xu+ −xu− be a binomial generator ofIN , wheref̂ belongs tokerZ(N).

As kerZ(N) ⊆ kerZ(M), we take that̂f is in kerZ(M). Hencef belongs toIM . �

Corollary 2.3. If IM is a projection ofIN , thenht(IN)�ht(IM).

Proof. We havekerZ(N) ⊆ kerZ(M) and thereforerank(kerZ(N))�rank(kerZ(M)),
by Theorem 2.2. Thus,ht(IN) = rank(kerZ(N))�rank(kerZ(M)) = ht(IM). �

3. Set-theoretic generation

Let IM , IN be toric ideals such thatIM is a projection ofIN , whereM is anm × n

integer matrix andN = (bi,j ) is an l × n matrix with non-negative integer entries. Set
B = {b1, . . . ,bn}, wherebi = (b1,i , . . . , bl,i ) for i = 1, . . . , n. Note that ifposQ(B) is
strongly convex, i.e.0 is the only invertible element ofN(B), then we can choose an
appropriate matrixN with non-negative integer entries. The toric idealIN is the kernel of
theK-algebra homomorphism

� : K[x1, . . . , xn] → K[t1, . . . , tl]
given by

�(xi) = tbi for all i = 1, . . . , n.

We shall denote by(�(IM))e the ideal�(IM)K[t1, . . . , tl].

Theorem 3.1. Assume that�(N)=V (IN) in K̄n. Let{f1, . . . , fs} be a set of polynomials
in IM and letJ = (f1, . . . , fs). Then

IM = rad(IN + J )

if and only if

rad((�(IM))e) = rad(�(f1), . . . ,�(fs)).
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Proof. Let us first assume that

rad((�(IM))e) = rad(�(f1), . . . ,�(fs)).

We claim that

IM = rad(IN + J ).

ByHilbert’s Nullstellensatz it is enough to prove that any pointx=(x1, . . . , xn) ofV (IN, J )

in K̄n belongs toV (IM). Thisx belongsalso toV (IN)=�(N). The last statementmeans that
thereexistTi ∈ K̄ for 1� i� l such thatxi=Tbi .Note thatf (x)=�(f )(T1, . . . , Tl) for every
f ∈ K[x1, . . . , xn], sincex is of the above form. In addition, the point(T1, . . . , Tl) belongs
toV (�(f1), . . . ,�(fs))=V ((�(IM))e), becausefi(x)= 0 for everyi ∈ {1, . . . , s}. Letf
be a polynomial inIM . Then�(f ) belongs to(�(IM))e and therefore�(f )(T1, . . . , Tl)=0.
Thusf (x)=0, which implies the required relation. Conversely assume thatIM =rad(IN +
J ). We will prove that

rad((�(IM))e) = rad((�(IN))e + (�(f1), . . . ,�(fs))).

It is enough to prove the assertion for a generatorf =�(g) of (�(IM))e, whereg ∈ IM .We
havegk = h1 + h2 for somek ∈ N, whereh1 ∈ IN andh2 ∈ J . Thereforef k = �(gk) =
�(h1)+ �(h2), which means thatf belongs torad((�(IN))e + (�(f1), . . . ,�(fs))). But
IN = ker(�), sorad((�(IM))e) = rad(�(f1), . . . ,�(fs)). �

Remark 3.2. Every toric variety can always be expressed as an appropriate toric set over
an algebraically closed field, for details see[10]. The proof of this fact is constructive and
also an algorithm is given there to find this toric set. Therefore, in any case, the condition
�(N) = V (IN) in K̄n can be achieved, by choosing an appropriate matrixN for any toric
ideal.

Remark 3.3. We cannot omit from the assumptions of Theorem 3.1 the fact thatV (IN)

coincides with the toric set�(N). Let IN be the toric ideal associated with the matrix

N =
(2 1 0 0 1 2
1 2 2 1 0 0
0 0 1 2 2 1

)
,

and letIM the toric ideal associated with the matrix

M =
(
3 3 2 1 1 2
2 1 1 2 3 3

)
.

Notice thatIM is a projection ofIN and that the toric varietyV (IN) does not coincide with
�(N)(see[10]). The toric idealIM ⊂ K[x1, . . . , x6] is minimally generated by the follow-
ing 12 binomials :x21 − x2x3x4, x

3
3 − x1x2, x

3
4 − x5x6, x

2
6 − x3x4x5, x

2
3x5 − x2x

2
4, x3x

2
5 −

x24x6, x1x
2
3 − x22x4, x

2
3x4 − x2x6, x

2
3x5 − x1x6, x3x

2
4 − x1x5, x2x5 − x3x6, x1x4 − x3x6.

Let � : K[x1, . . . , x6] → K[t1, t2, t3] be theK-algebra homomorphism withIN =
ker(�). The ideal(�(IM))e is minimally generated by the binomials :t41 t

2
2 − t1t

5
2 t

3
3,

t62 t
3
3 − t31 t

3
2, t

3
2 t

6
3 − t31 t

3
3, t

4
1 t

2
3 − t1t

3
2 t

5
3, t

5
2 t

4
3 − t31 t

2
2 t3, t1t

4
2 t

4
3 − t41 t2t3, t

4
2 t

5
3 − t31 t2t

2
3. Therefore
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rad((�(IM))e) = rad(t62 t
3
3 − t31 t

3
2, t

3
2 t

6
3 − t31 t

3
3), since a power of the other generators of

(�(IM))e belongs to the ideal(t62 t
3
3 − t31 t

3
2, t

3
2 t

6
3 − t31 t

3
3). Observe thatt62 t

3
3 − t31 t

3
2 = �(x33 −

x1x2) and t32 t
6
3 − t31 t

3
3 = �(x34 − x5x6). But IM �= rad(IN + (x33 − x1x2, x

3
4 − x5x6)),

sinceIN does not have any monic binomial in the variablex6 and therefore no power
of the binomialx26 − x3x4x5 ∈ IM belongs to the idealIN + (x33 − x1x2, x

3
4 − x5x6).

Let

D =


2 1 0 0 1 2
1 2 2 1 0 0
0 0 1 2 2 1
2 2 1 0 0 1
0 1 2 2 1 0
1 0 0 1 2 2

 .

Then�(D) = V (IN), a proof of this fact can be found in[10]. Let� : K[x1, . . . , x6] →
K[t1, . . . , t6] be theK-algebra homomorphism withker(�) = ID = IN . We have
rad((�(IM))e) �= rad(�(x33 − x1x2),�(x34 − x5x6)), since no power of�(x26 − x3x4x5)

belongs to the ideal(�(x33 − x1x2),�(x34 − x5x6)).

Definition 3.4. The toric idealIM is called set-theoretic complete intersection onIN if
there are polynomialsf1, . . . , fs in IM , wheres is equal to the difference of the heights of
IM andIN , satisfyingIM = rad(IN + (f1, . . . , fs)).

The next corollary is directly derived from Theorem 3.1.

Corollary 3.5. Keep the assumptions of Theorem3.1.The toric idealIM is set-theoretic
complete intersection onIN if and only if the radical of the ideal(�(IM))e is equal to
the radical of an ideal generated byht(IM) − ht(IN) elements of the form�(f ), where
f ∈ IM . Moreover, if IN is set-theoretic complete intersection andIM is set-theoretic
complete intersection onIN thenIM is set-theoretic complete intersection.

4. Binomial generation

In this section we will give an equivalent condition for the equalityIM = rad(IN +
(f1, . . . , fs)) whenf1, . . . , fs are binomials inIM .
We consider the toric idealsIM andIN , whereM is anm×n integermatrix andN=(bi,j )

is anl × n integer matrix with non-negative entries. Assume thatIM is a projection ofIN
and letB = {b1, . . . ,bn}, wherebi = (b1,i , . . . , bl,i ) for i = 1, . . . , n. The toric idealIN is
the kernel of theK-algebra homomorphism

� : K[x1, . . . , xn] → K[t1, . . . , tl]
defined by

�(xi) = tbi for all i = 1, . . . , n.

Given a latticeL ⊂ Zl the ideal
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IL : =({tz+ − tz−|z= z+ − z− ∈ L}) ⊂ K[t1, . . . , tl]
is calledlattice ideal. The height ofIL equals the rank of the latticeL (see[4]). For a prime
numberp we denote byL : p∞ the lattice

{u ∈ Zl |pku ∈ L for some k ∈ N}.
Let ZB = {yu : =u1b1 + · · · + unbn|u = (u1, . . . , un) ∈ Zn} be the lattice spanned byB
and let

N(kerZ(M)) = {yu = u1b1 + · · · + unbn|u = (u1, . . . , un) ∈ kerZ(M)} ⊂ ZB.

Note that ifkerZ(M) = 〈u1, . . . ,ur 〉, thenN(kerZ(M)) = 〈yu1, . . . , yur 〉.

Lemma 4.1. The lattice idealIN(kerZ(M)) coincides with the ideal(�(IM))e : (t1 · · · tl)∞.

Proof. Letf =x
u1
1 · · · xunn −x

v1
1 · · · xvnn be a binomial inIM , wheref̂ =(u1−v1, . . . , un−

vn) ∈ kerZ(M). Then�(f ) = tu1b1 · · · tunbn − tv1b1 · · · tvnbn . Set z = u1b1 + · · · +
unbn − (yf̂ )+ = v1b1 + · · · + vnbn − (yf̂ )− and observe thatz ∈ Nl . We have�(f ) =
tz(t(yf̂ )+ − t(yf̂ )−) and therefore(�(IM))e ⊆ IN(kerZ(M)) ⊆ (�(IM))e : (t1 · · · tl)∞.
Clearly,(�(IM))e : (t1 · · · tl)∞ ⊆ IN(kerZ(M)) : (t1 · · · tl)∞ ⊆ ((�(IM))e : (t1 · · · tl)∞) :
(t1 · · · tl)∞. ButIN(kerZ(M))=IN(kerZ(M)) : (t1 · · · tl)∞ (see[4]) and(�(IM))e : (t1 · · · tl)∞
= ((�(IM))e : (t1 · · · tl)∞) : (t1 · · · tl)∞. ThusIN(kerZ(M)) = (�(IM))e : (t1 · · · tl)∞. �

Proposition 4.2. Let G be a sublattice ofN(kerZ(M)). If char(K) = p �= 0 (resp.
char(K) = 0), then the following two conditions are equivalent:

(a) rad(IN(kerZ(M))) = rad(IG),
(b) pkN(kerZ(M)) ⊂ G for somek ∈ N (resp.N(kerZ(M)) = G).

Proof. Suppose first thatrad(IN(kerZ(M))) = rad(IG). By [4, Corollary 2.2]it follows
that in characteristic zeroIN(kerZ(M)) = IG and soN(kerZ(M)) = G, since a binomial
f = tu − tv lies in a lattice idealIL if and only if f̂ belongs toL. Also in characteristic
p �= 0 it holdsIN(kerZ(M)):p∞ = IG:p∞ and soN(kerZ(M)) : p∞ = G : p∞. Note that in
[4] the latticeL : p∞ is denoted bySatp(L). Suppose thatN(kerZ(M))= 〈yu1, . . . , yur 〉.
We haveN(kerZ(M)) ⊂ N(kerZ(M)) : p∞ = G : p∞. Hence for everyi = 1, . . . , r
there existki ∈ N such thatpkiyui ∈ G. By choosingk the maximum of allki we take
pkN(kerZ(M)) ⊂ G. Conversely, it is clear that in characteristic zeroIN(kerZ(M))=IG and
thereforerad(IN(kerZ(M)))= rad(IG).We restrict now our attention in the casechar(K)=
p �= 0. It is enough to show thatN(kerZ(M)) : p∞ = G : p∞.ObviouslyG : p∞ ⊂
N(kerZ(M)) : p∞. Let u ∈ N(kerZ(M)) : p∞. Then there existd ∈ N such thatpdu
is in N(kerZ(M)), so from the hypothesispd+ku belongs toG. Thusu ∈ G : p∞ and
thereforerad(IN(kerZ(M))) = rad(IG). �

Remark 4.3. From the proof of the above Proposition we can see that in characteristic
p �= 0 condition (b) is equivalent with the conditionN(kerZ(M)) : p∞ = G : p∞.
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Theorem 4.4. Assume that�(N) = V (IN) in K̄n. Let {f1, . . . , fs} be a set of binomials
in IM . SetJ = (f1, . . . , fs) andG= 〈yf̂1, . . . , yf̂s 〉 ⊂ N(kerZ(M)). If char(K)= p �= 0
(resp. char(K) = 0), thenIM = rad(IN + J ) if and only if:

(a) pkN(kerZ(M)) ⊂ G for somek ∈ N (resp.N(kerZ(M)) = G),
(b) rad((�(IM))e, ti) = rad(�(f1), . . . ,�(fs), ti) for all i = 1, . . . , l.

Proof. Suppose thatIM=rad(IN+J ), then fromTheorem3.1rad((�(IM))e)=rad(�(f1),
. . . ,�(fs)). Clearly,

rad((�(IM))e, ti) = rad(�(f1), . . . ,�(fs), ti)

for all i = 1, . . . , l. In additionrad((�(IM))e) : (t1 · · · tl)∞ = rad(�(f1), . . . ,�(fs)) :
(t1 · · · tl)∞ and therefore

rad((�(IM))e : (t1 · · · tl)∞) = rad((�(f1), . . . ,�(fs)) : (t1 · · · tl)∞).

So, from Lemma 4.1, we obtain the equalityrad(IN(kerZ(M))) = rad(IG). Now Propo-
sition 4.2 assures that in characteristic zeroN(kerZ(M)) = G, and in positive charac-
teristic pkN(kerZ(M)) ⊂ G for somek ∈ N. Conversely suppose that (a) and (b)
hold. By Proposition 4.2rad(IN(kerZ(M))) = rad(IG), which implies thatrad((�(IM))e :
(t1 · · · tl)∞)=rad((�(f1), . . . ,�(fs)) : (t1 · · · tl)∞). If I is any ideal ofK[t1, . . . , tl], then
by Lemma 3.2 in[4] the radical ofI satisfies

rad(I ) = rad(I : (t1 · · · tl)∞) ∩ rad(I, t1) ∩ · · · ∩ rad(I, tl).

Applying this formula to(�(IM))e we obtain that

rad((�(IM))e) = rad(�(f1), . . . ,�(fs)).

HenceIM = rad(IN + J ). �

Remark 4.5. In the special case thatIN = (0) we take Theorem 2.5 in[7].

Example 4.6. In [5] Eliahou studied the binomial generation of the radical of the ideal
of a monomial curve. Our theory will provide different binomial generators arising from
different projections. For example, leta�7 be an odd integer and letMa = (4,6, a, a+2).
The toric idealIMa is a projection of the toric idealIDa associated with the matrix

Da =
(
a − 2 a − 4 2 0
0 2 a − 4 a − 2

)
.

Note thatIDa =rad(xa−2
2 −xa−4

1 x24, x
a−2
3 −x21x

a−4
4 , x1x4−x2x3). Setf1=xa+2

1 −x44, f2=
x24 −x1x

2
3 andG=〈(a+2,−4)〉.We haveV ((�(IMa ))

e, ti)∩ K̄2=V (�(f1),�(f2), ti)∩
K̄2={0},since�(f1)= t

(a−2)(a+2)
1 − t

4(a−2)
2 and thereforet1=0 if and only if t2=0. Thus

rad((�(IMa ))
e, ti)= rad(�(f1),�(f2), ti) for i=1,2. Letu= (u1, . . . , u4) ∈ kerZ(Ma).

Thenyu=(u1+u2+u3+u4)(a+2,−4)and thereforeDa(kerZ(Ma))=G.NowTheorem4.4
assures thatIMa =rad(xa−2

2 −xa−4
1 x24, x

a−2
3 −x21x

a−4
4 , x1x4−x2x3, x

a+2
1 −x44, x

2
4−x1x

2
3).
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But alsoIMa is a projection of the toric idealINa = (x
(a+1)/2
1 −x3x4, x

3
1 −x22) associated

with the matrix

Na =
(
2 3 a + 1 0
2 3 0 a + 1

)
.

Let � : K[x1, . . . , x4] → K[t1, t2] be theK-algebra homomorphism withINa = ker(�).
Setg1=xa+2

3 −xa4, g2=x1x4−x2x3 andH =〈(a+2,−a)〉. Using the same arguments as
beforewe takerad((�(IMa ))

e, ti)=rad(�(g1),�(g2), ti) for i=1,2. If u=(u1, . . . , u4) ∈
kerZ(Ma), thenyu = (2u1+ 3u2 + (a+ 1)/2u3+ (a+ 1)/2u4)(a+ 2,−a) and therefore
Na(kerZ(Ma))=H . ConsequentlyIMa =rad(x

(a+1)/2
1 −x3x4, x

3
1−x22, x

a+2
3 −xa4 , x1x4−

x2x3).

5. Set-theoretic complete intersection

Let IN ⊂ K[x1, . . . , xn] be a toric ideal of heightr1�1 associated with anl × n integer
matrixN with non-negative entries. LetB be the set of columns ofN . Suppose that�(N)=
V (IN) in K̄n.We consider a latticeL=kerZ(D) in Zl , whereD is anm× l rational matrix
such that the matrixM = DN has integer entries. The last statement means thatIM is a
projection ofIN . Let r2 be the height ofIM and� : K[x1, . . . , xn] → K[t1, . . . , tl] the
K-algebra homomorphism withIN = ker(�).

Lemma 5.1. The dimension of theQ-vector spaceker(D) ∩ QB equals the difference
r2 − r1.

Proof. Let {u1, . . . ,ur1} be a basis ofker(N) and{u1, . . . ,ur1,ur1+1, . . . ,ur2} a basis of
ker(M). For the sake of simplicity the symbolyi will representyui . We will show that

ker(D) ∩ QB = Q{yr1+1, . . . , yr2}.
ObviouslyQ{yr1+1, . . . , yr2} ⊆ ker(D)∩QB. Letv ∈ ker(D)∩QB, thenv=yz for some
vectorz ∈ Qn. The vectorz belongs toker(M), sinceM = DN . Thusz=∑r2

i=1	iui for
some rationals	1, . . . ,	r2. Consequentlyv=∑r2

i=r1+1	iyi ∈ Q{yr1+1, . . . , yr2}. It remains
to show that the set{yr1+1, . . . , yr2} is linearly independent. Every relation of the form∑r2

i=r1+1	iyi=0 implies that thevector
∑r2

i=r1+1	iui belongs toker(N), so thereexist some
�i such that

∑r2
i=r1+1	iui =

∑r1
i=1�iui . But the set{u1, . . . ,ur2} is linearlyindependent, so

all theki are equal to zero. �

Remark 5.2. The rank of the latticeL ∩ ZB is equal to the dimension ofker(D) ∩ QB.
AlsoL ∩ ZB coincides with the latticeN(kerZ(M)), so

ht(IN(kerZ(M))) = r2 − r1.

Theorem 5.3. Set s = r2 − r1. If there are polynomialsf1, . . . , fs in IM such that
rad(IN(kerZ(M)))= rad(�(f1), . . . ,�(fs)), thenIM is set-theoretic complete intersection
on IN .
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Proof. We have that rad((�(IM))e) ⊆ rad(IN(kerZ(M))). From the assumption
rad(IN(kerZ(M))) = rad(�(f1), . . . ,�(fs)), sorad((�(IM))e) = rad(�(f1), . . . ,�(fs))
and thereforeIM = rad(IN + (f1, . . . , fs)). �

Combining Corollary 3.5 and Theorem 5.3 we get the following Corollary:

Corollary 5.4. Set s = r2 − r1. If IN is set-theoretic complete intersection and
rad(IN(kerZ(M))) = rad(�(f1), . . . ,�(fs)) for some polynomialsf1, . . . , fs in IM , then
IM is set-theoretic complete intersection.

Example 5.5. In this example we will use the previous results to prove that the toric ideal
IM of height 4 associated with the matrix

M =
(7 0 0 5 4 5 2
0 7 0 3 1 0 0
0 0 7 0 0 4 3

)
,

is set-theoretic complete intersection. LetIN = (x35 − x1x4, x
5
7 − x3x

2
6) ⊂ K[x1, . . . , x7]

be the toric ideal of height 2 associated with the matrix

N =


3 0 0 0 1 0 0
0 3 0 0 0 0 0
0 0 5 0 0 0 1
0 0 0 3 1 0 0
0 0 0 0 0 5 2

 .

Note thatIM is a projection ofIN . Suppose that� : K[x1, . . . , x7] → K[t1, . . . , t5] is the
K-algebra homomorphism withIN = ker(�). The set of vectors

{(1,0,0,1,−3,0,0), (0,0,1,0,0,2,−5)}

constitutes a base forkerZ(N) and the set

{(1,0,0,1,−3,0,0), (0,0,1,0,0,2,−5), (1,0,0,0,0,−3,4), (0,−1,0,4,−5,0,0)}

constitutes a base forkerZ(M). Thus

N(kerZ(M)) = 〈(3,0,4,0,−7), (−5,−3,0,7,0)〉

and thereforeIN(kerZ(M)) = (t75 − t31 t
4
3, t

7
4 − t51 t

3
2). Letf1=x74 −3x1x2x44x

2
5 +3x31x

2
2x

2
4x5−

x51x
3
2 ∈ IM andf2 = x76 − 5x1x46x

4
7 + 10x21x3x

3
6x

3
7 − 10x31x

2
3x

2
6x

2
7 + 5x41x

3
3x6x7 − x51x

4
3 ∈

IM . We have(t74 − t51 t
3
2)

3 = �(f1) and (t75 − t31 t
4
3)

5 = �(f2). So rad(IN(kerZ(M))) =
rad(�(f1),�(f2)), which implies thatIM is the set-theoretic complete intersection of
x35−x1x4, x

5
7−x3x

2
6, x

7
4−3x1x2x44x

2
5+3x31x

2
2x

2
4x5−x51x

3
2, x

7
6−5x1x46x

4
7+10x21x3x

3
6x

3
7−

10x31x
2
3x

2
6x

2
7 + 5x41x

3
3x6x7 − x51x

4
3.
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We will compute the idealIN(kerZ(M)) in the special case thats = 1. Let

N =

b1 0 . . . 0 d1,1 . . . dr1,1
0 b2 . . . 0 d1,2 . . . dr1,2
. . . . . . . . . . . . . . . . . . . . .

0 0 . . . bl d1,l . . . dr1,l

 ,

whereb1, . . . , bl are positive integers anddi,j are non-negative integers such that, for all
i = 1, . . . , r1, at least one ofdi,1, . . . , di,l is non-zero. From Corollary 2 in[10] we have
�(N) = V (IN) in K̄n. The symbol|N | will represent the greatest common divisor of the
subdeterminants ofN of orderl. We assume thatL= 〈a〉 and setw= |N |/ ∣∣(NaT)

∣∣, where
(NaT) is the augmented matrix. Given a vectoru in Zl , the binomialtu+ − tu− will be
denoted byF(u).

Theorem 5.6. The lattice idealIN(kerZ(M)) is equal to the ideal generated byF(wa).
Moreover, if IN is set-theoretic complete intersection and there existsg ∈ IM such that
rad(�(g)) = rad(F (wa)), thenIM is set-theoretic complete intersection.

Proof. We haveL ∩ ZB = 〈wa〉, since every system of the formyu = ca has a solution if
and only ifc is an integer multiple ofw ([1, Theorem 1]).ThusN(kerZ(M)) = 〈wa〉 and
thereforeIN(kerZ(M)) = (F (wa)). Also, from Corollary 5.4,IM is set-theoretic complete
intersection. �

Remark 5.7. In Example 4.6 the choice off2 = x24 − x1x
2
3 (resp.g2 = x1x4 − x2x3) was

made by solving the systemyu = (a + 2,−4) (resp.yu = (a + 2,−a)).

6. Applications

In this section we will present some applications of the theory developed in Section 5.
We consider the toric ideal of heightd −1 associated with the(m+1)× (m+ d) integer

matrix

Nd =


d d − 1 d − 2 . . . 1 0 0 . . . 0
0 1 2 . . . d − 1 d 0 . . . 0
0 0 0 . . . 0 0 d . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . 0 0 0 . . . d

 ,

whered >1. The toric idealINd
⊂ K[x1, . . . , xm+d ] is set-theoretic complete intersection,

for details see[11,14]. Theorem 6.1 will generalize this result. Letc1 be a positive integer,
c2, . . . , cm+1 be non-negative integers withc1�dc2 and letL = kerZ(D) for

D =


c1
d

c1−dc2
d

0 . . . 0
0 c3

c1
d

. . . 0
. . . . . . . . . . . . . . .

0 cm+1 0 . . . c1
d

 .



A. Katsabekis / Journal of Pure and Applied Algebra 199 (2005) 133–147 145

Setg= gcd(c1, c1 − dc2, dc3, . . . , dcm+1) and letc/1 = c1/g, (c1 − dc2)
/ = (c1 − dc2)/g

and(dci)/=dci/g for i=3, . . . , m+1. Leta= ((c1−dc2)
/,−c/1, (dc3)

/, . . . , (dcm+1)
/).

Observe thatL = 〈a〉.

Theorem 6.1. The toric ideal of height d associated with them × (m + d) matrix

Mc1,...,cm+1,d =


c1 c1 − c2 c1 − 2c2 . . . c1 − dc2 0 . . . 0
0 c3 2c3 . . . dc3 c1 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 cm+1 2cm+1 . . . dcm+1 0 . . . c1


is set-theoretic complete intersection.

Proof. Without loss of generality we can assume that the greatest common divisor of the
elements ofMc1,...,cm+1,d is equal to 1. Let� : K[x1, . . . , xm+d ] → K[t1, . . . , tm+1]
be theK-algebra homomorphism withINd

= ker(�). Note thatIMc1,...,cm+1,d
is a projec-

tion of INd
. For the integerg we haveg/d, sinceg/dci for all i = 2, . . . , m + 1 and

gcd(g, c2, . . . , cm+1) = 1. In this case|Nd | = dm,
∣∣(NdaT)

∣∣ = dm/g andw = g. Also

F(wa) = t
c1
2 − t

c1−dc2
1 t

dc3
3 · · · tdcm+1

m+1 . We have(tc12 − t
c1−dc2
1 t

dc3
3 · · · tdcm+1

m+1 )d = �(f ) for

f = x
c1
d+1 −

(
d

1

)
x
c1−dc2
d x

(d−1)c2
d+1 x

c3
d+2 · · · xcm+1

d+m

+
(
d

2

)
x
c1−dc2
d−1 x

(d−2)c2
d+1 x

2c3
d+2 · · · x2cm+1

d+m −

· · · + (−1)d−1
(

d

d − 1

)
x
c1−dc2
2 x

c2
d+1x

(d−1)c3
d+2 · · · x(d−1)cm+1

d+m

+ (−1)dxc1−dc2
1 x

dc3
d+2 · · · xdcm+1

d+m .

Notice thatf belongs toIMc1,...,cm+1,d
. Consequently, from Theorem 5.6, the toric ideal

IMc1,...,cm+1,d
is set-theoretic complete intersection.�

Next we prove that the toric ideal associated with the rowmatrixMa,b = (a, a+2b,2a+
3b,2a+5b) is set-theoretic complete intersection. Especially, whena=4, b=1 we deduce
that the ideal of the monomial curve(t4, t6, t11, t13) is set-theoretic complete intersection.
We consider the toric ideal associated to the matrix

N =
(
5 1 4 0
0 2 3 5

)
.

The toric idealIN ⊂ K[x1, . . . , x4] is the set-theoretic complete intersection ofx23 − x1x
3
2

andx52−2x2x3x4+x1x
2
4. LetL=kerZ(E) forE=(a/5, (2a+5b)/5). Seth=gcd(a,2a+

5b), a/=a/h and(2a+5b)/=(2a+5b)/h. Note thatL=〈a〉, wherea=(−(2a+5b)/, a/).
In additionIMa,b

is a projection ofIN .

Theorem 6.2. For every positive integersa, b the ideal of the monomial curve(ta, ta+2b,

t2a+3b, t2a+5b) is set-theoretic complete intersection.
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Proof. Let� : K[x1, x2, x3, x4] → K[t1, t2] be theK-algebra homomorphism withIN =
ker(�). For the integerh we haveh/a andh/5b, soh/5 sincegcd(h, b)=1. Here|N |=5,∣∣(NaT)

∣∣=5/h andw=h. AlsoF(wa)= t2a+5b
1 − ta2 .Whena=1 the toric ideal associated

with the matrixM1,b is obviously set-theoretic complete intersection. Suppose thata >1,
which implies thata=2
+3� for somenon-negative integers
, �.We have(t2a+5b

1 −ta2 )
5=

�(f ), wheref =x
4
+6�+5b
1 −5x3
+4�+4b

1 x


2x

�
3+10x2
+2�+3b

1 x
2

2 x2�3 −10x
+2b

1 x
3

2 x3�3 +

5x�+b
1 x�

2x


3x


+2�
4 − x

2
+3�
4 belongs toIMa,b

. Therefore, from Theorem 5.6, the ideal of the
curve(ta, ta+2b, t2a+3b, t2a+5b) is set-theoretic complete intersection.�

Finally, we prove that the toric ideal associated with the matrixMa,b = (4,6, a, b) is
set-theoretic complete intersection.

Theorem 6.3. Foreverypositive integersa, b the ideal of themonomial curve(t4, t6, ta, tb)
is set-theoretic complete intersection.

Proof. Suppose thatb = a + k, wherek is a positive integer. Ifa or b is even, then the
semigroupN(4,6, a, b) is symmetric by Proposition 2.1 in[8] and thereforeIMa,b

is set-
theoretic complete intersection (see[2]). It remains to examine the casea is odd andk is
even.Whenk�4, the semigroupN(4,6, a, b) is symmetric and the result is straightforward.
Therefore we have to deal only with the casek = 2. Sincea >1, there is a non-negative
integer
 and a positive integer� such thata = 2
 + 3�. We consider the toric ideal
INa = ker(�) associated with the matrixNa of Example 4.6. In this example it was proved
thatNa(kerZ(Ma,a+2)) = 〈(a + 2,−a)〉 and soINa(kerZ(Ma,a+2)) = (ta+2

1 − ta2 ). Set

f =
∑

0� i� a+1
2

(−1)i
(
a + 1

i

)
x
i

1 xi�2 x

a+2−2i
3 +

∑
a+1
2 <i�a+1

(−1)i
(
a + 1

i

)
× x

(a+1−i)(
+1)
1 x

�(a+1−i)
2 x2i−a−2

4

and observe thatf ∈ IMa,a+2. We have(ta+2
1 − ta2 )

a+1 = �(f ) and thereforeIMa,a+2 is the

set-theoretic complete intersection off, x
(a+1)/2
1 − x3x4, x

3
1 − x22. �

Remark 6.4. The last theorem provides the polynomials that minimally generate up to
radical the ideal of the Eliahou’s curve(t4, t6, t7, t9), see also[6] for a proof that the above
ideal is set-theoretic complete intersection.Also it provides a different minimal polynomial
generating set, than the one obtained in Theorem 6.2, up to radical for the ideal of the
monomial curve(t4, t6, t11, t13).
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