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Abstract

Let I, andly be defining ideals of toric varieties such tligt is a projection of yy, i.e. Iy C Ijy.
We give necessary and sufficient conditions for the equélity= rad(Iy + (f1, ..., fs)), where
f1.-.., fs belong tol;. Also, a method for finding toric varieties which are set-theoretic complete
intersection is given. Finally, we apply our method in the computation of the arithmetical rank of
certain toric varieties and provide the defining equations of the above toric varieties.
© 2004 Elsevier B.V. All rights reserved.

MSC:14M25; 14M10

1. Introduction

One of the classical problems of Algebraic Geometry with a long historyj3e@hapter
15], is to determine the minimal number of equations needed to define set-theoretically an
algebraic variety over an algebraically closed field. Even more difficult is to provide minimal
sets of equations that define the algebraic variety. The problem is open even for very simple
cases, like the Macaulay cur¢e, r3u, ru®, u*) in the three-dimensional projective space.
This article addresses these two problems for toric varieties and in several cases we are
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able to compute the minimal number, but also provide the equations that define the variety
set-theoretically.
Let M = (a;,;) be arvn x n matrix with integer entries; ;, such that every column has

atleast one non-zero entry. LEtbe a field and led = {ay, ..., a,} be the set of vectors in
7™, wherea; = (a1, ..., an,;) for 1<i <n. Thetoric ideal I, associated witld/ is the
kernel of theK -algebra homomorphism

¢ Kx1, ..., x0] = K11, ooty 175 1Y
given by

d(xi) =t% c =t/ -y foralli=1,...,n.

The ideally; is prime and thereforead(Iy;) = Iy . A difference of two monomials is
called abinomial Every vectoru in Z" can be written uniquely as = uy — u_, where

Ur=@41,...,uyp)andu_=_1, ..., u_,)arenon-negative and have disjoint support.
If Disanm x n matrix with rational entries and columid;, ..., d,}, then the kernel of
Dis

ker(D)={U= (u1,...,u,) € Q" urdy +---+u,d, =0}.

Setkerz(D)=ker (D)NZ".The heightiz (1)) of I, equals the rank of the lattiéer 7 (M)
(see[12]).

Lemma 1.1 (Sturmfeld12]). The toric ideall,, is generated by the binomiat§+ — xY-,
whereu belongs tdker 7 (M).

We grade the polynomial rin§f [x1, ..., x,] by settingdeg 4 (x;) =a; fori =1, ..., n.
We define theA-degreeof the monomiak! to be

deg (XYY : =ugay + - -- + upa, € N(A),

whereN(A) is the semigroup generated ly Every toric ideall,, is A-homogeneous,
since it is generated by binomials and every binomfal — x- is A-homogeneous.

Thetoric variety X, associated with¥/ is the setV (I;) C K" of zeroes offy; in the
sense 0f12], which also includes non-normal varieties. Thec setl"(M) determined by
M is the subset oK” defined parametrically by; = tf“ o ty™iforall i, i.e. itis the set
of points that can be expressed in the form

aii

ai1 am,1
(t S

1t

Am,i

ain Am,n
R )

R SRR
for somer; in K. Note that"(M) isa subset oK ;. Whenm=1anda1 1 <a12<---<ai,
are positive integers, the g.c.d. of which equals 1, thieW) is known as a monomial curve
andI,, as the ideal of the monomial curve.

We associate to the toric variety,, the rational polyhedral cone = posg(A) :
={}"!_id;ai|d; € Q andd; >0}. The dimension of is equal to the dimension of the
vector spac&A = {}_;_,d;a;|d; € Q} and also is equal to the dimensionf;.
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In this paper we consider the following two problems related to the toric iklgal

(I) Given a toric ideally, such thatly C I, and a set of binomialsf, ..., fs}in Iy,
formulate a criterion for deciding the equality; = rad(Iy + (f1, ..., fs)).

(1) Find the smallest number of polynomials needed to gendiatep to radical. This
problem is more general than the corresponding problem in Algebraic Geometry of the
determination of the minimum number of equations needed to define a toric vaArigty
set-theoretically, over an algebraically closed field. This number is cafldanetical rank
of X, and will be denoted byra(X,,). The generalized Krull’s principal ideal theorem
provides a lower bound for the arithmetical rankXf;, namely the height of ;. When
ht(Iy) = ara(Xy) the ideally, (and the varietyX,, as well) is called aset-theoretic
complete intersection

Problem (1) was studied by Eliahou—Villarreal [ii] in the special case thdl = (0).
There they give a necessary and sufficient condition for the equalityf1, .. ., fs) = Iy.
More precisely they prove that:

Theorem 1.2(Eliahou and Villarreal[7], Villarreal [15]). Let {f1,..., fs} be a set of
binomials in the toric idealy. SetJ = (f1,..., fs) andG = (f1,..., fs) C kerz(M),
where forabinomiaf =x4—x" € K[x1, ..., x,Jweletf=u—v € Z".If char(K)=p # 0
(resp char(K) = 0),thenrad(J) = I if and only if

(@) p*kerz(M) C G for somek € N (resp kerz(M) = G),
(b) rad(J, x;) =rad(ly, x;),foralli =1, ..., n.

We generalize (see Theorem 4.4) this result in terms of projections of ideals. Our criterion
can be used also to determine different binomial generators for the radical of the ideal of
a toric variety (see Example 4.6). However in the case that we can make a good choice
of a projection/;, minimal binomial generators up to radical for the idégl of the toric
variety are derived.

Basic ingredient of our approach is the notion of projections of toric ideals. This notion,
although it was never before explicitly defined, has been used for the first time by Herzog
in [9] to prove that the ideal of the monomial cur@€?, 192, t“3) is set-theoretic complete
intersection. IN[13], the same notion has been used to prove that, when(K) = 0,
smooth monomial curves are not binomial set-theoretic complete intersections, except for
the twisted cubic. Finally irf14], Thoma used this notion to deduce that certain ide-
als of monomial curvet?l, ..., t%) are set-theoretic complete intersections. The tech-
niques developed there cannot always be applied, for example the ideal of the mono-
mial curve (t4, 8, t11, 113) was generally unknown whether or not it is a set-theoretic
complete intersection. Our method begins with a toric ideal which is set-theoretic com-
plete intersection and it produces a large number of toric ideals which are set-theoretic
complete intersections. This method also provides the defining equations of the toric
variety.

In Section 2 we introduce the basic notion of this paper, the notion of projections of toric
ideals, and present its connection with the geometric notion of projections of cones.

In Section 3 we give necessary and sufficient conditions for the equalityly +
(f1, ..., fs)) = Iy, wherely, is a projection offy and f1, .. ., f; belong toly,.
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In Section 4 we study the previous equality in the special casefthat., f; are bino-
mials.

In Section 5 we develop a method for finding toric ideals which are set-theoretic complete
intersections.

In Section 6 we apply the theory developed in Section 5 in the computation of the exact
value of the arithmetical rank of certain toric ideals. Among other results, we prove that
the ideal of the monomial curve?, 1, 14, t*) is set-theoretic complete intersection, so for
a = 11, b = 13 the ideal of the monomial curve?, 15, 11, 113) is set-theoretic complete
intersection.

2. Projections of toric ideals

We consider the toric idealg,, /y associated with the: x n matrix M = (a; ;) and
I x n matrix N = (b; ;), respectively. Letd = {aq, ..., a,}, B = {by, ..., b,}, where
a = (avi,...,am;i) andb; = (b1, ..., by ;) for L<i<n.

Definition 2.1. We say thatly, is aprojectionof Iy if Iy C Iy.

Let7: Q' — Q™ be a rational affine map with(pos g (B)) = posg(A). We call
7 :?ﬂpm@(B) : posq(B) — posg(A)

aprojection of conesThe next theorem makes the connection between the algebraic notion
of projections of toric ideals and the geometric notion of projections of cones.

Theorem 2.2. The following are equivalent

(@) Iy is a projection ofly.

(b) The latticeker7(N) is a subset of the latticker 7 (M).

(c) Every B-homogeneous ideal Kix1, ..., x,] is also A-homogeneous

(d) There is a projection of cones: posg(B) — posg(A) given byn(b;) = & for all
i=1,...,n.

(e) There is anm x [ matrix D with rational entries such thadN = M.

Proof. (a)= (b) Letu=u, —u_ be an element dfer7(N). Then the binomiak!+ — x4-
belongs ta y which, from the assumption, is a subsef gf Consequentlyisinkerz(M).
(b) = (c) LetI C K[x1,...x,] be aB-homogeneous ideal and, xV two monomials

of a B-homogeneous generatgrof I, whereu = (u1, ..., u,) andv = (v, ..., v,). Set
g =x" —x". We have

uiby + - +uyby = vibg + - - + v, by,
which implies thafg belongs to the latticéer 7(N). As ker7(N) C kerz(M), we obtain
that the vectog belongs taker (M) and so

uiag + -+ updy =viadr + - -+ Vp 8.

Hencel is A-homogeneous.
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(c) = (d) It is enough to consider the cadbn(posq(B)) =1. Let{b;,...,b;} bea
base for théd-vector spac€’ and definet : @' — Q™ by7(b;)=a; foralli=1,...,1.

Setn =7 posq (B)- Obviously,n(bj,) = a; foreveryi =1,...,1. Leth; = Zizlﬂbkb]‘k €
posqg(B) for somel; € @ andi € {{ + 1, ..., n}. Clear the denominators to obtain an
equalityvb;, = Zi:lfk bj.,wherevandéy, ..., & are integers. Suppose thes positive,

the case < 0 is essentially the same. The iddak (xfll” . -xf.[”’x}’i — xfll‘* "

B-homogeneous and therefatehomogeneous. Thus;, = Zizlékajk, which leads to
aj, = Yh_;/4a;,. Hencen(b,,) = a;,, for everyi € {1, ..., n}.

(d) = (e) The matrixD is the matrix ofz in the canonical bases af' and@"™.

(€)= (b) Letu = (us, ...,u,) be an element oferz(N). ThenD(Nu') =0T, and
thereforeMu' = 0. Sokerz(N) C kerz(M).

(b) = (a) Let f =x"+ —x"- be a binomial generator @f;, Wherefbelongs taerz(N).
Askerz(N) C kerz(M), we take thay?is inkerz(M). Hencef belongs toly;. [

ity
X )is

Corollary 2.3. If 1), is a projection ofly, thenht (1) <ht(Iy).

Proof. We havekerz(N) C kerz(M) and therefore ank(kerz(N)) <rank(kerz(M)),
by Theorem 2.2. Thusit (Iy) = rank(kerz(N)) <rank(kerz(M)) = ht(Iy). O

3. Set-theoretic generation

Let Iy, Iy be toric ideals such thah, is a projection ofly, whereM is anm x n
integer matrix andV = (b; ;) is an/ x n matrix with non-negative integer entries. Set
B ={by,...,b,}, whereb; = (b1;,...,b;) fori =1,...,n. Note that if posg(B) is
strongly convex, i.e0 is the only invertible element oN(B), then we can choose an
appropriate matrixy with non-negative integer entries. The toric idéglis the kernel of
the K -algebra homomorphism

¢ K[x1,...,x,] = K[r1,...,1]
given by
d(x)=t"% foralli=1,...,n.
We shall denote by¢(1,))¢ the idealp(Iy) K [11, . .., 1]

Theorem 3.1. Assume thaf (N) =V (Iy) in K. Let{f1, ..., f;} be a set of polynomials
in Iy and letJ = (f1,..., fy). Then

Iy =rad(Iy +J)
if and only if
rad((¢(Im))) =rad(P(f1), ..., (fs)).
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Proof. Let us first assume that

rad((9(In))¢) =rad(p(f1), ..., ¢(f)).
We claim that
Iy =rad(Iy + J).

By Hilbert’s Nullstellensatz itis enough to prove that any paiat(x1, ..., x,) of V(Iy, J)

in K" belongstd/ (I)). Thisx belongs also t& (Iy)=I"(N). The last statement means that
there exisf; € K for1<i </such thakl:Tb".Notethatf(x):cb(f)(Tl, ..., T;) forevery

f € K[x1, ..., x,], sincex is of the above form. In addition, the poif#, . .., 7;) belongs

to V(p(f1), ..., ¢(f9) =V ((pIy))), because;(x) =0 foreveryi € {1,...,s}. Letf

be a polynomial iny;. Theng( ) belongs td¢(1),))¢ and thereforeb( f)(Tx, ..., T;) =0.
Thus f (x) =0, which implies the required relation. Conversely assumeltiatrad (I +

J). We will prove that

rad((¢(In))*) =rad((GUn))* + (9(f1), ... ¢(f))).

Itis enough to prove the assertion for a generdter¢g(g) of (¢(Iy))¢, whereg € I,. We
havegk = h1 + h for somek € N, wherehy € Iy andhy € J. Thereforef* = ¢(gk) =
¢(h1) + ¢(h2), which means that belongs toad (¢ (In))¢ + (P(f1), ..., d(fs))). But
Iy = ker(¢), sorad((¢p(Im))®) =rad(d(f1), ..., ¢(fs). U

Remark 3.2. Every toric variety can always be expressed as an appropriate toric set over
an algebraically closed field, for details §&6]. The proof of this fact is constructive and
also an algorithm is given there to find this toric set. Therefore, in any case, the condition
I'(N) = V(Iy) in K" can be achieved, by choosing an appropriate matrier any toric

ideal.

Remark 3.3. We cannot omit from the assumptions of Theorem 3.1 the factWtiay)
coincides with the toric sdf(N). Let Iy be the toric ideal associated with the matrix

21 0 0 1
N:(l 2 2 1 0 0,
0 01 2 2

and letl,, the toric ideal associated with the matrix

332112
M=<211233>'

Notice that/,, is a projection off y and that the toric variety (/) does not coincide with
I'(N)(se€[10]). The toric ideally; C K[x1, ..., xg] is minimally generated by the follow-
ing 12 binomials xf — X2X3X4, xg — X1X2, xi’ — X5X6, xg — X3X4X5, x§X5 - xzxf, )C3x§ —
xﬁxe, x1x§ — x%)m, x§x4 — X2Xg, x%xs — X1Xg, xgxﬁ — X1X5, X2X5 — X3Xg, X1X4 — X3XgG.
Let ¢ : Kl[x1,...,x6] — K|, 12, 3] be the K-algebra homomorphism witliy =

ker(¢). The ideal(¢(Iy))¢ is minimally generated by the binomialstits — 115t3,

6,3_,3,3 ;3,6 3,3 42 .35 54_ 32 44 4 . 45 3. 3
1313 — 1315, 1319 — 1513, 1715 — 11513, 1315 — 171513, 111515 — 111213, 1313 — 171215, Therefore
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rad((p(Iy))¢) = rad(t2t3 36% t2 § - ti’tg’) since a power of the other generators of
(p(Im))° belongs to] the |dea(r 53— 663, 515 — £313). Observe thazt§3t33 — 33 =p(x5 -

x1x2) and t2t3 — t1t3 = ¢(x4 — xsxp). But Iy # rad(Iy + (x3 — X1X2, X; — X5X6)),
since Iy does not have any monic binomial in the variabland therefore no power
of the binomialx2 — x3xaxs € Iy belongs to the idealy + (x3 — x1x2, x3 — x5x6).
Let

21 001
1 22100
D 001 2 2 1
12 2 1 0 0 1
01 2 2 10
1 001 2
ThenI'(D) = V(Iy), a proof of this fact can be found [A0]. Lety : K[x1,..., xg] —
K([t1,...,1t6] be the K- algebra homomorphism witlker () = Ip = IN We have

rad((l//(IM)) ) # rad(lp(x3 — X1x2), lp(x4 — x5Xg)), Since no power Oﬂ)()c6 — X3X4X5)
belongs to the |dee(kp(x3 — X1x2), xp(x4 — X5Xg6)).

Definition 3.4. The toric ideally, is called set-theoretic complete intersection lgnif
there are polynomialgy, . .., fs in I7, wheres is equal to the difference of the heights of

Iy andly, satisfyinglyy =rad(Iy + (f1, ..., f5)).
The next corollary is directly derived from Theorem 3.1.

Corollary 3.5. Keep the assumptions of Theor8m. The toric ideally, is set-theoretic
complete intersection ofy if and only if the radical of the ideal¢(I))¢ is equal to
the radical of an ideal generated by (1);) — ht(Iy) elements of the fornp( f), where
f € Iy. Moreover if Iy is set-theoretic complete intersection ahg is set-theoretic
complete intersection ofyy thenI,, is set-theoretic complete intersection

4. Binomial generation

In this section we will give an equivalent condition for the equalify = rad(Iy +
(f1, ..., fy))whenfi, ..., f; are binomials infy,.

We consider the toric idealg; andly, whereM is anm x n integer matrix anav =(b; ;)
is anl/ x n integer matrix with non-negative entries. Assume thatis a projection ofl y
and letB ={by, ..., b,}, whereb; = (b1, ..., by ;) fori =1,...,n. The toric ideally is
the kernel of thek -algebra homomorphism

¢:K[x1,...,x5] = K[r1,...,1]
defined by
b)) =t% foralli=1,...,n

Given a latticeL. ¢ 7' the ideal
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Ip :=({t** —t*|z=2z, —z_€e L) CKlt1,...,1]

is calledlattice ideal The height off; equals the rank of the lattide (se€[4]). For a prime
numberp we denote by : p*> the lattice

{ueZ'p*fu e L forsomek € NJ.

LetZB ={yy : =uib1 + -+ + u,b,|u= (u1, ..., u,) € 7"} be the lattice spanned by
and let

N(kerz(M)) ={yy =uib1 + - +u,bylu=(ug, ..., u,) € kerz(M)} C ZB.
Note that ifkerz(M) = (u1, ..., u,), thenN (kerz(M)) = Yugs -5 Yu,)-
Lemma 4.1. The lattice ideally ke, (ary) coincides with the idealp(1y7))¢ = (r1-- - ).

Proof. Let f=x{*---x," —x;*---x," be abinomial iny, wheref = (u1—v1, ..., un —
vn) € kerz(M). Then ¢(f) = tabPr...gunbn — tvibi .. tvbn Setz = ujby + - +
u,b, — (yf)+ =viby +- -+ v,b, — (yf), and observe that € N'. We haveg(f) =

2@+ — tY7-) and therefore(¢p(In))* S Inwersany S (DU : (t1---1)™.
Clearly, (¢(Im))¢ = (t1- - 1) S INkers () & (1 1) S (@Um))¢ = (t1--- 1)) :
(t1 -+ 1) BULIN (ker ; (M) = IN(kerp vy = (11 -+ 1) (se€e[d]) and(p(Im))* = (t1--- 1)

=(pUm))¢ : (t1---1)%) : (t1- - ). ThUSIN (ker, M)y = (@Up))¢ 2 (t1--- 1), O

Proposition 4.2. Let G be a sublattice ofV(kerz(M)). If char(K) = p # 0 (resp
char(K) = 0), then the following two conditions are equivalent

(@) rad(Inkery(my)) =rad(lg),
(b) p*N(kerz(M)) C G for somek € N (resp N (kerz(M)) = G).

Proof. Suppose first thatad (Inker,my)) = rad(Ig). By [4, Corollary 2.2]it follows
that in characteristic zerdy (.-, ) = Ig and soN (kerz(M)) = G, since a binomial
f=t4—1"lies in a lattice ideal, if and only if fbelongs toL. Also in characteristic
p # 0itholds Iy ker,(my):pe = Ig:p> @and soN (kerz(M)) : p™° =G : p*. Note that in
[4] the latticeL : p™ is denoted bySat ,(L). Suppose thaV (ker z(M)) = (Yuy, - - -» Yu,)-
We haveN (kerz(M)) C N(kerz(M)) : p*®° =G : p>®. Hence forevery =1,...,r
there exist; € N such thatp*'y,, € G. By choosingk the maximum of alk; we take
pEN(kerz(M)) C G. Conversely, itis clear that in characteristic Z&(@c.,,m)) = I and
thereforerad (In(ker;(my)) =rad (Ig). We restrict now our attention in the caseur (K) =
p # 0. It is enough to show thaV(kerz(M)) : p>* = G : p*.ObviouslyG : p*® C
N(kerz(M)) : p*®. Letu € N(kerz(M)) : p>®. Then there exis# € N such thatp?u
is in N (kerz(M)), so from the hypothesig?+*u belongs toG. Thusu € G : p*> and
thereforerad (I ker,my) =rad(Ig). O

Remark 4.3. From the proof of the above Proposition we can see that in characteristic
p # 0 condition (b) is equivalent with the conditiofi(kerz(M)) : p>° =G : p*™©.
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Theorem 4.4. Assume thal (N) = V(Iy) in K". Let{f1, ..., f;} be a set of binomials
inly.SetJ =(f1,..., fy)andG = (yﬁ’ Y7 C N (ker7(M)). If char(K)=p #0
(resp char(K) = 0), thenly, = rad(Iy + J) if and only if

(@) p*N(kerz(M)) C G for somek € N (resp N (kerz(M)) = G),
(b) rad((p(Um))¢, t;) =rad(Pp(f1), ..., p(fs), ;) foralli=1,...,1.

Proof. Supposethaly,=rad(Iy+J),thenfromTheorem 3Aad ((¢p(Iyr))¢)=rad(Pp(f1),
.., P(fs)). Clearly,

rad((¢(Im))¢, ;) =rad(P(f1), ..., d(fo). ;)

foralli=1,..., . In additionrad ((¢p(Ir))¢) : (t1--- 1) = rad($p(f1), ..., O(f)) -
(r1--- 1) and therefore

rad(((Um)® : (t1--- 1)) =rad((P(f1), ..., ¢(fs)) : (tr---1)™).

So, from Lemma 4.1, we obtain the equalityd (I er,m))) = rad(Ig). Now Propo-
sition 4.2 assures that in characteristic z&r¢kerz(M)) = G, and in positive charac-
teristic p* N (kerz(M)) c G for somek € N. Conversely suppose that (a) and (b)
hold. By Proposition 4.2ad (I er,(my)) = rad(Ig), which implies thatad ((¢(Ia))¢ :
(1 1)®)=rad((¢(f1), ..., O(fy) : (t1---1)™). If Iisanyideal oK [r4, . . ., 1], then
by Lemma 3.2 ir{4] the radical off satisfies

rad(I)=rad(l : (t1---/)®) Nrad(I,)) N---Nrad(l, ;).
Applying this formula to(¢(17))¢ we obtain that

rad((¢(Iy))°) = rad(Pp(f1), ..., d(fs)).
Hencely =rad(Iy +J). O

Remark 4.5. In the special case thédt; = (0) we take Theorem 2.5 ifY].

Example 4.6. In [5] Eliahou studied the binomial generation of the radical of the ideal
of a monomial curve. Our theory will provide different binomial generators arising from
different projections. For example, ket> 7 be an odd integer and I1&f, = (4, 6, a, a + 2).

The toric ideall,, is a projection of the toric idedlp, associated with the matrix

a—2 a—4 2 0
DF( 0 2 a-4 a—Z)'
Note that/p, :rad(xg_z—xiz_‘lxz, xg_z —x%xf{_‘l, X1X4—X2X3). Setji:xf+2—x2, fo=
x% —x1x5 andG = ((a+2, —4)). We haveV ((¢(I,))*, 1) N K2 =V ($(f1), p(f2), ) N
K2 ={0},sinced(f1) = t{“’z)(‘”z) - té'(”’z) and therefore, =0 if and only ifz, = 0. Thus
rad((¢(In,))¢, ;) =rad(p(f1), ¢(f2). t) fori=1,2. Letu=(ua, ..., us) € kerz(M,).
Thenyy=(u1+uz+uz+us)(a+2, —4) andthereford, (ker (M,))=G.Now Theorem 4.4

assures thafy, :rad()cg_2 —xf_‘lxi, xél_z —xij_‘l, X1X4—X2X3, xi‘+2 —xﬁ', xi —xlxg).
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. . . . _ (a+1)/2 . 3 . 2 .
But alsoly,, is a projection of the toric idedly, = (x; X3x4, X — Xx5) associated
with the matrix

(2 3 a+1 O
N“—(z 3 0 a+1)'

Lety : K[x1,...,x4] = K|t1, 2] be theK-algebra homomorphism withy, = ker ().
Setgy =x§+2 — x4, 82=Xx1x4 — x2x3anNdH = ((a + 2, —a)). Using the same arguments as
before we takead (Y (1y,))¢, ti)=rad (W (g1), Y(g2), t;) fori=1, 2. Ifu=(u1, ..., ua) €
kerz(M,), thenyy = (2uy + 3uz + (a + 1)/2uz + (a + 1) /2u4)(a + 2, —a) and therefore
Ny (kerz(M,))=H.Consequently,,, =rad(x£a+l)/2 — X3X4, xf — x%, x§+2 —X§, X1X4—

X2X3).

5. Set-theoretic complete intersection

Letly C K[x1,...,x,] be atoric ideal of height; > 1 associated with ahx n integer
matrix N with non-negative entries. L& be the set of columns &f. Suppose thaff(N) =
V(Iy)in K".We consider a latticé = ker (D) in Z!, whereD is anm x [ rational matrix
such that the matrix = DN has integer entries. The last statement means/fjpas a
projection ofIy. Let r» be the height ofy; and¢ : K[x1,...,x,] — Klr1, ..., 1] the
K -algebra homomorphism withy = ker(¢).

Lemma 5.1. The dimension of thé&-vector spaceer(D) N QB equals the difference
rp —ri.

Proof. Let{uy,...,u,} be abasis oker(N) and{uy, ..., Uy, Ur 41, ..., Uy} @ basis of
ker(M). For the sake of simplicity the symbg! will representy,,,. We will show that

ker(D) N QB = Q{Yr141, - .-, Yro}-

ObviouslyQ{y, +1. - .., Yr} € ker(D)NWB. Letv € ker(D)NWQB, thenv=y, for some
vectorz € Q". The vectorz belongs toker (M), sinceM = DN. Thusz = Zfzzl;qu,- for
somerationalsy, ..., Ky,. Consequently:Z?:rlHKiyi € {Yr+1, - -+, Yo} Itremains
to show that the sefly,, 11, ..., Y} is linearly independent. Every relation of the form
Z?:rﬁlrciy,-=0imp|iesthatthe vectoZ?:rlH;ciu,- belongstder(N), sothere existsome
/i such thath;irl+1;ciu,- = Z;lzliiu,-. But the sefuy, ..., u,,} is linearlyindependent, so
all thek; are equal to zero. [

Remark 5.2. The rank of the latticd. N ZB is equal to the dimension ékr (D) N QB.
Also L N ZB coincides with the lattic&V (kerz(M)), SO

ht(IN(ker7(M))) = T2 — I1.

Theorem 5.3. Sets = rp — r1. If there are polynomialsfi, ..., fs in Iy such that
rad(Iyker;my)) =rad(@(f1), ..., ¢(fs)), thenly is set-theoretic complete intersection
only.



A. Katsabekis / Journal of Pure and Applied Algebra 199 (2005) 133-147 143

Proof. We have thatrad((¢(Im))) < rad(Inkery,m)). From the assumption

rad(Inerz(my)) =rad(@(f1), ..., ¢(f)), sorad($p(In))¢) =rad(P(f1), ..., ¢(fs))
and therefordy, =rad(Iy + (f1, ..., fs)). O

Combining Corollary 3.5 and Theorem 5.3 we get the following Corollary:
Corollary 5.4. Sets = r, — r1. If Iy is set-theoretic complete intersection and
rad(INker;my) = rad($(f1), ..., ¢(fy)) for some polynomialgy, ..., f; in Iy, then

Iy is set-theoretic complete intersection

Example 5.5. In this example we will use the previous results to prove that the toric ideal
Iy of height 4 associated with the matrix

7 0 05 45
M= (0 7 0 31 0 0},
0O 07 0 0 4
is set-theoretic complete intersection. Lgt= (xg — X1X4, x? X3x6) C K[x1,...,x7]
be the toric ideal of height 2 associated with the matrix

3 00010

0 3000O0O0
N=|0 0 5 0 0 0 1}.

0 00 3100

0O 0 OO0 0 5

Note thatly, is a projection offy. Suppose thap : K[x1,...,x7] = K[, ..., 5] is the
K -algebra homomorphism withy = ker (¢). The set of vectors

{(1,0,0,1,-3,0,0),(0,0,1,0,0, 2, -5)}
constitutes a base faer 7 (N) and the set
{(3,0,0,1,-3,0,0),(0,0,1,0,0, 2,-5), (1,0,0,0,0,—3,4), (0, -1, 0,4, —5,0, 0)}
constitutes a base faerz(M). Thus
N(kerz(M)) =((3,0,4,0,-7), (-5,—-3,0,7,0))

and thereforaN(ke,Z(M))_(ts—t1t3 t]— tltz) Letfl_x4 3x1x2x4x5+3x1x2x§x5—
xi’xz € Iy and fo = x6 5x1x6x7 + 10X1)C3X6X7 10xfx3x6x7 + 5)61)63)66)(7 xfx3 €
Iyv. We have(t4 — tlt2 = ¢(f1) and (t5 — tlt3 = ¢(f2). Sorad(Iyker;my)) =
rad(¢(f1), ¢(f2)), which implies thatl,, is the set- theoretlc complete intersection of

2 .7 4.2 2.2
xg—xlm, x? X3X§, x4—3x1x2x4x5+3xfx2x4x5 xfx%, Xg— 5x1x6x7+10x1X3xgx$

IOxfx??xgx% + 5xfx§x5x7 — xfxg .
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We will compute the idealy .,, ) in the special case that=1. Let

by 0 ... 0 di1 ... dna
N— 0 b2 ... 0 dip ... dy2 ’
0 0 ... b du ... dyy
whereby, ..., by are positive integers ant] ; are non-negative integers such that, for all
i=1,...,r1, atleast one ofl; 1, ..., d;; is non-zero. From Corollary 2 if10] we have

I'(N)=V(Iy)in K". The symbol N| will represent the greatest common divisor of the
subdeterminants df of orderl/. We assume thdt = (a) and setw = |N|/ |(NaT)|, where
(Na") is the augmented matrix. Given a vectoin Z/, the binomialt+ — tU- will be
denoted byF (u).

Theorem 5.6. The lattice ideally ker,(m)) iS equal to the ideal generated by(wa).
Moreover if Iy is set-theoretic complete intersection and there exgsts I, such that
rad(¢(g)) = rad(F (wa)), thenly, is set-theoretic complete intersection

Proof. We haveL N ZB = (wa), since every system of the foryg = ca has a solution if
and only ifc is an integer multiple ofv ([1, Theorem 1).ThusN (kerz(M)) = (wa) and
thereforely (ker, )y = (F(wa)). Also, from Corollary 5.4y, is set-theoretic complete
intersection. O

Remark 5.7. In Example 4.6 the choice b = xZ — x1x3 (resp.gz = X1x4 — xx3) Was
made by solving the systeya = (a + 2, —4) (resp.yy = (a + 2, —a)).
6. Applications

In this section we will present some applications of the theory developed in Section 5.

We consider the toric ideal of heigtit- 1 associated with th@n + 1) x (m + d) integer
matrix

d d-1 d—-2 ... 1 0 o ... O
0 1 2 ....d=-1 d 0 ... O
N;s=1] 0 0 0 .. 0 0O 4 ... 0 ,
0 0 0 .. 0 O 0 ... d
whered > 1. The toric idealy, C K[x1, ..., xm+4] iS Set-theoretic complete intersection,
for details se¢11,14] Theorem 6.1 will generalize this result. Ligtbe a positive integer,
c2, ..., cme1 be non-negative integers with > dc, and letL = ker 7 (D) for
e g ... 0
0 Cm+1 0 %
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Setg=gcd(c1, c1 —dca, dcs, ..., dcyy1) and lete] =c1/9, (c1 —dc2)* = (c1 —dc2) /9
and(dc;)*=dc;/gfori=3,...,m+1. Leta=((c1—dc2)*, —c], (dc3)*, ..., (dcpi1)”).
Observe thal = (a).

Theorem 6.1. The toric ideal of height d associated with thex (m + d) matrix

c1 c1—¢c2 ¢c1—2c2 ... c1—dcy O ... O

0 c3 2c3 ... des c1 ... O
MCl,anerl»d =

0 Cm+1 2cm41 ... depyr 0O ... 1

is set-theoretic complete intersection.

Proof. Without loss of generality we can assume that the greatest common divisor of the

elements ofM., . ,...c IS equal to 1. Letp : K[x1,...,xpu4a]l — Klt1, ..., tuy1l
be thek -algebra homomorphism withy, = ker(¢). Note thatly,, . ., is a projec-
tion of Iy,. For the integelg we haveg/d, sinceg/dc; for all i =2,...,m + 1 and
gcdg, ¢z, ..., cmy1) = 1. In this casgNy| = d", |(NdaT)| =d"/g andw = g. Also
Fwa) = 5t — 179243 mit e haveqrst — 65279205 12744 = ¢(f) for

. d
_ . c1—dcz _(d=1)c2 c3 Cm+1
f=x1- (1 Xd Xa+1 Xa+2 " Xd4m

A\ e e |
1—dcp (d—2)c2 2c3 2emy1
+ (2 Xa—1 Xap1 Xay2 KXagm

d _
d-1 c1—dcy _c2 (d— l)cg d—)cpms1
+ (=D <d _ 1) X2 Xa+1¥d+2 " Xdtm

DTG
Notice that f belongs toly,, . . ,. Consequently, from Theorem 5.6, the toric ideal
IMy....cp,q.a 1S SEt-theoretic complete intersection]
Next we prove that the toric ideal associated with the row mafj% = (a, a +2b, 2a +
3b, 2a +5b) is set-theoretic complete intersection. Especially, whem, b =1 we deduce
that the ideal of the monomial curve®, 18, 111, +19) is set-theoretic complete intersection.
We consider the toric ideal associated to the matrix

51 4 0
N= (o 2 3 5)'
The toric ideally C K[x1, ..., x4] is the set-theoretic complete intersection@f— xlxg
andx2 2x2x3x4+x1x4 LetL keryz(E)for E=(a/5, (2a+5b)/5). Seth=gcd(a, 2a +

5b),a*=a/h and(2a +5b)* = (2a +5b) /h. Note thatl. = (a), wherea= (— (2a +5b)*, a*).
In addition/y,, , is a projection off .

Theorem 6.2. For every positive integers, b the ideal of the monomial curve®, 1%+,
r2a+3b ;2a+5by i5 set-theoretic complete intersection
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Proof. Let¢ : K[x1, x2, x3, xa] — K[r1, 2] be theK -algebra homomorphism withy =
ker(¢). For the integeh we haveh/a andh/5b, soh/5 sinceged(h, b) =1. Here|N| =
|(Na")| =5/h andw=h.Also F (wa) = t12”+5 —t§. Whena = 1 the toric ideal associated
with the matrixM1 j is obviously set-theoretic complete intersection. Supposesthat,
which implies that:=2u-+3v for some non-negative integarsy. We have(r2* > —15)5=
(l')(f) wheref x4,u+6v+5b 5y 3u+4v+4b ,u v + 10x2,u+2r+3b 2# 2\ 1Ox,u+2b 3;1 3» +

X2
Bx) tox gkt — xf’”?" belongS toan_b. Therefore, from Theorem 5.6, the |deal of the

curve(r?, 191+2b j2a+3b 2a+5by j5 set-theoretic complete intersectiori]

Finally, we prove that the toric ideal associated with the maMjx, = (4, 6, a, b) is
set-theoretic complete intersection.

Theorem 6.3. For every positive integets b the ideal of the monomial cure?, 18, 14, %)
is set-theoretic complete intersection

Proof. Suppose thab = a + k, wherek is a positive integer. I or b is even, then the
semigroupN(4, 6, a, b) is symmetric by Proposition 2.1 {i8] and thereford),, , is set-
theoretic complete intersection (5&8). It remains to examine the casds odd andk is
even. Wher > 4, the semigroupN(4, 6, a, b) is symmetric and the resultis straightforward.
Therefore we have to deal only with the cdse 2. Sincea > 1, there is a non-negative
integer 1 and a positive integer such thata = 2u + 3v. We consider the toric ideal
Iy, = ker () associated with the matri¥, of Example 4.6. In this example it was proved
that Ny (ker 7(Ma a+2)) = ((a + 2, —a)) and SOIN, (kery (M, 0120 = (1572 — 15). Set

a+l . iy 2 9 a+l
= ¥ () ¥
0<i<4?t “loi<atl
x](-a—r-l—i)(,u+1)x§(a+1—i)x§i—a—2

sz We have(rd T2 — 15)¢+1 = () and therefordy, , ,, is the
set-theoretic complete intersectronjf)fx{““)/2 — xgxa, X3 —x3. O

and observe that € Iy,

Remark 6.4. The last theorem provides the polynomials that minimally generate up to
radical the ideal of the Eliahou’s curve?, 18, 7, t9), see als¢6] for a proof that the above

ideal is set-theoretic complete intersection. Also it provides a different minimal polynomial
generating set, than the one obtained in Theorem 6.2, up to radical for the ideal of the
monomial curver?, 18, 111, 113).
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