Surface order large deviations for 2D FK-percolation and Potts models

Olivier Couronné, Reda Jürg Messikh*

Université Paris-Sud, Laboratoire de Mathématiques, Bât. 425, 91405 Orsay Cedex, France

Received 12 March 2003; received in revised form 18 March 2004; accepted 25 March 2004

Abstract

By adapting the renormalization techniques of Pisztora (Probab. Theory Relat. Fields 104 (1996) 427), we establish surface order large deviations estimates for FK-percolation on \mathbb{Z}^2 with parameter $q \geq 1$ and for the corresponding Potts models. Our results are valid up to the exponential decay threshold of dual connectivities which is widely believed to agree with the critical point.

© 2004 Elsevier B.V. All rights reserved.

MSC: 60F10; 60K35; 82B20; 82B43

Keywords: Large deviations; FK-percolation; Potts models

1. Introduction

In this paper we derive surface order large deviations estimates for Bernoulli percolation, FK-percolation with parameter $q > 1$ and for the corresponding Potts models on the planar lattice \mathbb{Z}^2.

In dimension two, surface order large deviations behaviour and the Wulff construction has been established for the Ising model (Dobrushin and Hryniv, 1997; Dobrushin et al., 1992; Hryniv, 1998; Ioffe, 1993, 1995; Ioffe and Schonmann, 1998; Pfister, 1991; Pfister and Velenik, 1997; Schonmann, 1987; Schonmann and Shlosman, 1996a, b, 1998), for independent percolation (Alexander, 1992; Alexander et al., 1990) and for the random cluster model (Alexander, 2001). These works include also more precise results than large deviations for the Wulff shape. They are obtained by using the
skeleton coarse graining technique to study dual contours which represent the interface. In higher dimensions other methods had to be used to achieve the Wulff construction, (Bodineau, 1999; Cerf, 2000; Cerf and Pisztora, 2000, 2001), where one of the main tools that have been used was the blocks coarse graining of Pisztora (1996). This renormalization technique led to surface order large deviations estimates for FK-percolation and for the corresponding Potts models simultaneously. The results of (Pisztora, 1996), and thus the Wulff construction in higher dimensions, are valid up to the limit of the slab percolation thresholds. In the case of independent percolation, this threshold has been proved to agree with the critical point (Grimmett and Marstrand, 1990) and recently it has also been proved in the case \(q = 2 \) (Bodineau, 2004). Otherwise, it is believed to be so for all the FK-percolation models with parameter \(q \geq 1 \) in dimension greater than two.

Our aim is to import Pisztora’s blocks techniques (Pisztora, 1996) to the two-dimensional lattice as an alternative to the use of contours. It is also worth noting that Pisztora’s renormalization technique forms a building block that has been used to answer various other questions related to percolation (Antal and Pisztora, 1996; Barlow, 2004; Mathieu and Remy, 2004; Penrose and Pisztora, 1996). The main point in our task is to get rid of the percolation in slabs which is specific to the higher dimensional case. For this we produce estimates analogue to those of Theorem 3.1 in (Pisztora, 1996) relying on the hypothesis that the dual connectivities decay exponentially. This hypothesis is very natural in \(\mathbb{Z}^2 \), because it is possible to translate events from the supercritical regime to the subcritical regime by planar duality. For Bernoulli percolation, the exponential decay of connectivities is known to hold in all the subcritical regime, see (Grimmett, 1999) and the references therein. For the random cluster model on \(\mathbb{Z}^2 \) with \(q = 2 \) the exponential decay follows from the exponential decay of the correlation function in the Ising model (Chayes et al., 1987) and a proof has also been given when \(q \) is greater than 25.72, see (Grimmett, 2003) and the references therein. Even if not proved, the exponential decay of the connectivities is widely believed to hold up to the critical point of all the FK-percolation models with \(q \geq 1 \). In addition to that, we use a property which is specific to the two dimensional case, namely the weak mixing property. This property has been proved to hold for all the random cluster models with \(q \geq 1 \) in the regime where the connectivities decay exponentially (Alexander, 1998). We need this property in order to use the exponential decay in finite boxes (Alexander, 2004).

2. Statement of results

Our results concern asymptotics of FK-measures on finite boxes \(B(n) = (-n/2, n/2)^2 \cap \mathbb{Z}^2 \), where \(n \) is a positive integer. We will denote by \(\mathcal{R}(p,q,B(n)) \) the set of these FK-measures defined on \(B(n) \) with parameters \((p,q)\) and where we have identified some vertices of the boundary. For \(q \geq 1 \) and \(0 < p \neq p_c(q) < 1 \), it is known (Grimmett, 1995) that there is a unique infinite volume Gibbs measure that we will note \(\Phi_\infty^{p,q} \). It is also known that \(\Phi_\infty^{p,q} \) is translation invariant and ergodic. In the uniqueness region, we will denote by \(\theta = \theta(p,q) \) the density of the infinite cluster. As the exponential-decay
plays a crucial role in our analysis, we will introduce the following threshold \(p_g = \sup \{ p : \exists c > 0, \forall x, y \in \mathbb{Z}^2, \Phi^{p,g}_\infty[x \leftrightarrow y] \leq \exp(-c|x - y|) \}, \) where \(|x - y|\) is the \(L^1 \) norm and \(\{ x \leftrightarrow y \} \) is the event that there exists an open path joining the vertex \(x \) to the vertex \(y \).

By the results of Grimmett and Piza (1997), it is known that exponential decay holds as soon as the connectivities decay at a sufficient polynomial rate. We thus could replace (1) by
\[
p_g = \sup\{ p : \exists c > 0, \forall x, y \in \mathbb{Z}^2, \Phi^{p,q}_\infty[x \leftrightarrow y] \leq c/|x - y| \}.
\]
We introduce the point dual to \(p_g \):
\[
\hat{p}_g = \frac{q(1 - p_g)}{p_g + q(1 - p_g)} \geq p_c(q),
\]
which is conjectured to agree with the critical point \(p_c(q) \).

Our result states that up to large deviations of surface order, there exists a unique biggest cluster in the box \(B(n) \) with the same density than the infinite cluster, and that the set of clusters of intermediate size has a negligible volume. To be more precise, we say that a cluster in \(B(n) \) is crossing if it intersects all the faces of \(B(n) \). For \(l \in \mathbb{N} \), we say that a cluster is \(l \)-intermediate if it is not of maximal volume and its diameter does exceed \(l \). We denote by \(J_l \) the set of \(l \)-intermediate clusters. Let us set the event
\[
K(n,\varepsilon,l) = \left\{ \exists ! \text{ open cluster } C_m \text{ in } B(n) \text{ of maximal volume, } C_m \text{ is crossing, } n^{-2}|C_m| \in (\theta - \varepsilon, \theta + \varepsilon), n^{-2}\sum_{C \in J_l} |C| < \varepsilon \right\}
\]

Theorem 1. Let \(q \geq 1 \), \(1 > p > \hat{p}_g \) and \(\varepsilon \in (0,\theta/2) \) be fixed. Then there exists a constant \(L \) such that
\[
-\infty < \liminf_{n \to \infty} \frac{1}{n} \log \inf_{\Phi \in \mathcal{H}(\rho,q,B(n))} \Phi[K(n,\varepsilon,L)^c] \leq \limsup_{n \to \infty} \frac{1}{n} \log \sup_{\Phi \in \mathcal{H}(\rho,q,B(n))} \Phi[K(n,\varepsilon,L)^c] < 0.
\]

This result, via the FK-representation, can be used as in (Pisztora, 1996) to deduce large deviations estimates for the magnetization of the Potts model. We omit this as it would be an exact repetition of Theorems 1.1 and 5.4 in (Pisztora, 1996).

2.1. Organization of the paper

In the following section we introduce notation and give a summary of the FK-model and of the duality in the plane. In Section 4, we study connectivity properties of FK-percolation in a large box \(B(n) \) and establish estimates that will be crucial for the renormalization à la Pisztora. In Section 5, we introduce the renormalization and proof estimates on the \(N \)-block process. In Section 6, we finally give the proof of Theorem 1.

1 The notation \(p_g \) comes from Grimmett (2003).
3. Preliminaries

In this section we introduce the notation used and the basic definitions.

Norm and the lattice: We use the L^1-norm on \mathbb{Z}^2, that is, $|x - y| = \sum_{i=1,2} |x_i - y_i|$ for any $x, y \in \mathbb{Z}^2$. For every subset A of \mathbb{Z}^2 and $i = 1, 2$ we define $\text{diam}_i(A) = \sup\{|x_i - y_i| : x, y \in A\}$ and the diameter of A is $\text{diam}(A) = \max(\text{diam}_1(A), \text{diam}_2(A))$. We turn \mathbb{Z}^2 into a graph $(\mathbb{Z}^2, \mathbb{E}^2)$ with vertex set \mathbb{Z}^2 and edge set $\mathbb{E}^2 = \{(x, y) : |x - y| = 1\}$. If x and y are nearest neighbors, we denote this relation by $x \sim y$.

Geometric objects: A box A is a finite subset of \mathbb{Z}^2 of the form $\mathbb{Z}^2 \cap [a, b] \times [c, d]$. For $r \in (0, \infty)^2$, we define the box $B(r) = \mathbb{Z}^2 \cap \prod_{i=1,2} (-r_i/2, r_i/2]$. We say that the box is symmetric if $r_1 = r_2 = r$, and we denote it by $B(r)$. For $t \in \mathbb{R}^+$, we note the set $\mathcal{H}_2(t) = \{r \in \mathbb{R}^2 : r_i \in [t, 2t], \ i = 1, 2\}$. The set of all boxes in \mathbb{Z}^2, which are congruent to a box $B(r)$ with $r \in \mathcal{H}_2(t)$, is denoted by $\mathcal{B}_2(t)$.

Discrete topology: Let A be a subset of \mathbb{Z}^2. We define two different boundaries:

- the inner vertex boundary: $\partial^* A = \{x \in A \mid \exists y \in A^c \text{ such that } y \sim x\}$;
- the edge boundary: $\partial_{\text{edge}} A = \{(x, y) \in \mathbb{E}^2 \mid x \in A, y \in A^c\}$.

For a box A and for each $i = \pm 1, \pm 2$, we define the ith face $\partial_i A$ of A by $\partial_i A = \{x \in A \mid x_i \text{ is maximal for } i \text{ positive and minimal for } i \text{ negative}\}$. A path γ is a finite or infinite sequence x_1, x_2, \ldots of distinct nearest neighbors.

3.1. FK-percolation

Edge configurations: The basic probability space for the edge processes is given by $\Omega = \{0, 1\}^{\mathbb{E}^2}$; its elements are called edge configurations in \mathbb{Z}^2. The natural projections are given by $\text{pr}_e : \omega \in \Omega \mapsto \omega(e) \in \{0, 1\}$, where $e \in \mathbb{E}^2$. An edge e is called open in the configuration ω if $\text{pr}_e(\omega) = 1$, and closed otherwise.

For $E \subseteq \mathbb{E}^2$ with $E \neq \emptyset$, we write $\Omega(E)$ for the set $\{0, 1\}^E$; its elements are called configurations in E. Note that there is a one-to-one correspondence between cylinder sets and configurations on finite sets $E \subset \mathbb{E}^2$, which is given by $\eta \in \Omega(E) \mapsto \{\eta\} := \{\omega \in \Omega \mid \omega(e) = \eta(e) \text{ for every } e \in E\}$. We will use the following convention: the set Ω is regarded as a cylinder (set) corresponding to the “empty configuration” (with the choice $E = \emptyset$). We will sometimes identify cylinders with the corresponding configuration. For $A \subset \mathbb{Z}^2$, we set $\mathbb{E}(A) = \{(x, y) : x, y \in A, x \sim y\}$. Let Ω_A stand for the set of the configurations in $A : \{0, 1\}^{\mathbb{E}(A)}$ and Ω_A^d for the set of the configurations outside $A : g\{0, 1\}^{\mathbb{E}(A) \setminus \mathbb{E}(A)}$. In general, for $A \subset B \subset \mathbb{Z}^2$, we set $\Omega_B^A = \{0, 1\}^{\mathbb{E}(B) \setminus \mathbb{E}(A)}$. Given $\omega \in \Omega$ and $E \in \mathbb{E}^2$, we denote by $\omega|E$ the restriction of ω to E. Analogously, $\omega|_B^d$ stands for the restriction of ω to the set $\mathbb{E}(B) \setminus \mathbb{E}(A)$.

Given $\eta \in \Omega$, we denote by $\mathcal{C}(\eta)$ the set of the edges of \mathbb{E}^2 which are open in the configuration η. The connected components of the graph $(\mathbb{Z}^2, \mathcal{C}(\eta))$ are called η-clusters. The path $\gamma = (x_1, x_2, \ldots)$ is said to be η-open if all the edges $\{x_i, x_{i+1}\}$ belong to $\mathcal{C}(\eta)$. We write $\{A \leftrightarrow B\}$ for the event that there exists an open path joining some site in A with some site in B.
If $V \subseteq \mathbb{Z}^2$ and E consists of all the edges between vertices in V, the graph $G = (V,E) \subseteq (\mathbb{Z}^2,\mathbb{E}^2)$ is called the maximal subgraph of $(\mathbb{Z}^2,\mathbb{E}^2)$ on the vertices V. Let ω be an edge configuration in \mathbb{Z}^2 (or in a subgraph of $(\mathbb{Z}^2,\mathbb{E}^2)$). We can look at the open clusters in V or alternatively the open V-clusters. These clusters are simply the connected components of the random graph $(V,\mathcal{E}(\omega(E)))$, where $\omega(E)$ is the restriction of ω to E.

For $A \subseteq B \subseteq \mathbb{Z}^2$, we use the notation \mathcal{F}_B^A for the σ-field generated by the finite-dimensional cylinders associated with configurations in Ω_B^A. If $A = \emptyset$ or $B = \mathbb{Z}^2$, then we omit them from the notation. **Stochastic dominance:** There is a partial order \preceq in Ω given by $\omega \preceq \omega'$ iff $\omega(e) \geq \omega'(e)$ for every $e \in \mathbb{E}^2$. A function $f : \Omega \to \mathbb{R}$ is called increasing if $f(\omega) \leq f(\omega')$ whenever $\omega \preceq \omega'$. An event is called increasing if its characteristic function is increasing. Let \mathcal{F} be a σ-field of subsets of Ω. For a pair of probability measures μ and ν on (Ω,\mathcal{F}), we say that μ (stochastically) dominates ν if for any \mathcal{F}-measurable increasing function f the expectations satisfy $\mu(f) \geq \nu(f)$.

FK-measures: Let $V \subseteq \mathbb{Z}^2$ be finite and $E = \mathcal{E}(V)$. We first introduce (partially wired) boundary conditions as follows. Consider a partition π of the set ∂V, say $\{B_1,\ldots,B_n\}$. (The sets B_i are disjoint nonempty subsets of ∂V with $\bigcup_{i=1,\ldots,n} B_i = \partial V$.). We say that $x,y \in \partial V$ are π-wired if $x,y \in B_i$ for an $i \in \{1,\ldots,n\}$. Fix a configuration $\eta \in \Omega_V$. We want to count the η-clusters in V in such a way that π-wired sites are considered to be connected. This can be done in the following formal way. We introduce an equivalence relation on V: x and y are said to be $\pi \cdot \eta$-wired if they are η-connected or if they are both joined by η-open paths to (or identical with) sites $x',y' \in \partial V$ which are themselves π-wired. The new equivalence classes are called $\pi \cdot \eta$-clusters, or η-clusters in V with respect to the boundary condition π. The number of η-clusters in V with respect to the boundary condition π (i.e., the number of $\pi \cdot \eta$-clusters) is denoted by $\text{cl}^\pi(\eta)$. (Note that cl^π is simply a random variable). For fixed $p \in [0,1]$ and $q \geq 1$, the FK-measure on the finite set $V \subset \mathbb{Z}^2$ with parameters (p,q) and boundary conditions π is a probability measure on the σ-field \mathcal{F}_V, defined by the formula

$$
\forall \eta \in \Omega_V \quad \Phi^{p,p,q}_V(\{\eta\}) = \frac{1}{Z^{p,p,q}_V} \prod_{e \in E} p^{\eta(e)}(1-p)^{1-\eta(e)} q^{cl^\pi(\eta)},
$$

(2)

where $Z^{p,p,q}_V$ is the appropriate normalization factor. Since \mathcal{F}_V is an atomic σ-field with atoms $\{\eta\}, \eta \in \Omega_V$, formula (2) determines a unique measure on \mathcal{F}_V. Note that every cylinder has nonzero probability. There are two extremal b.c.s: the free boundary condition corresponds to the partition f defined to have exactly $|\partial V|$ classes, and the wired b.c corresponds to the partition w with only one class. The set of all such measures called FK (or random cluster) measures corresponding to different b.c.s will be denoted by $\mathcal{R}(p,q,V)$. The stochastic process $(p_{\omega_e})_{e \in E(V)} : \Omega \to \Omega_V$ given on the probability space $(\Omega,\mathcal{F},\Phi^{p,p,q}_V)$ is called FK-percolation with boundary conditions π. We list some useful properties of FK measures with different b.c.s. There is a partial order on the set of partitions of ∂V. We say that π dominates $\pi', \pi \geq \pi'$, if x,y π'-wired implies that they are π-wired. We then have $\Phi^{\pi',p,q}_V \preceq \Phi^{\pi,p,q}_V$. This implies immediately that for each $\Phi \in \mathcal{R}(p,q,V)$, $\Phi^{\pi',p,q}_V \preceq \Phi \preceq \Phi^{\pi,p,q}_V$. Next we discuss properties of conditional FK-measures. For given $U \subseteq V$ and $\omega \in \Omega$, we define a partition $W^{U}_V(\omega)$ of
\(\partial U \) by declaring \(x, y \in \partial U \) to be \(W^U_f(\omega) \)-wired if they are joined by an \(\omega_f^U \)-open path. Fix a partition \(\pi \) of \(\partial V \). We define a new partition of \(\partial U \) to be \(\pi \cdot W^U_f(\omega) \)-wired if they are \(W^U_f(\omega) \)-wired, or if they are both joined by \(\omega_f^U \)-open paths to (or identical with) sites \(x', y' \), which are themselves \(\pi \)-wired. Then, for every \(\mathcal{F}_U \)-measurable function \(f \),

\[
\Phi_f^{\pi, p, q}[f | \mathcal{F}_V](\omega) = \Phi_f^{\pi \cdot W^U_f(\omega), p, q}[f], \quad \Phi_V^{\pi, p, q} \text{ a.s.} \tag{3}
\]

Note that formula (3) can be interpreted as a kind of Markov property. A direct consequence is the finite-energy property. Fix an edge \(e \) of \(\mathbb{E}(V) \) and denote by \(\mathcal{F}_V^e \) the \(\sigma \)-algebra generated by the random variables \(\{ pr_b; b \in \mathbb{E}(V) \setminus \{ e \} \} \). Then

\[
\Phi_f^{\pi, p, q}[e \text{ is open }| \mathcal{F}_V^e](\omega) = \begin{cases} p & \text{if the endpoints of } e \text{ are } \pi \cdot W^V_f \text{-wired,} \\ p/[p + q(1 - p)] & \text{otherwise.} \end{cases} \tag{4}
\]

The equality (3) leads to volume monotonicity for FK-measures. Let \(U \subset V \), for every increasing function \(g \in \mathcal{F}_U \) and \(\Phi_V \in \mathcal{R}(p, q, V) \), we have

\[
\Phi_f^{\pi, p, q}[g] \leq \Phi_f[g | \mathcal{F}_V^e] \leq \Phi_f^{W^U_f, p, q}[g] \quad \Phi_f \text{ a.s.,} \\
\Phi_f^{f, p, q}[g] \leq \Phi_f^{f, p, q}[g] \leq \Phi_f^{W^U_f, p, q}[g] \leq \Phi_f^{W^U_f, p, q}[g].
\]

Planar duality for FK-measures: Because of its importance in our note, we recall the duality property for planar FK-measures, see for example (Grimmett, 1997). To this end, we first begin with the following simple but useful observation.

Lemma 2. For all \(0 < p < 1, q > 0 \) and for any finite box \(B \subset \mathbb{Z}^2 \) we have that

\[
\forall \omega \in \Omega_B : \Phi_B^{w, p, q}[\omega] = \Phi_{B \setminus \mathbb{E}(\hat{B})}^{w, p, q}[\omega] \prod_{e \in \mathbb{E}(\hat{B})} p^{\omega_{\hat{B}}}((1 - p)^{1 - \omega_{\hat{B}}}. \tag{5}
\]

Proof. Each \(\omega \in \Omega_B \) is the concatenation of \(\omega_{\hat{B}} \) and \(\omega_{\hat{B}} \) and the result follows from (2) by observing that \(\text{cl}^w(\omega) \) does not depend on \(\omega_{\hat{B}} \) and is equal to \(\text{cl}^w(\omega_{\hat{B}}) \). \(\square \)

This observation states that:

- The \(\sigma \)-algebras \(\mathcal{F}_{\hat{B}} \) and \(\mathcal{F}_{\hat{B}} \) are independent under \(\Phi_B^{w, p, q} \).
- The law of \(\omega_{\hat{B}} \) under \(\Phi_B^{w, p, q} \) is the independent percolation of parameter \(p \) on \(\mathbb{E}(\hat{B}) \).
- The law of \(\omega_{\hat{B}} \) under \(\Phi_B^{w, p, q} \) is the wired FK-measure on \(\mathbb{E}(\hat{B}) \setminus \mathbb{E}(\hat{B}) \).

To construct the dual model we associate to a box \(B \) the set \(\hat{B} \subset \mathbb{Z}^2 + (\frac{1}{2}, \frac{1}{2}) \), which is defined as the smallest box of \(\mathbb{Z}^2 + (\frac{1}{2}, \frac{1}{2}) \) containing \(B \), see Fig. 1 below.

To each edge \(e \in \mathbb{E}(B) \) we associate the edge \(\hat{e} \in \mathbb{E}(\hat{B}) \) that crosses the edge \(e \). Note that \(\{ e' \in \mathbb{E}(\hat{B}) : \exists e \in \mathbb{E}(B), \hat{e} = e' \} = \mathbb{E}(\hat{B}) \setminus \mathbb{E}(\hat{B}) \).

This allows us to build a bijective application from \(\Omega_B \) to \(\Omega_B^{\hat{B}} \) that maps each original configuration \(\omega \in \Omega_B \) into its dual configuration \(\hat{\omega} \in \Omega_B^{\hat{B}} \) such that

\[
\forall e \in \mathbb{E}(B) : \hat{\omega}(\hat{e}) = 1 - \omega(e). \tag{6}
\]
And the duality property is:

Proposition 3. For all $0 < p < 1, q > 0$ and for all $\omega_d \in \Omega^\hat{B}_B$ we have that

$$\Phi^f_{B, p,q} \{ \{ \omega \in \Omega_B : \hat{\omega} = \omega_d \} \} = \Phi^{w, \hat{p}, q}_{\bar{E}(B) \setminus \bar{E}(\partial \hat{B})} [\omega_d],$$

where \hat{p} is the dual point of p: $\hat{p} = q(1-p)/(p + q(1-p))$.

Proof. First we observe that the number of connected components $c(\hat{\omega})$ of the graph $\hat{G}(\hat{\omega}) = (\hat{B}, \{ \hat{e} \in \bar{E}(\hat{B}) \setminus \bar{E}(\partial \hat{B}) : \hat{\omega}(\hat{e}) = 1 \} \cup \bar{E}(\partial \hat{B}))$ is equal to $cl^w(\hat{\omega})$. Similarly the number of connected components $c(\omega)$ of the graph $G(\omega) = (B, \{ e \in \bar{E}(B) : \omega(e) = 1 \})$ is equal to $cl^f(\omega)$.

Also one may observe that the number of faces $f(\hat{\omega})$ of $\hat{G}(\hat{\omega})$ is equal to $cl^f(\omega)$.

So that by Euler’s formula we get

$$cl^f(\omega) = cl^w(\hat{\omega}) - |\hat{B}| + |\bar{E}(\partial \hat{B})| + \sum_{\hat{e} \in \bar{E}(\hat{B}) \setminus \bar{E}(\partial \hat{B})} \hat{\omega}(\hat{e}).$$

Thus, for all $\omega \in \Omega_B$ we have

$$q^{cl^f(\omega)} \prod_{e \in \bar{E}(B)} p^{\omega(e)}(1-p)^{1-\omega(e)} = q^{|\bar{E}(\partial \hat{B})| - |\hat{B}|} q^{cl^w(\hat{\omega})} \prod_{\hat{e} \in \bar{E}(\hat{B}) \setminus \bar{E}(\partial \hat{B})} \hat{p}(q(1-p)/p)^{\hat{\omega}(\hat{e})}.$$

Finally, the parameter \hat{p} such that $q(1-p)/p = \hat{p}/(1-\hat{p})$ is the one given in the proposition and this concludes the proof.

Corollary 4. For any $0 < p < 1, q > 0$, any \mathcal{F}_B-measurable event A we have

$$\Phi^f_{B, p,q} [A] = \Phi^{w, \hat{p}, q}_{\hat{B}} [A],$$
where \(\hat{A} = \{ \eta \in \Omega_B^\infty; \exists \omega \in \hat{A}, \hat{\omega} = \eta^\infty \} \subseteq \Omega_B^\infty \) is the dual event of \(A \) and \(\hat{p} \) is given in Proposition 3.

Proof. This is a direct consequence of Proposition 3 and Lemma 2. \(\square \)

Remark 5. When we translate an \(\mathcal{F}_B \)-measurable event \(A \) into its dual \(\hat{A} \), we obtain an event which is in \(\mathcal{F}_B^\infty \). Thus by Lemma 2, \(\Phi^{w,p,q}_B[A] \) is independent of the states of the edges in \(\mathbb{E}(\hat{\mathcal{B}}) \).

4. Connectivity in boxes

In this section we establish preliminary estimates on crossing events in boxes. We rely on the exponential decay of the connectivities in the dual subcritical model. The usual definition of the exponential decay is based on the infinite volume FK-measure \(\Phi^{\infty}_\infty \). But we are concerned by asymptotics of finite volume measures and we would like to use the exponential decay in finite boxes. In order to translate the exponential decay to the finite volume measures we need a control on the effects of boundary conditions. As shown in (Alexander, 1998), the infinite FK-measure on \(\mathbb{Z}^2 \) satisfies the weak mixing property as soon as the connectivities decay exponentially. That is to say for all events \(A,B \) which are respectively \(\mathcal{F}_A \) measurable and \(\mathcal{F}_\Gamma \) measurable with \(A, \Gamma \subseteq \mathbb{Z}^2 \) then \(|\Phi^{\infty}_\infty[A|B] - \Phi^{\infty}_\infty[A] \) decreases exponentially in the distance between \(A \) and \(\Gamma \). This weak mixing property implies, as proved in (Alexander, 2004), that we have exponential decay in finite boxes as soon as the exponential decay for the infinite volume measure holds (\(p > p_g \)).

Proposition 6 (Theorem 1.2 of Alexander, 2004). Let \(q \geq 1 \) and \(p < p_g \). There exists two positive constants \(c \) and \(\lambda \) such that for all boxes \(A \subseteq \mathbb{Z}^2 \) and for all \(x,y \) in \(A \), we have that

\[
\Phi^{w,p,q}_A[x \leftrightarrow y \text{ in } A] \leq \lambda \exp(-c|x-y|).
\]

In fact, Theorem 1.2 of (Alexander, 2004) is more general and applies to sets \(A \) which are not boxes and to general boundary conditions. From this result, we get that

Lemma 7. Let \(q \geq 1 \) and \(p < p_g \). There exists a positive constant \(c \) such that for all positive integers \(n \) and for \(l \) large enough, we have

\[
\sup_{n \in \mathbb{Z}_2(n)} \Phi^{w,p,q}_{B(n)}[\exists \text{ an open path in } B(n) \text{ of diameter } \geq l] \leq n^2 \exp(-cl).
\]

Proof. Let us fix \(n \) and \(l \), then we have

\[
\sup_{n \in \mathbb{Z}_2(n)} \Phi^{w,p,q}_{B(n)}[\exists \text{ an open path in } B(n) \text{ of diameter } \geq l] \\
\leq 4n^2 \sup_{n \in \mathbb{Z}_2(n)} \sup_{x \in B(n)} \Phi^{w,p,q}_{B(n)}[x \leftrightarrow \partial B(x,2l) \text{ in } B(n)]
\]
\[\leq 32n^2 l \sup_{x \in \mathcal{F}_x(n)} \sup_{y \in B(x, 2l)} \sup_{z \in B(y, 2l)} \Phi_{B(n)}^{w, p, q}[x \leftrightarrow y \text{ in } B(n)] \]

\[\leq 32 n^2 l \exp(-cl), \]

where we used Proposition 6 in the last line. The result follows by taking \(l \) large enough. \(\Box \)

As a first consequence of the exponential decay in finite boxes, we obtain:

Lemma 8. For \(p > \hat{p}_q \) we have,

\[\lim_{n \to \infty} \Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial B(n)] = \theta(p, q). \]

Proof. Let \(N < n \), then

\[\Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial B(N)] - \Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial B(N), 0 \leftrightarrow \partial B(n)] = \Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial B(n)] \leq \Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial B(N)]. \]

Now we estimate \(\Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial B(N), 0 \leftrightarrow \partial B(n)] \): by symmetry,

\[\Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial B(N), 0 \leftrightarrow \partial B(n)] \leq 4 \Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial 1 B(N), 0 \leftrightarrow \partial B(n)]. \]

Then for \(N \) large enough we have that

\[\Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial 1 B(N), 0 \leftrightarrow \partial B(n)] \leq \Phi_{B(n)}^{w, \hat{p}, q}[0 \leftrightarrow \partial B(n)] \]

\[\leq \sum_{k \geq 0, j \in \mathbb{Z}} \exp(-c(N + k + |j|)) \]

\[\leq \exp(-cN), \] \hspace{1cm} (5)

for a certain positive constant \(c \). The second inequality follows from Lemma 7.

By taking the limit \(n \to \infty \) in (5) we get

\[\Phi_{\infty}^{p, q}[0 \leftrightarrow \partial B(N)] - 4e^{-dN} \leq \lim \inf_{n \to \infty} \Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial B(n)] \]

\[\leq \lim \sup_{n \to \infty} \Phi_{B(n)}^{f, p, q}[0 \leftrightarrow \partial B(n)] \leq \Phi_{\infty}^{p, q}[0 \leftrightarrow \partial B(N)], \]

finally by taking the limit \(N \to \infty \), we get the desired result. \(\Box \)

Next, we define events that will be crucial in the renormalization procedure. For this, we introduce the notion of crossing. Let \(B \subset \mathbb{Z}^2 \) be a finite box. For \(i = 1, 2 \) we say that a \(i \)-crossing occurs in \(B \), if \(\partial_{-i}B \) and \(\partial_i B \) are joined by an open path in \(B \). In addition to that, we say that a cluster \(C \) of \(B \) is crossing in \(B \), if \(C \) contains a 1-crossing path and a 2-crossing path.
For \(n \in \mathcal{H}_2(n) \), we set
\[
U(n) = \{ \exists \text{ open cluster } C^* \text{ crossing } B(n) \}.
\]
For a monotone, increasing function \(g : \mathbb{N} \to [0, \infty) \) with \(g(n) \leq n \), let us define
\[
R^g(n) = U(n) \cap \left\{ \text{ every open path } \gamma \subset B(n) \text{ with } \text{diam}(\gamma) \geq g(n) \text{ is contained in } C^* \right\}.
\]
And finally we set
\[
O^g(n) = R^g(n) \cap \left\{ \text{ \(C^* \) crosses every sub-box } \exists \in \mathcal{B}_2(g(n)) \text{ contained in } B(n) \right\}.
\]
The next theorem gives the desired estimates on the above-mentioned events.

Theorem 9. Assume \(p > \hat{p}_2 \). We have
\[
\limsup_{n \to \infty} \frac{1}{n} \log \sup_{n \in \mathcal{H}_2(n)} \sup_{\Phi \in \mathcal{R}(p, q, B(n))} \Phi[U(n)^c] < 0. \tag{6}
\]
Also, there exists a constant \(\kappa = \kappa(p, q) > 0 \) such that \(\liminf_{n \to \infty} \frac{g(n)}{\log n} > \kappa \) implies
\[
\limsup_{n \to \infty} \frac{1}{\log g(n)} \sup_{n \in \mathcal{H}_2(n)} \sup_{\Phi \in \mathcal{R}(p, q, B(n))} \Phi[R^g(n)^c] < 0. \tag{7}
\]
There exists a constant \(\kappa' = \kappa'(p, q) > 0 \) such that \(\liminf_{n \to \infty} \frac{g(n)}{\log n} > \kappa' \) implies
\[
\limsup_{n \to \infty} \frac{1}{\log g(n)} \sup_{n \in \mathcal{H}_2(n)} \sup_{\Phi \in \mathcal{R}(p, q, B(n))} \Phi[O^g(n)^c] < 0. \tag{8}
\]

Remark 10. Note that in dimension two, if there is a crossing cluster then it is unique.

Proof. As \(U(n)^c \) is decreasing we have for every \(\Phi \in \mathcal{R}(p, q, B(n)) \) that
\[
\Phi[U(n)^c] \leq \Phi_{B_{(2)}}^{f, p, q}[U(n)^c]
\leq \Phi_{B_{(2)}}^{f, p, q}[^{\#} 1\text{-crossing for } B(n)] + \Phi_{B_{(2)}}^{f, p, q}[^{\#} 2\text{-crossing for } B(n)]
\leq \sum_{i=1,2} \Phi_{B_{(2)}}^{w_{ii}, p, q}[\partial_i \hat{B}(n) \leftrightarrow \partial_i \hat{B}(n) \text{ in } \hat{B}(n) \setminus \partial \hat{B}(n)],
\]
the last inequality follows from planar duality: if there is no 1-crossing in the original lattice then \(\partial_2 \hat{B}(n) \leftrightarrow \partial_2 \hat{B}(n) \) in \(\hat{B}(n) \setminus \partial \hat{B}(n) \) for the corresponding dual configuration. The same argument works for the 2-crossing. Thus, we have that
\[
\Phi[U(n)^c] \leq 2 \Phi_{B_{(2)}}^{w_{ii}, p, q}[\exists \text{ an open path in } \hat{B}(n) \text{ of diameter } \geq n],
\]
and (6) follows from Lemma 7.

For the second inequality, let us note that
\[
R^g(n)^c \subset U(n)^c \cup \left(U(n) \cap \left\{ \exists \text{ an open path } \gamma \text{ of } B(n) \text{ with } \text{diam}(\gamma) \geq g(n) \text{ not contained in } C^* \right\} \right).
\]
By (6), we have only to deal with the second term.
We consider the dual event of
\[U(n) \cap \left\{ \exists \text{ an open path } \gamma \text{ of } B(n) \text{ with } \text{diam}(\gamma) \geq g(n) \text{ not contained in } C^* \right\} \]
which is \(\mathcal{F}^{\tilde{B}(n)} \)-measurable. By the remark after Corollary 4 we can consider all the edges of \(\mathbb{E}(\tilde{B}(n)) \) as open. Then by Proposition 11.2 of (Grimmett, 1999) there is a unique innermost open circuit in \(\tilde{B}(n) \) containing \(\gamma \) in its interior. From this circuit, we extract an open path living in the graph \((\tilde{B}(n), \mathcal{E}(\tilde{B}(n)) \setminus \mathcal{E}(\tilde{B}(n))) \) of diameter greater than \(g(n) \): without loss of generality, we can suppose that \(\text{diam}(\gamma) = \text{diam}_1(\gamma) \) and that \(\gamma \leftrightarrow \tilde{B}_2(n) \). Among the vertices of the dual circuit surrounding \(\gamma \), let \(\hat{x} \) be the highest vertex among the most on the left, and let \(\hat{y} \) be the highest vertex among the most on the right. Then there is an arc joining \(\hat{x} \) and \(\hat{y} \) in \((\tilde{B}(n), \mathcal{E}(\tilde{B}(n)) \setminus \mathcal{E}(\tilde{B}(n))) \). This arc is of diameter larger than \(g(n) \). Thus by Lemma 7 there is a positive constant \(c \) such that for \(n \) large enough we have that
\[\Phi \left[U(n) \cap \left\{ \exists \text{ an open path } \gamma \text{ of } B(n) \text{ with } \text{diam}(\gamma) \geq g(n) \text{ not contained in } C^* \right\} \right] \leq n^2 \exp[-cg(n)]. \]
Take \(\alpha > 0 \) such that \(\alpha c > 1 \). Then for \(g \) such that \(g(n) > 2\alpha \log n/(\alpha c - 1) \) we have
\[\limsup_{n \to \infty} \frac{1}{g(n)} \log (n^2 \exp[-cg(n)]) < -\frac{1}{\alpha}, \]
which concludes the proof of (7).

To study \(O^\alpha(n) \), we remark that the number of boxes \(\mathcal{Q} \) of \(\mathcal{B}_2(g(n)) \) contained in \(B(n) \) is bounded by \(16n^4 \). This implies that for every \(\Phi \in \mathcal{R}(p,q,B(n)) \) one gets
\[\Phi[O^\alpha(n)^c] \leq \Phi[R^\alpha(n)^c] + 16n^4 \sup_{\mathcal{Q} \in \mathcal{B}_2(g(n))} \Phi[\mathcal{Q} \text{ crossing in } \mathcal{Q}] \]
\[\leq \Phi[R^\alpha(n)^c] + 16n^4 \sup_{\mathcal{Q} \in \mathcal{B}_2(g(n))} \Phi_{\mathcal{B}_2}^{f,p,q}[\mathcal{Q} \text{ crossing in } \mathcal{Q}] \]
\[\leq \Phi[R^\alpha(n)^c] + 16n^4 \sup_{\mathcal{Q} \in \mathcal{B}_2(g(n))} \Phi_{\mathcal{Q}}^{f,p,q}[\mathcal{Q} \text{ crossing in } \mathcal{Q}]. \]

To deduce the last inequality, we notice that \(\{ \mathcal{Q} \text{ crossing in } \mathcal{Q} \} \) is a decreasing event and that all the \(\mathcal{Q} \in \mathcal{B}_2(g(n)) \) are smaller than \(B(n) \), thus for all \(\mathcal{Q} \in \mathcal{B}_2(g(n)) \) that are included in \(B(n) \) we have that
\[\Phi_{\mathcal{B}_2}^{f,p,q}[\mathcal{Q} \text{ crossing in } \mathcal{Q}] \leq \Phi_{\mathcal{Q}}^{f,p,q}[\mathcal{Q} \text{ crossing in } \mathcal{Q}]. \]

The first term in the r.h.s. has been treated previously. By (6) the second term is bounded by \(n^4 \exp[-cg(n)] \) for a certain positive constant \(c \) and we conclude the proof as before. \(\square \)
5. Renormalization

In this section we adapt the renormalization procedure introduced in (Pisztora, 1996) to the two-dimensional case. For this, let \(N \geq 24 \) be an integer. We say that a subset \(A \) of \(\mathbb{Z}^2 \) is an \(N \)-large box if \(A \) is a finite box containing a symmetric box of scale-length \(3N \), i.e., if \(A = \mathbb{Z}^2 \cap \prod_{i=1,2} (a_i, b_i) \) where \(b_i - a_i \geq 3N \) for \(i = 1, 2 \). When \(A \) is an \(N \)-large box, one can partition it with blocks of \(\mathcal{B}(N) \). We first define the \(N \)-rescaled box of \(A \): \(A^{(N)} = \{ k \in \mathbb{Z}^2 | T_{Nk}(-N/2, N/2)^2 \subseteq A \} \); where \(T_a \) is the translation in \(\mathbb{Z}^2 \) by a vector \(a \in \mathbb{Z}^2 \). We turn \(A^{(N)} \) into a graph by endowing it with the set of edges \(\mathcal{E}(A^{(N)}) \). Then we define the partitioning blocks:

- If \(k \in A^{(N)} \setminus \partial A^{(N)} \) then \(B_k = T_{Nk}(-N/2, N/2)^2 \).
- If \(k \in \partial A^{(N)} \) then some care is needed in order to get a partition. In this case we define the set \(\mathcal{M}(k) = \{ l \in \mathbb{Z}^2 | l \sim k, T_{Nl}(-N/2, N/2)^2 \cap A \neq \emptyset, T_{Nl}(-N/2, N/2)^2 \cap A^c \neq \emptyset \} \), and the corresponding blocks become

\[B_k = T_{Nk}(-N/2, N/2)^2 \cup \bigcup_{l \in \mathcal{M}(k)} (T_{Nl}(-N/2, N/2)^2 \cap A). \]

The collection of sets \(\{ B_k, k \in A^{(N)} \} \) is a partition of \(A \) into blocks included in \(\mathcal{B}(N) \), see Fig. 2.

In addition to the boxes \(\{ B_k, k \in A^{(N)} \} \) we associate to each edge \((k, l) \) of \(\mathcal{E}(A^{(N)}) \) the box \(D_{(k,l)} \). More precisely, for \((k, l) \in \mathcal{E}(A^{(N)}) \) such that \(\sum_{j=1,2} |k_j - l_j| = k_i - l_i = 1 \), we define \(m(l, k) = T_{Nl}([N/2]e^{(1)}) \), where \((e^{(1)}, e^{(2)}) \) is the canonical orthonormal base of \(\mathbb{Z}^2 \) and \([r]\) denotes the integer part of \(r \). The point \(m(l, k) \) represents the middle of the \(i \)-th face of \(B_k \). We then define the box \(D_{(k,l)} = D_{(l,k)} = T_{m(l,k)}(B([N/4])) \).

Now we have all the needed geometric objects to construct our renormalized (dependent) site percolation process on \((A^{(N)}, \mathcal{E}(A^{(N)})) \). This process will depend on the

Fig. 2. The partition of \(A \).
original FK-percolation process only through a number of events defined in the boxes \((B_k)_{k \in A^{(N)}}\) and \((D_e)_{e \in E(A^{(N)})}\). These events are:

- For all \((k,l) \in E(A^{(N)})\) such that \(\sum_{j=1,2} |k_j - l_j| = k_i - l_i = 1\), we define
 \[K_{k,l} = \{ \exists \ i\text{-crossing in } D_{k,l} \}, \quad K_k = \bigcap_{j \in A^{(N)}: j \sim k} K_{k,j}. \]

- For all \(i \in A^{(N)}\), we define
 \[R_i = \{ \exists \text{! a crossing cluster } C^*_i \text{ in } B_i \} \cap \{ \text{every open path } \gamma \subset B_i \text{ with diam}(\gamma) \geq \sqrt{N}/10 \text{ is included in } C^*_i \}. \]

Finally our renormalized process is the indicator of the occurrence of the above mentioned events:

\[\forall k \in A^{(N)} \quad X_k = \begin{cases} 1 & \text{on } R_k \cap K_k \\ 0 & \text{otherwise.} \end{cases} \]

We also call the process \(\{X_k, k \in A^{(N)}\}\) the \(N\)-block process and whenever \(X_k = 1\), we say that the block \(B_k\) is occupied. As explained in (Pisztora, 1996), the \(N\)-block process has the following important geometrical property: if \(C^{(N)}\) is a cluster of occupied blocks then there is a unique cluster \(C\) of the underlying microscopic FK-percolation process that crosses all the blocks \(\{B_k, k \in C^{(N)}\}\). Moreover, the events involved in the definition of the \(N\)-block process become more probable as the size of the blocks increases. This leads us to the following stochastic domination result:

Proposition 11. Let \(q \geq 1\) and \(p > \hat{p}_q\). Then for \(N\) large enough, every \(N\)-large box \(A\) and every measure \(\Phi^\sigma \in \mathcal{R}(p,q,A)\), the law of the \(N\)-block process \(\{X_i, i \in A^{(N)}\}\) under \(\Phi^\sigma\), stochastically dominates independent site percolation on \(A^{(N)}\) with parameter \(p(N) = 1 - \exp(-C\sqrt{N})\), where \(C\) is a positive constant.

Proof. According to Liggett et al. (1997), it is sufficient to establish that for \(N\) large enough and for all \(i \in A^{(N)}\) the following inequality holds:

\[\Phi^\sigma[X_i = 0 \mid \sigma(X_j : |j - i| > 1)] \leq \exp(-C\sqrt{N}). \]

(9)

In what follows, we use the same notation for positive constants that may differ from one line to another. In order to prove (9), we consider the set

\[E_i = B_i \cup \bigcup_{j \sim i} B_j, \]

as drawn in Fig. 3.

The \(\sigma\)-algebra \(\mathcal{F}_A^E_i\) is finer than \(\sigma(X_j : |j - i| > 1)\), thus it suffices to prove (9) for \(\Phi^\sigma[X_i = 0 \mid \mathcal{F}_A^E_i]\). Clearly \(\mathcal{F}_A^E_i\) is atomic and its atoms are of the form \(\{\eta\}\), where \(\eta \in \Omega_A^{E_i}\). So let us consider such a \(\eta \in \Omega_A^{E_i}\), then we have that

\[\Phi^\sigma[X_i = 0 \mid \eta] \leq \sum_{j \sim i} \Phi^\sigma[K_{i,j}^c \mid \eta] + \Phi^\sigma[R_i^c \mid \eta]. \]

(10)
For each \(i, j \in A(N) \) such that \(i \sim j \), let us fix \(\eta' \in \Omega_{E_i}^{B_i} \), \(\eta'' \in \Omega_{D_{i,j}}^{D_{i,j}} \) in order to construct \(\eta' \in \Omega_{A}^{B_A} \) and \(\eta'' \in \Omega_{A}^{D_{i,j}} \), which are the concatenation of \(\eta \) with \(\eta' \), respectively with \(\eta'' \):

\[
\eta'(e) = \eta'(e) \text{ for } e \in E_i \setminus E(B_i), \quad \eta'(e) = \eta(e) \text{ for } e \in A \setminus E_i;
\]

and

\[
\eta''(e) = \eta''(e) \text{ for } e \in E_i \setminus E(D_{i,j}), \quad \eta''(e) = \eta(e) \text{ for } e \in A \setminus E_i.
\]

Then, by Theorem 9, there exist an integer \(N_0 > 0 \) and a real number \(C > 0 \) such that for all \(N > N_0 \)

\[
\Phi^x[R_i^c | \eta'] = \Phi^x_W[\eta'] [R_i^c] \leq \exp(-C \sqrt{N}),
\]

\[
\Phi^x[K_{i,j}^c | \eta''] = \Phi^x_W[\eta''] [K_{i,j}^c] \leq \exp(-CN).
\]

Finally, by averaging over all the \(\eta' \) and \(\eta'' \) we get from these estimates that

\[
\Phi^x[X_i = 0 | \eta] \leq 4 \exp(-CN) + \exp(-C \sqrt{N})
\]

\[
\leq \exp(-CN^{1/2}),
\]

for \(N \) large enough. \(\square \)

We end this section by proving a useful estimates on the renormalized process. Let \(B(n) \) be a \(N \)-large box, consider its \(N \)-partition and the corresponding \(N \)-block process. The rescaled box \(B(n)^{(N)} \) will be denoted by \(B \). For \(\delta > 0 \) we consider the event

\[
Z(n, \delta, N) = \left\{ \exists! \text{ crossing cluster of blocks } \tilde{C} \text{ in } B \text{ with } |\tilde{C}| \geq (1-\delta)|B| \right\}.
\]

(11)

Remark 12. The event \(Z(n, \delta, N) \) has the following interesting property: the presence of the crossing cluster of blocks \(\tilde{C} \) induces a set of clusters \(\{ \tilde{C}_i \text{ crossing for } B_i : i \in \tilde{C} \} \)
in the original FK-percolation process. These clusters are connected and form a crossing cluster \(\tilde{C} \) for \(B(n) \).

Proposition 13. Let \(p > \hat{p}_g \) and \(q \geq 1 \). Then for each \(\delta > 0 \) and \(N > 0 \) large enough

\[
\limsup_{n \to \infty} \frac{1}{n} \log \sup_{\Phi \in \mathcal{H}(p,q,B(n))} \Phi[Z(n,\delta,N)^c] < 0.
\]

Proof. By Theorem 1.1 of (Deuschel and Pisztora, 1996), there exists \(p_0 \in (0,1) \) such that for all \(p > p_0 \),

\[
\limsup_{m \to \infty} \frac{1}{m} \log \sup_{m \in \mathcal{H}(m),\text{ site}} P\left[\exists \text{ crossing cluster } \tilde{C} \text{ with } |\tilde{C}| \geq (1 - \delta)|B(m)| \right] < 0. \tag{12}
\]

Now choose \(N \) such as in Proposition 11 and such that \(p(N) > p_0 \). Then by Proposition 11 and by (12) we have that

\[
\limsup_{n \to \infty} \frac{1}{n} \log \sup_{\Phi \in \mathcal{H}(p,q,B(n))} \Phi\left[\exists \text{ crossing cluster of blocks } \tilde{C} \text{ in } B \text{ with } |\tilde{C}| \geq (1 - \delta)|B| \right] < 0. \tag{13}
\]

6. Proof of the surface order large deviations

In this section we finally establish Theorem 1. We begin by stating two lemmas. The first one deals with large deviations from above. Let \(\mathbb{B}(n) \) denote the set of clusters in \(B(n) \) intersecting \(\partial B(n) \). Note that if the crossing cluster exists then it is in \(\mathbb{B}(n) \).

Lemma 14. Let \(q \geq 1 \) and \(p \in [0,1] \). For \(\delta > 0 \), we have

\[
\limsup_{n \to \infty} \frac{1}{n^2} \log \sup_{\Phi \in \mathcal{H}(p,q,B(n))} \Phi\left[\sum_{C \in \mathbb{B}(n)} |C| > (\theta + \delta)n^2 \right] < 0.
\]

We omit the proof as it would be an exact repetition of Lemma 5.1 in (Pisztora, 1996).

The second lemma is about large deviations from below and is of surface order, in contrast to Lemma 14. In Section 4, we introduced the event \(U(n) = \{ \exists! \text{ open cluster } C^* \text{ crossing } B(n) \} \). For \(\delta > 0 \), let us define the event

\[
V(n,\delta) = U(n) \cap \{|C^*| > (\theta - \delta)n^2\}.
\]

Lemma 15. Let \(q \geq 1 \) and \(p > \hat{p}_g \). Then for each \(\delta > 0 \),

\[
\limsup_{n \to \infty} \frac{1}{n} \log \sup_{\Phi \in \mathcal{H}(p,q,B(n))} \Phi[V(n,\delta)^c] < 0. \tag{13}
\]
Proof. From Lemma 8, we have the inequality:
\[
\liminf_{n \to \infty} \Phi_{B(n)}^{f} \left[N^{-2} \sum_{C : \text{diam}(C) \geq \sqrt{N}} |C| \right] \geq \theta.
\]

Take \(N\) such that \(\Phi_{B(n)}^{f}[\sum_{C : \text{diam}(C) \geq \sqrt{N}} |C|] \geq (\theta - \delta/4)N^2\), let \(B(n)\) be a \(N\)-large box and consider its \(N\)-partition and the corresponding \(N\)-block process. The rescaled box \(B(n)^{N}\) will be denoted by \(B\). By Proposition 13, it suffices to give an upper bound on the probability of the event
\[
W(n) = Z(n, \delta/8, N) \cap \{|\tilde{C}| \leq (\theta - \delta)n^2\},
\]
where \(N\) is large enough and \(Z(n, \delta/8, N)\) is defined in (11). By Remark 12, on the event \(Z(n, \delta/8, N)\) the crossing cluster \(\tilde{C}\) contains all the \(B\)-crossing clusters \(\tilde{C}_i\), where \(i \in \tilde{C}\) and \(\{B_i, i \in B\}\) are the partitioning \(N\)-blocks. For each \(i \in B\), set \(Y_i = \sum_{C : \text{diam}(C) \geq \sqrt{N}^2} |C|\), where \(C\) is a cluster of \(B_i\). Since for \(i \in \tilde{C}\), \(Y_i = |\tilde{C}_i|\), we obtain the following lower bound
\[
|\tilde{C}| \geq \sum_{i \in \tilde{C}} Y_i \geq \sum_{i \in B} Y_i - \sum_{i \in B \setminus \tilde{C}} |B_i| \geq \sum_{i \in B} Y_i - (\delta/2)n^2,
\]
where \(\hat{B} = B \setminus \partial B\). Hence on \(W(n)\) we have that \(\sum_{i \in B} Y_i \leq (\theta - \delta/2)n^2\).

Denote by \(E(n)\) the event that for each \(i \in \hat{B}\) every edge in \(\partial_{\text{edge}}B_i\) is closed. Observing that \(\sum_{i \in \hat{B}} Y_i\) is an increasing function, we have for each \(\Phi \in \mathcal{R}(p, q, B(n))\),
\[
\Phi[W(n)] \leq \Phi_{B(n)}^{f} \left[\sum_{i \in \hat{B}} Y_i < (\theta - \delta/2)n^2 \right] E(n) \leq \exp(-C(\delta, \theta, N)n^2),
\]
where \(C(\delta, \theta, N)\) is a positive constant. The last inequality is an application of Cramér’s large deviations theorem, as the variables \((Y_i, i \in \hat{B})\) are i.i.d. with respect to the conditional measure, with an expected value larger than \((\theta - \delta/4)n^2\). This completes the proof. \(\square\)

Proof of Theorem 1. First we prove the upper bound. By Lemma 14, we can replace the condition \(n^{-2}|C_m| \in (\theta - \varepsilon, \theta + \varepsilon)\) in the definition of \(K(n, \varepsilon, l)\) by \(n^{-2}|C_m| > (\theta - \varepsilon)\) and denote the new but otherwise unchanged event by \(K'(n, \varepsilon, l)\). Set
\[
T(n, \varepsilon, N) = Z(n, \varepsilon/4, N) \cap \{|\tilde{C}| > (\theta - \varepsilon)n^2\},
\]
where \(Z(n, \varepsilon/4, N)\) is defined by (11). Fix \(\varepsilon < \theta/2\) and \(N\) such as in Proposition 13 and such that \(\sqrt{N} \geq 32/\varepsilon\).

Then by Proposition 13 and by Lemma 15, we have
\[
\lim_{n \to \infty} \sup_{\Phi \in \mathcal{R}(p, q, B(n))} \frac{1}{n} \log \Phi[T(n, \varepsilon, N)^c] < 0.
\] (14)

Set \(n \geq 64N/\varepsilon\) and \(L = 2N\), we claim that \(T(n, \varepsilon, N) \subset K'(n, \varepsilon, L)\). This fact, together with (14), implies the upper bound. Therefore, to complete the upper bound we will
proof that the cluster \tilde{C} of $T(n, \varepsilon, N)$, is the unique cluster with maximal volume and that the L-intermediate clusters have a negligible volume. So suppose that $T(n, \varepsilon, N)$ occurs. As $\varepsilon < \theta/2$ we have that $L^2 \leq (\theta - \varepsilon)n^2$, thus the clusters of diameter less than L, have a smaller volume than \tilde{C}. To control the size of the clusters different from \tilde{C} and of diameter greater than L, we define the following regions:

$$\forall i \in B : \quad G_i = \{ x \in B_i \mid \text{dist}(x, \partial B_i) \leq \sqrt{N} \} \quad \text{and} \quad \varnothing_i = B_i \setminus G_i,$$

as shown in Fig. 4.

Then, as $n \geq 64N/\varepsilon$, we have

$$\sum_{i \in \partial B} |B_i| \leq 16nN \leq \frac{\varepsilon}{4} n^2,$$

and, as $\sqrt{N} \geq 32/\varepsilon$

$$|G| \leq 8 \frac{n^2}{\sqrt{N}} \leq \frac{\varepsilon}{4} n^2.$$

Take a cluster C of diameter greater than L and different from \tilde{C}. Then C touches at least two blocks. However, it may not touch the set $\bigcup \varnothing_i$ where i runs over \tilde{C}; otherwise we would have that $\text{diam}(C \cap B_i) \geq \sqrt{N}$ for an occupied block B_i, and therefore we would have that $C = \tilde{C}$. Hence all the clusters of diameter greater than L must lie in the set $G \cup \bigcup_{i \in \tilde{C}} B_i$. Let us estimate the volume of this set:

$$\left| \bigcup_{i \in \tilde{C}} B_i \right| \leq \sum_{i \in \partial B} |B_i| + N^2 |\tilde{C}^c| \leq \frac{\varepsilon}{2} n^2.$$

Thus

$$\left| G \cup \left(\bigcup_{i \in \tilde{C}} B_i \right) \right| \leq \frac{3\varepsilon}{4} n^2.$$
Since $(3\varepsilon/4)n^2 < (\theta - \varepsilon)n^2$, \tilde{C} is the unique cluster of maximal volume and the L-intermediate class \mathcal{J}_L has a total volume smaller than $(3\varepsilon/4)n^2$. This proves that $T(n, \varepsilon, L) \subset K'(n, \varepsilon, L)$ and completes the proof of the upper bound. For the lower bound, it suffices to close all the horizontal edges in $B(n)$ intersecting the vertical line $x = \frac{1}{2}$. This implies that there in no crossing cluster in $B(n)$. By (4) and FKG inequality, the probability of this event is bounded from below by $(1 - p)^n$. □

Acknowledgements

We would like to thank R. Cerf for suggesting the problem and for many helpful discussions.

References

