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We investigate the algebraic structure on the set of closure
operations of a ring. We show the set of closure operations is not
a monoid under composition for a discrete valuation ring. Even the
set of semiprime operations over a DVR is not a monoid; however,
it is the union of two monoids, one being the left but not right act
of the other. We also determine all semiprime operations over the
ring K [[t2, t3]].
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1. Introduction

Let I �→ Ic be an operation on the set of ideals of a ring R . Consider the following properties where
I and J are ideals and b is a regular element:

(a) I ⊆ Ic .
(b) If I ⊆ J , then Ic ⊆ Jc .
(c) (Ic)c = Ic .
(d) Ic Jc ⊆ (I J )c .
(e) (bI)c = bIc .

If I → Ic satisfies (a)–(c) above, we call I → Ic a closure operation. If I → Ic is a closure operation
and also satisfies (d) above, we call I → Ic a semiprime operation. If I → Ic is semiprime and also
satisfies (e), then we say I → Ic is a prime operation.
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The definition of prime operation or ′-operation for the set of fractional ideals of an integral do-
main was given by Krull in his 1935 book, Idealtheorie [Kr1]. In his original definition, he actually
added a sixth property (f) Ic + Jc ⊆ (I + J )c . Then in his 1936 paper [Kr2], he discusses the integral
completion or b-operation in terms of ′-operations on the set of fractional ideals and mentions that
he left out the properties (g) R = Rc and (h) (Ic ∩ Jc)c = Ic ∩ Jc . In fact, Sakuma [Sa] shows in 1957
that when looking at prime operations on the set of fractional ideals of a domain, properties (d),
(f) and (h) are consequences of properties of (a), (b), (c), (e) and (g). In 1964, Petro [Pe] called the
operations satisfying properties (a)–(d) on the set of fractional ideals semiprime operations. The first
reference to integral closure strictly on the set of ideals of a commutative ring seems to be Northcott
and Rees’ 1954 paper on reductions [NR]. In 1969, Kirby [Ki] seems to be the first to discuss general
closure operations on the set of ideals over a commutative ring with identity. The terms prime and
semiprime operation were reintroduced on the set of ideals of a commutative ring by Ratliff in his
1989 paper [Ra] on �-closures of ideals. Heinzer, Ratliff and Rush [HRR] also use the term semiprime
operation when referring to the basically full closure on the set of m-primary submodules of a module
over a local ring (R,m).

There are many well-known closure operations defined on a commutative ring, such as: integral
closure, tight closure if the ring contains a field [HH], �-closure [Ra], basically full closure [HRR], etc.
It is known that all of these closure operations are contained in the integral closure, excluding the �-
closure. However, if � does not contain any ideals which are contained in a minimal prime, then the
�-closure is also contained in the integral closure. Otherwise, the relationship between these other
closures is not as well understood. Knowing the structure on the set of closure operations may shed
some light on this relationship.

Abstractly, closure operations are elements of the monoid of maps from the set of ideals, I, of a
ring to itself, MI = { f : I → I} satisfying the above properties. For example, C R is the set of maps
satisfying (a)–(c), S R is the set of maps satisfying (a)–(d) and P R is the set of maps satisfying (a)–(e).
C R , S R and P R are all partially ordered sets, but otherwise these sets are in general poorly behaved.
In Section 2, we will give examples showing that C R is not even a monoid in the nice case that R is a
discrete valuation ring. Then in Section 3 we show that S R for a discrete valuation ring R is almost a
monoid. In fact, S R is the union of two submonoids of MI , one a left but not a right act of the other.
Also we show that P R is a monoid. We are also able to extend our results to semiprime and prime
operations over a Dedekind domain. In Section 4, we consider closure operations over the semigroup
ring K [[t2, t3]] and determine all the semiprime operations over K [[t2, t3]].

2. Preliminaries

Recall that (S,◦) is a semigroup if ◦ is an associative binary operation on S . We say that a semi-
group (S,◦) is a monoid if there is a unique identity element e in S such that es = se = s for all s ∈ S .
In particular, the whole number N0 = {0,1,2, . . . ,n, . . .} is a monoid under addition, with identity 0.
For a more thorough reference on semigroups see [Gi] or [Na].

Let R be a commutative ring, I = {I ⊆ R | I an ideal of R} and MI = { f : I → I}. MI is clearly a
monoid under composition of maps, with identity the identity map e : I → I, and function composi-
tion is associative. C R will be the subset of MI consisting of closure operations. Hence the fc in C R

are the set of maps satisfying the following three properties: (a) fc(I) ⊇ I , (b) fc preserves inclusions
in R , and (c) fc ◦ fc = fc . S R will be the set of semiprime operations of R , i.e. S R are the maps in C R

which also satisfy fc(I) fc( J ) ⊆ fc(I J ). P R will be the set of prime operations of R , i.e. maps in S R

which also satisfy (e) fc(bI) = bfc(I). We note that if C R , S R or P R are monoids, by property (c), they
will be band monoids.

Definition 2.1. A monoid is a band monoid if every element is idempotent.

We will say fc1 � fc2 for two different closure operations if fc1 (I) ⊆ fc2 (I) for all I ∈ I.

Proposition 2.2. C R , S R and P R are partially ordered sets.
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The proof is straightforward as the ideals of R are partially ordered under containment.
Now let us consider the algebraic structure of C R , R a commutative ring. Unfortunately, C R is not

a submonoid under composition even for a discrete valuation ring.

Example 2.3. C R , where (R, P ) is a discrete valuation ring, is not a monoid. The ideals of R have the
form P i for all i � 0 and (0). Let fn : I → I and gn : I → I be defined as follows

fn
(

P i) =
{

P i for i � n,

Pn for i > n,
and gn

(
P i) =

{
R for i � n,

Pn for i > n

and fn(0) = (0) = gn(0). If m > n, then

fn ◦ gm
(

P i) =
{

R for i < m,

Pn for i > m.

This fails property (c) as ( fn ◦ gm) ◦ ( fn ◦ gm)(P i) = R for all i.

We will see in the next section that gn in the above example is not a semiprime operation, because
semiprime operations are not allowed to have any finite jumps.

In Example 2.3 we see that the maps fn and gn are bounded maps on the ideals of R . This prompts
the following definition for closure operations of commutative rings:

Definition 2.4. We say a closure operation fc is bounded on a commutative ring R if for every maxi-
mal ideal m of R , there is an m-primary ideal I such that for all m-primary J ⊆ I , fc( J ) = I . If this is
not the case, we will say that fc is an unbounded closure operation.

We define bounded in this way for m-primary ideals, because it would be hard to come up with a
precise statement for all ideals.

3. Algebraic structure on S R and P R when R is a Dedekind domain

It seems unlikely that S R and P R are submonoids of MI for a general commutative ring R , but in
the case that R is a discrete valuation ring, P R is the trivial submonoid of MI and S R decomposes
into the union of two submonoids whose only common element is the identity. We use the following
definition to explain their relationship.

Definition 3.1. Let S be a monoid and A any set, then we say A is a left (right) S-act if there is a map
δ : S × A → A (δ : A × S → A) satisfying δ(st,a) = δ(s, δ(t,a)) (δ(a, st) = δ(δ(a, s), t)) for every a ∈ A
and s, t ∈ S and δ(e,a) = a (δ(a, e) = a) for all a ∈ A where e is the identity of S .

Proposition 3.2. When (R, P ) is a discrete valuation ring, S R can be decomposed into the union of two sub-
monoids

M0 = {e} ∪
{

fm ∈ MI

∣∣∣ fm
(

P i) =
{

P i for 0 � i < m,

Pm for i � m
and fm(0) = (0)

}

and

M f = {e} ∪
{

gm ∈ MI

∣∣∣ gm
(

P i) =
{

P i for 0 � i < m,

Pm for i � m
and gm(0) = Pm

}

where M f is a left M0-act but not a right M0-act under composition.

Before proving the proposition, we need the following lemma:
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Lemma 3.3. Let fc be a semiprime operation on the discrete valuation ring (R, P ). Then if fc is constant for
P i on a finite interval m � i � n for m < n, then there exists a j � m such that fc(P i) = P j for all i � j.

Proof. The ideals of R have the form P i and they are totally ordered. Being a closure operation,
fc(P i) = P j ⊇ P i , where j � i, since fc must be increasing on the ideals of R .

Suppose fc is constant for P i , where m � i � n, m < n. For all such i suppose that fc(P i) = P j .
Then fc(P j) = fc( fc(P i)) = fc(P i) = P j . Thus Pm ⊆ fc(Pm) = P j and j � m. Since fc is increasing we
see that fc(P i) = P j for all j � i < m.

We know fc(Pn) = P j by assumption. If we show that fc(Pn+1) = P j , then by induction,
fc(P i) = P j for all i � j. Then once again, the fact that fc is increasing implies that fc(Pn+1) =
Pk ⊆ fc(P j) = P j for j � k � n + 1. Since fc is a closure operation, fc( fc(Pn+1)) = fc(Pk) = Pk ⊆
fc(P j) = P j . So either fc(Pn+1) = P j or fc(Pn+1) = Pn+1. Suppose the latter. Since, fc is a semiprime
operation, then fc(P i) fc(Pk) ⊆ fc(P i+k) for all i and k; however, fc(P ) fc(Pn) ⊇ P j+1 properly con-
tains fc(Pn+1) = Pn+1. Thus fc(Pn+1) = P j . �
Proof of Proposition 3.2. The ideals of a discrete valuation ring (R, P ) are either of the form P i for
i � 0 or (0) and they are totally ordered R ⊇ P ⊇ P 2 ⊇ · · · ⊇ Pm ⊇ · · · ⊇ (0).

By Lemma 3.3, we know that any semiprime operation fc on R which is constant on some finite
interval has the property that fc(P i) = Pm for all i � m for some m. I claim that for i � m, fc(P i) = P i .
Suppose not, then fc(P i) = Pk for some k � i since fc is increasing. Then for k � j � i, Pk = fc(Pk) ⊆
fc(P j) ⊆ fc(P i) = Pk . If k < i then by Lemma 3.3 fc(P i) = Pk on interval i � k contradicting the fact
that for i � m, fc(P i) = Pm .

Note, in the case where

fc
(

P i) =
{

P i for i < m,

Pm for i � m,
fc(0) ⊆

⋂
i�0

fc
(

P i) = Pm.

Thus fc(0) = (0) or fc(0) = Pm since fc(Pn) = Pm for n � m. Hence, fc = fm or fc = gm as defined in
the statement of the proposition.

Now, suppose that fc is a semiprime operation which is not constant on any such interval m �
i � n with m < n. Suppose fc(P i) = Pk for k < i. Then Pk = fc(Pk) ⊆ fc(P j) ⊆ fc(P i) = Pk for all
k � j � i which contradicts that fact that fc is not constant on any interval. Hence, fc(P i) = P i for
all i � 0. Since fc(0) ⊆ fc(P i) = P i for all i � 0, then fc(0) ⊆ ⋂

i�0 P i = (0). Hence, fc must be the
identity map.

Clearly fm ◦ fn = fmin(m,n) and gm ◦ gn = gmin(m,n) both imply that the corresponding sets of
semiprime operations in S R , M0 and M f are submonoids of MI . That M f is a left M0-act can be
seen by fn ◦ gm = gmin(m,n) . However, for m > n, gm ◦ fn(0) = Pm and (gm ◦ fn) ◦ (gm ◦ fn) = gn which
implies gm ◦ fn is not a closure operation. Thus, M f is not a right M0-act and S R = M0 ∪ M f is not a
submonoid. �

For every n � 0, Mn = {e} ∪ { fn} ∪ {gn} also form finite submonoids of MI contained in S R , inter-
relating M0 and M f .

Proposition 3.4. The only element of P R when (R, P ) is a discrete valuation ring is the identity.

Proof. Let (b) = P . If fc is prime, then bfc(P i) = fc(bP i) = fc(P i+1). Note if fc was either fm or gm

in the above proof, then bfc(Pm) = bPm � Pm = fc(Pm+1) = fc(bPm). This contradicts the assumption
of primeness. Thus P R = {e}. �

If R is a Dedekind domain which is not necessarily local then for every maximal ideal m in R ,
Rm is a discrete valuation ring. We know the structure S Rm

, and can build the structure of S R

from S Rm
.
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Given a Dedekind domain R with maximal ideals Pi , i ∈ Λ. Consider the monoid given by
∐

i∈Λ N0,
the coproduct of N0 (i.e. the set of all functions φ : Λ → N0 such that φ(i) = 0 for all but finitely
many i ∈ Λ). Suppose φ(i j) = m j �= 0 for i1, i2, . . . , is and φ(i) = 0 all other i. This φ corresponds to
the ideal Pm1

i1
Pm2

i2
· · · Pms

is
. The function φ ≡ 0 in

∐
i∈Λ N0 corresponds to the unit ideal R .

As the non-negative integers play a major role in identifying the semiprime operations in a discrete
valuation, certain subsets of the semigroup NΛ

0 = ∐
i∈Λ N0 will determine the semiprime operations

of a Dedekind domain with maximal ideals Pi, i ∈ Λ. All the nonzero ideals in a Dedekind domain are
finite products of the Pi , i.e. I = Pm1

i1
· · · Pmr

ir
.

To determine these subsets, first consider the semilocal principal ideal domain R with two maxi-
mal ideals P and Q , the ideals of R are P i Q j , i, j � 0, which corresponds to the lattice point (i, j)
in N2

0. Suppose that for some semiprime operation fc defined on (R, P , Q ),

fc
(

P i) =
{

P i for i < m,

Pm for i � m
and fc

(
Q j) =

{
Q j for j < n,

Q n for j � n.

As fc is semiprime, we know that

fc
(

P i) fc
(

Q j) ⊆ fc
(

P i Q j) ⊆ fc
(

P i) ∩ fc
(

Q j) = fc
(

P i) fc
(

Q j)
as P i Q j ⊆ P i and P i Q j ⊆ Q j . Thus

fc
(

P i Q j) =

⎧⎪⎨
⎪⎩

Pm Q n if i � m and j � n,

Pm Q j if i � m and 0 � j < n,

P i Q n if 0 � i < m and j � n,

P i Q j if 0 � i < m and 0 � j < n.

We define the identity rectangle B of a semiprime operation fc on the lattice (R, P , Q ) to be the
(i, j) such that fc(P i Q j) = P i Q j .

In general, where Λ is not necessarily a two-element set, we denote the ideal corresponding to
φ ∈ NΛ

0 by I(φ). Similarly we can define an identity Λ-box for R with maximal ideals indexed by Λ.

Definition 3.5. The identity Λ-box BΛ of the semiprime operation fc over a Dedekind domain R is the
set of all φ ∈ ∐

i∈Λ N0 such that fc(I(φ)) = I(φ).

For simplicity we will denote φ
j
i to be the element of

∐
i∈Λ N0 such that φ(i) = j and φ(λ) = 0

for all λ �= i. All elements are of the form φ
j1
i1

+φ
j2
i2

+· · ·+φ
jr
ir

:= φ
j1 j2··· jr
i1 i2···ir

for distinct ik . Note that the

identity Λ-box BΛ of fc could be bounded if for every i ∈ Λ there is a finite m with fc(I(φ j
i )) = I(φm

i )

for j � m. For each ih ∈ Λ, define

mh =
{

m if fc(I(φ j
ih
)) = I(φm

ih
) for j � m,

∞ otherwise.

In fact, all semiprime operations on the ideals of
∐

i∈Λ N0 satisfy the equations

f BΛ

(
I
(
φ

j1 j2··· jr
i1 i2···ir

)) =

⎧⎪⎨
⎪⎩

I(φ j1 j2··· jr
i1 i2···ir

) if φ
j1, j2,..., jr
i1,i2,...,ir

∈ BΛ,

I(φk1k2···kr
i1 i2···ir

) if φ
j1, j2,..., jr
i1,i2,...,ir

/∈ BΛ and kl = ml �= ∞
for some l and kh = jh for all h with kh � mh.

If BΛ and CΛ are any two identity Λ-boxes, clearly, BΛ ∩ CΛ is also an identity Λ-box and the
action of f BΛ ◦ fCΛ on nonzero ideals of R is the same as that of f BΛ∩CΛ .
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Since the semiprime operations of a Dedekind domain correspond to elements of
∐

i∈Λ N0 ∪ {∞}
under partial ordering, when BΛ is bounded with a finite number i ∈ Λ with mi �= 0, there are two
types of semiprime operations f BΛ and gBΛ . The only difference is that f BΛ(0) = (0) and gBΛ(0) =
Pm1

i1
Pm2

i2
· · · Pmr

ir
, where {i1, . . . , ir} is exactly the set of all i j ∈ Λ with m j < ∞.

Let us define two subsets of MI:

• M f = {e}∪{gBΛ ∈ MI | gBΛ(0) = Pm1
i1

Pm2
i2

· · · Pmr
ir

for some primes Pi j , j = 1, . . . , r}: the set of clo-
sure operations for which the zero ideal is not closed (along with the identity).

• M0 = {e} ∪ { f BΛ ∈ MI | f BΛ(0) = (0)}: the set of closure operations for which the zero ideal is
closed.

Suppose now that BΛ and CΛ are two identity Λ-boxes with both BΛ and CΛ bounded. Then
BΛ ∩ CΛ is also bounded and is also an identity Λ-box and f BΛ ◦ fCΛ = f BΛ∩CΛ and gBΛ ◦ gCΛ =
gBΛ∩CΛ . This shows that M0 and M f are submonoids of MI .

Lastly, suppose that BΛ and CΛ are two identity Λ-boxes with CΛ bounded. Then BΛ ∩ CΛ � CΛ is
also bounded as above and is also an identity Λ-box. Note that, f BΛ ◦ gCΛ = gBΛ∩CΛ but gCΛ ◦ f BΛ �=
gBΛ∩CΛ since gCΛ ◦ f BΛ(0) = ⋂

i∈Λ Pm
i where φm

i ∈ CΛ �= BΛ ∩ CΛ which is not a closure operation.
This shows that M f is a left M0-act, but not a right M0-act.

We have just proved:

Proposition 3.6. When R is a Dedekind domain, S R can be decomposed into the union of two submonoids
M0 = {e} ∪ { f BΛ ∈ MI} and M f = {e} ∪ {gBΛ ∈ MI} where M f is a left M0-act but not a right M0-act under
composition.

Proposition 3.7. The only element of P R when R is a Dedekind domain is the identity.

Proof. Suppose (bi) = Pi . If fc is prime, then bi fc(I) = fc(bi I) for all I . In particular, bi fc(P j) =
fc(bi(Pi)

j) for all j � 0. Note if fc was either f BΛ or gBΛ and Pi is a prime such that fc(P j
i ) = Pmi

i

for j � mi then bi fc(Pmi
i ) = Pmi+1

i � Pmi
i = fc(bi Pmi

i ). This contradicts the assumption of primeness.
Thus P R = {e}. �
4. S R and P R when R = K [[t2, t3]]

Although K [[t2, t3]] is a local ring, the ideal structure in K [[t2, t3]] is not totally ordered as in the
case of a discrete valuation ring. All ideals in K [[t2, t3]] are either generated by one element tn +atn+1

where a ∈ K or two elements of the form (tn, tn+1). I would like to thank Hwa Young Lee for pointing
out that I was ignoring the ideals (ti + ati+1), with a �= 0 in a previous version of this paper. She
shared with me some of the ideas from her developing thesis including some theorems which she
proved which can be summed up in the following proposition. The proof here is my own.

Proposition 4.1. Each nonzero nonunit ideal of R = K [[t2, t3]] can either be expressed as a principal ideal in
the form (tn + atn+1), a ∈ K , n � 2, or as a two generated ideal (tn, tn+1) for n � 2.

Proof. Suppose 0 �= f ∈ R . Thus, after multiplying by a nonzero element of K , f = tn + a1tn+1 +
a2tn+2 + · · · for n � 2. We will show that tm ∈ ( f ) for m � n + 2. Hence, tn + a1tn+1 ∈ ( f ). Similarly,
tm ∈ (tn + a1tn+1) for m � n + 2. Hence, f ∈ (tn + a1tn+1).

Let g ∈ K [[t]]. Note that tm−n g ∈ K [[t2, t3]]. Hence, if g is a unit in K [[t]], then tm−n g−1 ∈ K [[t2, t3]]
also. In K [[t]], f = tn(1 +a1t +a2t2 +· · ·) = tn g . Note that tm−n g−1 f = tm . Similarly tm ∈ (tn +a1tn+1).
Since f − (tn + a1tn+1) = a2tn+2 + a3tn+3 + · · · ∈ ( f ) ∩ (tn + a1tn+1), we see that (tn + a1tn+1) = ( f ).
Hence, all principal ideals of K [[t2, t3]] have the form (tn + atn+1).

Suppose, I is not principal. As tm ∈ (tn + atn+1) for m � n + 2, then I can be generated by at most
2 elements of the form (tn + atn+1, tm + btm+1) where m = n or m = n + 1. If m = n, then tn+1 ∈ I
which also implies that tn ∈ I . Hence I = (tn, tn+1). If m = n + 1, then tn+2 ∈ (tn + atn+1) ⊆ I as
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in the principal case above. However, tn+1 = tn+1 + btn+2 − btn+2 ∈ I and once again tn ∈ I . Hence,
I = (tn, tn+1). �

In fact the ideals are woven in the following way:

(t3 + at4) (t5 + at6)

R m (t3, t4) m2 (t5, t6) m3 · · · (0)

(t2 + at3) (t4 + at5)

where each line segment in the above diagram indicates ⊇.
In the case of a discrete valuation ring (R, P ), integral closure is the identity map on ideals of R .

For K [[t2, t3]], the integral closure of ideals of the form (ti + ati+1) is (ti + ati+1) = (ti, ti+1) whereas
the ideals of the form (ti, ti+1) are all integrally closed. Looking at the above diagram, we see that
the chain of ideals in the center are all integrally closed. However, the principal ideals are not. Clearly
there are now many more closure operations for K [[t2, t3]]. In fact, the semiprime operations which
are not bounded abound. To shorten the expressions appearing in the proofs we will denote the
principal ideals Pi,a := (ti + ati+1) and Mi := (ti, ti+1).

Proposition 4.2. In K [[t2, t3]], for all i � 2 and all a ∈ K , the map

f int
i (I) :=

{
Mi if I = Pi,a,

I if I �= Pi,a

is a closure operation which is not semiprime.

Proof. Clearly f int
i (I) ⊇ I for all I and if I ⊆ J , f int

i (I) ⊆ f int
i ( J ). As f int

i (I) = I whenever I �= Pi,a , and

f int
i ◦ f int

i (Pi,a) = f int
i (Pi,a) = Mi = f int

i (Mi),

then f int
i is a closure operation.

As M j Pk,a = M j+k , the only ideals which are proper factors of Pm,a are of the form P j,b , j � m − 2
and b ∈ K . If j + k = m with j,k � 2, then

f int
i (P j,a) f int

i (Pk,b) =
{

Pm,a+b if j �= i and k �= i,
Mm if j = i or k = i.

If m � i + j, j � 2, f int
i (Pm,a+b) = Pm,a+b and Mm � Pm,a+b . Thus f int

i is not a semiprime opera-
tion. �

We observe in the proof, that if we want such a closure operation which maps Pi,a to Mi to be
semiprime we also need Pm,a to map to Mm for m � i + 2. Hence, we have the following:

Corollary 4.3. Let S �= ∅ and T , possibly empty, be subsets of the field K . Over K [[t2, t3]] for all i � 2, the maps

f int
i,S,T (I) =

{
I if I ⊇ Mi+1, I = Pi,a, a /∈ S or I = Pi+1,b, b /∈ T ,

I if I ⊆ Mi+2, I ⊇ Pi,a, a ∈ S or I ⊆ Pi+1,b, b ∈ T

are semiprime operations.



2744 J.C. Vassilev / Journal of Algebra 321 (2009) 2737–2753
Proof. Clearly f int
i,S,T are also closure operations and from the proof of above, they are semiprime. �

Lemma 4.4. If fc is a semiprime operation on K [[t2, t3]] and M j = fc(M j+2) for some j, then fc is a bounded
semiprime operation.

Proof. As M j ⊇ M j+1 ⊇ M j+2, then

M j = fc(M j+2) ⊆ fc(M j+1) ⊆ fc(M j) = fc
(

fc(M j+2)
) = M j .

We will use induction to show that fc(M j+n) = M j for n � 0. Assume that fc(M j+k) = M j for
2 � k � n. Since M j+n+1 = P2,0M j+n−1,

fc(M j+n+1) ⊇ fc(P2,0) fc(M j+n−1) ⊇ P2,0 fc(M j+k−2) = M j+2 ⊇ M j+n+1.

Applying fc to the chain, fc(M j+n+1) ⊇ fc(M j+2) = M j ⊇ fc(M j+n+1). As the right-hand and left-
hand sides of the chains are equal, we obtain fc(M j+n+1) = M j .

For any a ∈ K and k � 0, we have M j+k ⊇ P j+k,a ⊇ M j+k+2. Applying fc to the chain and using the
fact that fc(M j+k) = M j for k � 0 we obtain fc(P j+k,a) = M j .

Since the above arguments show if 0 �= I ⊆ M j , fc(I) = M j , by the definition of bounded, we see
that fc is a bounded semiprime operation. �
Lemma 4.5. If fc is a semiprime operation on K [[t2, t3]] and fc(M j) = fc(M j+2) for some j, then fc is a
bounded semiprime operation.

Proof. We can break the proof down into the following two cases:

(1) fc(M j) = Mk , k � j or
(2) fc(M j) = Pk,a for some a ∈ K and k � j − 2.

In case (1), Mk = fc(Mk) ⊇ fc(Mk+1) ⊇ fc(Mk+2) ⊇ fc(M j+2) = Mk . By Lemma 4.4, fc is bounded.
In case (2), we need to show that for any nonzero ideal I ⊆ Pk,a , fc(I) = Pk,a . Clearly, if M j+2 ⊆

I ⊆ Pk,a , then Pk,a = fc(M j) = fc(M j+2) = fc(I). We will see by induction that fc(M j+n) = Pk,a for
n � 2. Assume that fc(M j+i) = Pk,a for 2 � i � n. Since M j+n+1 = P2,0M j+n−1, we have

fc(M j+n+1) = fc(P2,0M j+n−1) ⊇ fc(P2,0) fc(M j+n−1) ⊇ Pk+2,a ⊇ M j+n+1.

Note that M j+2 ⊆ Pk+2,a ⊆ Pk,a . Hence, fc(Pk+2,a) = Pk,a which implies after applying fc to the above
chain of containments that fc(M j+n+1) = Pk,a . Hence, fc(M j+n) = Pk,a for n � 0.

Since Mk+n ⊇ Pk+n,b ⊇ Mk+n+2, applying fc to this chain of containments and noting that
fc(Mk+n) = Pk,a for all n � 2, we conclude that fc(Pk+n,b) = Pk,a . Now we have seen that for all
nonzero I ⊆ Pk,a , fc(I) = Pk,a . Hence, fc is bounded. �
Lemma 4.6. If fc is a semiprime operation on K [[t2, t3]] and fc(M j) = fc(M j+1) for some j, then fc is a
bounded semiprime operation.

Proof. Note that for j � 2, if R = fc(M j) then fc(M2 j) = fc(M2
j ) ⊇ fc(M j)

2 = R . Since M j ⊇ M j+2 ⊇
M2 j , then R = fc(M j) = fc(M j+2) = fc(M2 j). By Lemma 4.5 we can conclude that fc is bounded.

Also for j � 3 if I = fc(M j) ⊇ M j−1 ⊇ M j then I = fc(M j−1) = fc(M j+1). By Lemma 4.5 we can
conclude that fc is bounded. That leaves us with the cases:

(1) fc(M j) = M j for j � 2 or
(2) fc(M j) = P j−2,a for some a ∈ K and j � 4.
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In case (1), consider fc(M2 j+2) ⊇ fc(M2
j+1) ⊇ fc(M j+1)

2 = M2 j � M2 j+2. Applying fc , we now see
that fc(M2 j) = fc(M2 j+2). Again, Lemma 4.5 yields that fc is bounded.

In case (2), fc(M j−1) ⊇ fc(M j) = P j−2,a and fc(M j−1) ⊇ M j−1. Thus

fc(M j−1) ⊇ P j−2,a + M j−1 = M j−2 ⊇ M j−1 implies fc(M j−1) = fc(M j−2).

Now we are in the same set up as our lemma but two steps up. If fc(M j−2) = M j−2 we are done by
case (1) above. Otherwise, fc(M j−2) = fc(M j−1) = P j−4,b , for some b ∈ K .

Now P2 j−8,2b = fc(M j−1)
2 ⊆ fc(M2 j−2) ⊆ fc(M2 j−4) ⊆ fc(P2 j−8,2b). If we apply fc to this chain

of containments we see that fc(M2 j−2) = fc(M2 j−4). Again fc is bounded by Lemma 4.5. �
Lemma 4.7. If fc is a semiprime operation on K [[t2, t3]] and fc(M j) = fc(P j−2,b) for some j � 4 and b ∈ K ,
then fc is a bounded semiprime operation.

Proof. As in the proof of Lemma 4.6, fc(M j) = fc(P j−2,b) implies that fc(M j−1) = fc(M j−2). We now
conclude by Lemma 4.6 that fc is also bounded. �

The following theorem describes the unbounded semiprime operations over K [[t2, t3]].

Theorem 4.8. Let S be a nonempty subset of K , T any subset. If fc is an unbounded semiprime operation over
K [[t2, t3]], then fc is either the identity or

f int
i,S,T (I) =

{
I if I ⊇ Pi,a, a /∈ S or I ⊇ Pi+1,b, b /∈ T ,

I if I ⊆ Mi+2, I = Pi,a, a ∈ S or I = Pi+1,b, b ∈ T .

Proof. Suppose fc is an unbounded semiprime operation over K [[t2, t3]] which is not the identity.
Then fc(I) �= I for some nonzero ideal I .

If I = M j for some j � 2, then by Lemmas 4.5, 4.6 and 4.7, fc would be bounded, contradicting
the unbounded assumption. Thus I must be a principal ideal.

If fc(Pk,a) = fc(Pk+2,b) for some k, then fc(Pk,a) = fc(Mk+2) = fc(Pk+2,b) and Lemma 4.7 implies
that fc is bounded, contradicting the unboundedness assumption.

If fc(Pk,a) = fc(Mk−1) for some k, then fc(Pk,a) = fc(Mk) = fc(Mk−1) which is bounded by
Lemma 4.6.

Thus fc(Pk,a) = Mk . Let W = {k | fc(Pk,a) = Mk for some a ∈ K and some k � 2}. Since W is
nonempty subset of the positive integers there is a smallest j � 2 in W . Let S = {a ∈ K |
fc(P j,a) = M j}. Since Pn,b = P j,a Pn− j,b−a for all b ∈ K , a ∈ S and all n � j + 2, then fc(Pn,b) ⊇
fc(P j,a) fc(Pn− j,b−a) ⊇ M j Pn− j,b−a = Mn ⊇ Pn,b . Applying fc to the chain of containments, we see
that Mn = fc(Pn,b) for all b ∈ K and n = j or n � j + 2.

Note for all b ∈ K , fc(P j+1,b) ⊆ fc(M j+1) = M j+1, thus fc(P j+1,b) = P j+1,b or fc(P j+1,b) = M j+1.
If T = {b ∈ K | fc(P j+1,b) = M j+1} then fc = f int

j,S,T as defined in the statement of the theorem. �
The bounded semiprime operations are given by the following theorem:

Theorem 4.9. The only bounded semiprime operations on K [[t2, t3]] are of the forms

f f
m,a(I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I for I ⊇ Pm,a,

Mm−1 for I = Pm−1,b, ∀b ∈ K ,

Mm for I = Pm,b, b �= a, I = Pm+1,d, ∀d ∈ K or I = Mm+1,

Pm,a for nonzero I ⊆ Pm,a,
(0) if I = (0),
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g f
m,a(I) =

⎧⎪⎨
⎪⎩

I for I ⊇ Pm,a,

Mm−1 for I = Pm−1,b, ∀b ∈ K ,

Mm for I = Pm,b, b �= a, I = Pm+1,d, ∀d ∈ K or I = Mm+1,

Pm,a for I ⊆ Pm,a

for m � 2 and a ∈ K ,

f f
n,S,T ,m(I) =

⎧⎪⎨
⎪⎩

I for I ⊇ Pn,a, a /∈ S or I ⊇ Pn+1,b, b /∈ T ,

I for Pm−1,d ⊆ I ⊆ J , J = Pn,a, a ∈ S or J = Pn+1,b, b ∈ T ,

Mm for nonzero I ⊆ Mm,

(0) if I = (0),

g f
n,S,T ,m(I) =

{ I for I ⊇ Pn,a, a /∈ S or I ⊇ Pn+1,b, b /∈ T ,

I for Pm−1,d ⊆ I ⊆ J , J = Pn,a, a ∈ S or J = Pn+1,b, b ∈ T ,

Mm for I ⊆ Mm

for m − 1 � n � 2, S �= ∅ and if m = n + 1, T = K ,

f f
n,S,T ,m′(I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

I for I ⊇ Pn,a, a /∈ S or I ⊇ Pn+1,b, b /∈ T ,

I for Mm−2 ⊆ I ⊆ J , J = Pn,a, a ∈ S or J = Pn+1,b, a ∈ S, b ∈ T ,

Mm−2 for I = Pm−1,d, Mm−1,

Mm for nonzero I ⊆ Mm,

(0) if I = (0),

g f
n,S,T ,m′(I) =

⎧⎪⎨
⎪⎩

I for I ⊇ Pn,a, a /∈ S or I ⊇ Pn+1,b, b /∈ T ,

I for Mm−2 ⊆ I ⊆ J , J = Pn,a, a ∈ S or J = Pn+1,b, a ∈ S, b ∈ T ,

Mm−2 for I = Pm−1,d, Mm−1,

Mm for I ⊆ Mm

for m − 2 � n � 2, S �= ∅.

Proof. If fc is a bounded semiprime operation, then for small nonzero I , either

(1) fc(I) = Pm,a for I ⊆ Pm,a for some a ∈ K or
(2) fc(I) = Mm for I ⊆ Mm

for some m � 2.
Case (1): If fc(I) = Pm,a for I ⊆ Pm,a , then for fc to be semiprime, we see as in the proof of

Proposition 4.1 that fc(Pi,b) = Pi,b for 2 � i � m − 2 and all b ∈ K , since the only factors of Pm,a are
Pi,b for 2 � i � m − 2 and any b ∈ K . Note that fc(Mi) ⊆ fc(Pi−2,b) = Pi−2,b for all 4 � i � m − 2 and
b ∈ K . Hence, fc(Mi) ⊆ ⋂

b∈K Pi−2,b = Mi for 4 � i � m − 2. M2 ⊇ M3 contain only the unit principal
ideal R . Let i = 2,3, then M j fc(Mi) ⊆ fc(Mi) fc(M j) ⊆ fc(Mi+ j) = Mi+ j , for 2 � j � m − 2 − i. This set
of containments implies that fc(Mi) ⊆ Mi+ j : M j = Mi . Hence fc(Mi) = Mi for i = 2,3.

Since Mm+3 ⊆ Pm,a , we see that fc(Mm+3) = Pm,a . Applying fc to the following chain of con-
tainments: Mm+3 ⊆ Pm+1,b ⊆ Mm+1, we see that Pm,a ⊆ fc(Pm+1,b) ⊆ fc(Mm+1). However, Pm+1,b ⊆
Mm+1 are both incomparable with Pm,a . Thus Mm ⊆ fc(Pm+1,b) ⊆ fc(Mm+1). Since P2,d Pm+1,b =
Pm+3,b+d for all d ∈ K , we see that

P2,d fc(Pm+1,b) = fc(P2,d) fc(Pm+1,b) ⊆ fc(Pm+3,b+d) = Pm,a.

Thus fc(Pm+1,b) ⊆ Pm−2,a−d for all d ∈ K . Since
⋂

d∈K Pm−2,a−d = Mm , we see that fc(Pm+1,b) = Mm .
Now since Pm+1,b ⊆ Mm+1 ⊆ Mm then we easily see that fc(Mm+1) = Mm also.

As Mm+1 ⊆ Pm−1,d for all d ∈ K and fc(Mm+1) = Mm , we can see that Mm−1 = Mm + Pm−1,d ⊆
fc(Pm−1,d) ⊆ fc(Mm−1). Applying fc to the chain of containments, we observe that fc(Pm−1,d) =
fc(Mm−1). Noting that fc(Mm−1) ⊆ fc(Pm−3,d) = Pm−3,d for all d ∈ K , we can conclude that
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fc(Mm−1) ⊆ ⋂
d∈K Pm−3,d = Mm−1. Putting this fact together with the equality above we see that

fc(Pm−1,d) = fc(Mm−1) = Mm−1.

Putting all the above arguments together we see that fc must be f f
m,a or g f

m,a depending on
whether or not fc(0) is (0) or Pm,a . The following diagram represents fc . The arrows represent the
fc-closure of the indicated ideals.

P3,a Pm−2,a Pm,a

a

b∈aC ← fc(I)

R M2 M3 M4 M5 Mm−1 Mm Mm+1 (0)

P2,a P4,a Pm−1,a Pm+1,a

Case (2): Suppose fc(I) = Mm for all I ⊆ Mm and m � 2. The closure of ideals in the following
diagram still needs to be determined.

P3,a Pm−3,a Pm−1,a

R M2 M3 M4 M5 Mm−2 Mm−1 Mm (0)
← fc(I)

P2,a P4,a Pm−2,a

Only the Pm−1,b are not comparable to Mm . Since Mm+1 ⊆ Pm−1,b and fc(Mm+1) = Mm then
fc(Pm−1,b) = fc(Mm−1). We will get back to this later; however, in the next diagram we will indi-
cate this with an arrow from the Pm−1,a ’s to Mm−1 and omitting the line from (0) to the Pm−1,a ’s.

First, we will see that fc(M2) = M2. Suppose fc(M2) = R , then fc(Mm−2) = fc(M2) fc(Mm−2) ⊆
fc(Mm) = Mm ⊆ Mm−2. Applying fc to this chain of containments, we see that Mm = fc(Mm) =
fc(Mm−2) which is a contradiction since Mm−2 � Mm .

We now show that fc(Mn) = Mn for 2 < n � m − 2. Suppose Mn � fc(Mn) = I where I ⊇ Mn−1
or I ⊇ Pn−2,d for some d. Once again, we decompose Mm = Mn Mm−n . Noting that Pn−2,d Mm−n =
Mm−2 and Mn−1Mm−n = Mm−1 and Mm−1 ⊆ Mm−2, we see that Mm−1 ⊆ fc(Mn) fc(Mm−n) ⊆
fc(Mn) fc(Mm−n) ⊆ fc(Mm) = Mm ⊆ Mm−1. As above, this implies that Mm = fc(Mm) = fc(Mm−1)

which gives a contradiction. These arguments imply that all ideals along the central line in the above
figure excluding possibly Mm−1 are fc-closed which I will indicate by a loop in the diagram.

P3,a Pm−3,a Pm−1,a

R M2 M3 M4 M5 Mm−2 Mm−1 Mm (0)
← fc(I)

P2,a P4,a Pm−2,a
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Now, we will determine fc(Pk,b) for 2 � k � m − 2. Since fc(Pk,b) ⊆ fc(Mk) = Mk for all b ∈ K
and 2 � k � m − 2, we see that fc(Pk,b) may equal Pk,b or Mk . Suppose that fc(Pk,b) = Mk for
some b ∈ K with 2 � k � m − 2. Assume n is the smallest 2 � n � m − 2 satisfying this property for
some b ∈ K and define S = {b ∈ K | fc(Pn,b) = Mn}. Observing that Pk,d = P j,a Pk− j,b,a + b = d for
2 � j � k − n and fc(Pk,d) ⊇ fc(P j,a) fc(Pk− j,b) = Mk , we conclude that fc(Pk,d) = Mk for all d ∈ K
and n + 2 � k � m − 2. For each of these Pk,d ’s, we indicate that the closure is Mk in the follow-
ing diagram by indicating an arrow between Pk,d and Mk and omitting the line between the Pk,d ’s
and Mk+2. I have left off the ideals containing Mn−1 since all of these ideals are now known to be
fc-closed.

Pn,a

a/∈S

a∈S

Pm−3,a Pm−1,a

Mn−1 Mn Mn+1 Mn+2 Mm−2 Mm−1 Mm (0)
← fc(I)

Pn−1,a Pn+1,a Pm−2,a

At this point, there are two ambiguities. What is fc(Mm−1) and what is fc(Pn+1,b) for b ∈ K ?
Since fc(Mm−1) ⊆ fc(Mm−2) = Mm−2 and fc(Mm−1) ⊆ fc(Pm−3,b) for all b ∈ K . If fc(Pm−3,d) = Pm−3,d
for some d ∈ K , then fc(Mm−1) ⊆ Mm−2 ∩ Pm−3,d = Mm−1. Hence, fc(Mm−1) = fc(Pm−1,b) = Mm−1.
Otherwise, fc(Pm−1,b) = fc(Mm−1) could be Mm−1 or Mm−2.

In the case that fc(Pm−1,b) = fc(Mm−1) = Mm−1, let S = {b ∈ K | fc(Pn,b) = Mn} as above and

T = {b ∈ K | fc(Pn+1,b) = Mn+1}, then fc = f f
n,S,T ,m or fc = g f

n,S,T ,m depending on where fc maps (0).
From the previous diagram, I have added the loop at Mm−1 to indicate that Mm−1 is fc-closed.

Pn,a

a/∈S

a∈S

Pm−3,a Pm−1,a

Mn−1 Mn Mn+1 Mn+2 Mm−2 Mm−1 Mm (0)
← fc(I)

Pn−1,a Pn+1,a

a/∈T

a∈T

Pm−2,a

In the case that fc(Pm−1,b) = fc(Mm−1) = Mm−2, let S = {b ∈ K | fc(Pn,b) = Mn} as above and T =
{b ∈ K | fc(Pn+1,b) = Mn+1}, then fc = f f

n,S,T ,m′ or fc = g f
n,S,T ,m′ depending on where fc maps (0).

Unlike the previous diagram, there is not a loop at Mm−2, since it is not fc-closed, but an arrow from
both Mm−1 and the Pm−1,a ’s to indicate their fc-closure.
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Pn,a

a/∈S

a∈S

Pm−3,a Pm−1,a

Mn−1 Mn Mn+1 Mn+2 Mm−2 Mm−1 Mm (0)
← fc(I)

Pn−1,a Pn+1,a

a/∈T

a∈T

Pm−2,a

�
Surprisingly, the semiprime operations of the form f f

n,S,T ,m′ and g f
n,S,T ,m′ do not commute with

some of the other semiprime operations for a nonzero ideal. For example,

f f
n,S,T ,m′ ◦ f f

n,S,T ,m−1′(Mm) = Mm−2 but f f
n,S,T ,m−1′ ◦ f f

n,S,T ,m′(Mm) = Mm−1.

Also,

f f
n,S,T ,m′ ◦ f f

m−1,a(Mm+1) = Mm−2 but f f
m−1,a ◦ f f

n,S,T ,m′(Mm+1) = Mm−1.

This makes it hard to decompose the semiprime operations of R = K [[t2, t3]], S R , into the union of
submonoids of MI like we did in the Dedekind case.

We make the following definition:

Definition 4.10. Let R be a one-dimensional semigroup ring defined by S ⊆ N0. Let fc is a bounded
semiprime operation and J be the unique ideal with fc(I) = J for all (0) �= I ⊆ J and n � 1 be the
conductor of S . Suppose a is an ideal which is incomparable to J and fc(a) ⊇ J and a = a0 ⊆ a1 ⊆
· · · ⊆ ak = fc(a) is a composition series for fc(a)/a for k � n with ai ⊇ J for all i > 0. Then we say fc

is an exceptional semiprime operation.

Note that the semiprime operations f f
n,S,T ,m′ and g f

n,S,T ,m′ are exceptional bounded semiprime
operations since Pm−1,b ⊆ Mm−1 ⊆ Mm−2 is a composition series for fc(Pm−1,b)/Pm−1,b of length 2
which is the conductor of 〈2,3〉 the semigroup associated to R = K [[t2, t3]].

Combining the results of Theorems 4.8 and 4.9 and looking at compositions of the maps obtained
in the theorems we see that the non-exceptional semiprime operations can be decomposed as in the
Dedekind case:

Theorem 4.11. Let R = K [[t2, t3]] and E be the set of exceptional semiprime operations of R. Then the comple-
ment of E in S R , S R \ E, is the union of the monoids

M0 = {e} ∪ {
f int
n,S,T , f f

n,a, f f
n,S,T ,m

}
and

M f = {e} ∪ {
g f

n,a, g f
n,S,T ,m

}
where M f is a left M0-act but not a right M0-act under composition.
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Proof. Above we saw by example that the semiprime operations f f
n,S,T ,m′ and g f

n,S,T ,m′ were excep-
tional. To see the remaining bounded semiprime operations are not exceptional, we need to find all
nonzero ideals a which are not comparable to the ideal J for each bounded semiprime operation fc

for which fc(I) = J .
For both fc = f f

n,S,T ,m and fc = g f
n,S,T ,m , the J in the definition is Mm . The only ideals which are

incomparable to Mm are Pm−1,a for all a ∈ K and fc(Pm−1,a) = Mm−1 ⊇ Mm and Pm−1,a ⊆ Mm−1 is a

composition series for fc(Pm−1,a)/Pm−1,a . Thus f f
n,S,T ,m and g f

n,S,T ,m are not exceptional.

For both fc = f f
m,a and fc = g f

m,a , the J in the definition is Pm,a . The ideals which are in-
comparable to Pm,a are Pm,b for b �= a, Mm+1, Pm+1,b for all b ∈ K and Pm−1,b for all b ∈ K .
Note that fc(Pm,b) = Mm ⊇ Pm,a and Pm,b ⊆ Mm is a composition series for fc(Pm,b)/Pm,b . Also
fc(Mm+1) = Mm ⊇ Pm,a and Mm+1 ⊆ Mm is a composition series for fc(Mm+1)/Mm+1. Similarly,
fc(Pm+1,b) = Mm ⊇ Pm,a and Pm+1,b ⊆ Mm+1 ⊆ Mm is a composition series for fc(Pm+1,b)/Pm+1,b

and only Mm is comparable to Pm,a . Lastly, fc(Pm−1,b) = Mm−1 ⊇ Pm,a and Pm−1,b ⊆ Mm−1 is a com-

position series for fc(Pm−1,b)/Pm−1,b . Now by definition both f f
m,a and g f

m,a are not exceptional.
Now we look at all compositions of semiprime operations in M0. Throughout, we will denote

K \ {a} = aC . The compositions are as follows:

(M1) f int
m,S,T ◦ f int

n,U ,V = f int
n,U ,V ◦ f int

m,S,T =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f int
m,S,T if m + 2 � n,

f int
m,S,T ∪U if m + 1 = n,

f int
m,S∪U ,T ∪V if m = n,

f int
n,U ,V ∪S if n + 1 = m,

f int
n,U ,V if n + 2 � m;

(M2) f f
n,S,T ,m ◦ f int

l,U ,V = f int
l,U ,V ◦ f f

n,S,T ,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f f
n,S,T ,m if n + 1 � m < l,

f f
n,S,T ∪U ,m if n + 1 = l � m,

f f
n,S∪U ,T ∪V ,m if n = l � m − 1,

f f
l,U ,S∪V ,m if l + 1 = n � m − 1,

f f
l,U ,V ,m if l + 1 < n � m − 1;

(M3) f f
m,a ◦ f int

l,U ,V = f int
l,U ,V ◦ f f

m,a =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f f
m,a if m < l,m = l, a /∈ U or l = m − 1, a /∈ V ,

f f
m−1,K ,K ,m if m = l, a ∈ U ,

f f
m−1,U ,K ,m if l = m − 1, a ∈ V ,

f f
l,U ,V ,m if l < m − 1;

(M4) f f
n,S,T ,m ◦ f f

l,U ,V ,k = f f
l,U ,V ,k ◦ f f

n,S,T ,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f f
n,S,T ,m if n + 1 < m, l,

f f
n,S,T ∪U ,m if n + 1 = l � m < k,

f f
n,S,T ∪U ,k if n + 1 = l � k − 1 � m − 1,

f f
n,S∪U ,T ∪V ,m if n = l < m − 1 < k − 1,

f f
n,S∪U ,T ∪V ,k if n = l < k − 1 � m − 1,

f f
l,U ,S∪V ,m if l + 1 = n � m − 1 < k − 1,

f f
n,U ,S∪V ,k if l + 1 = n < k � m,

f f
l,U ,V ,k if l + 1 < m,k;
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(M5) f f
n,S,T ,m ◦ f f

l,a = f f
l,a ◦ f f

n,S,T ,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f f
n,S,T ,m if m � l,

f f
n,S,T ,l if n + 1 < l � m,

f f
n,K ,T ∪aC ,l

if n + 1 = l � m,

f f
n−1,K ,K ,n if n = l � m − 1,

f f
l,a if l < n;

(M6) f f
n,a ◦ f f

m,b = f f
m,b ◦ f f

n,a =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f f
n,a if n + 1 < m,

f f
n−1,K ,K ,n if m � n � m + 1,

f f
m−1,K ,K ,m if n + 1 = m,

f f
m,b if m + 1 < n.

Clearly, M0 is a monoid and similar compositions show that M f is a monoid. To see that M f is a left
M0-act but not a right M0-act we look at the mixed compositions.

(L1) g f
n,S,T ,m ◦ f int

l,U ,V = f int
l,U ,V ◦ g f

n,S,T ,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g f
n,S,T ,m if n + 1 � m, l,

g f
n,S,T ∪U ,m if n + 1 = l � m,

g f
n,S∪U ,T ∪V ,m if n = l � m − 1,

g f
l,U ,S∪V ,m if l + 1 = n � m − 1,

g f
l,U ,V ,m if l < n � m − 1;

(L2) g f
m,a ◦ f int

l,U ,V = f int
l,U ,V ◦ g f

m,a =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g f
m,a if m < l,m = l, a /∈ U or l = m − 1, a /∈ V ,

g f
m−1,K ,K ,m if m = l, a ∈ U ,

g f
m−1,U ,K ,m if l = m − 1, a ∈ V ,

g f
l,U ,V ,m if l < m − 1;

(L3) (a) g f
n,S,T ,m ◦ f f

l,U ,V ,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

g f
n,S,T ,m if n + 1 < l,m � k,

g f
n,S,T ∪U ,m if n + 1 = l < m � k,

g f
n,S∪U ,T ∪V ,m if n = l � m − 1 � k − 1,

not a semiprime operation if k < m;

(b) f f
l,U ,V ,k ◦ g f

n,S,T ,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g f
n,S,T ,m if n + 1 < l,m � k,

g f
n,S,T ∪U ,m if n + 1 = l < m � k,

g f
n,S,T ∪U ,k if n + 1 = l � k < m,

g f
n,S∪U ,T ∪V ,m if n = l � m − 1 � k − 1,

g f
n,S∪U ,T ∪V ,k if n = l < k � m,

g f
l,U ,V ∪S,m if l + 1 = n < m � k,

g f
l,U ,V ∪S,k if l + 1 = n � k < m,

g f
l,U ,V ,k if l + 1 < n,k � m;

(L4) (a) g f
n,a ◦ f f

m,b =
{

g f
n,a if n + 1 < m,
not a semiprime operation if m � n + 1;



2752 J.C. Vassilev / Journal of Algebra 321 (2009) 2737–2753
(b) f f
m,b ◦ g f

n,a =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

g f
n,a if n + 1 < m,

g f
n−1,K ,K ,n if m � n � m + 1,

g f
m−1,K ,K ,m if n + 1 = m,

g f
m,b if m + 1 < n;

(L5) (a) g f
n,S,T ,m ◦ f f

l,a =
{

g f
n,S,T ,m if m � l,

not a semiprime operation if l < m;

(b) f f
l,a ◦ g f

n,S,T ,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g f
n,S,T ,m if m � l,

g f
n,S,T ,l if n + 1 < l � m,

g f
n,K ,T ∪aC ,l

if n + 1 = l � m,

g f
n−1,K ,K ,n if n = l � m − 1,

g f
l,a if l < n;

(L6) (a) g f
l,a ◦ f f

n,S,T ,m =
{

g f
l,a if l < n,

not a semiprime operation if l � n;

(b) f f
n,S,T ,m ◦ g f

l,a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g f
n,S,T ,m if m � l,

g f
n,S,T ,l if n + 1 < l � m,

g f
n,K ,T ∪aC ,l

if n + 1 = l � m,

g f
n−1,K ,K ,n if n = l � m − 1,

g f
l,a if l < n.

Hence M f is a left M0-act but not a right M0-act. �
We will now see as in the Dedekind case the only prime operation is the identity.

Theorem 4.12. Let R = K [[t2, t3]]. Then P R = {e}.

Proof. Suppose fc is one of the other semiprime operations. Then for some i � 2 and some a ∈ K ,
fc(Pi,a) = Mi . Now since fc is prime, Pi,a = (ti +ati+1) fc(R) = fc(Pi,a) = Mi which is a contradiction.
Hence fc cannot be prime. Thus P R = {e}. �

To determine all the semiprime operations for other semigroup rings becomes immediately more
complicated for any other semigroup. Note even for the ring K [[t2, t5]], the diagram of two generated
monomial ideals is as follows:

(t2, t5) (t4, t7) (t6, t9)

R (t4, t5) (t5, t6) (t6, t7) (t7, t8) · · · (0)

(t5, t8)
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where each line segment in the above diagram indicates ⊇. Of course, this leaves out a lot of two
generated ideals in addition to all the principal ideals. But even without all these ideals we can see
that there is an extra layer of difficulty that we did not have in the cuspidal cubic case. Certainly,
the conductor will be involved with the classification of all semiprime operations. I believe that the
non-exceptional semiprime operations over a one-dimensional semigroup ring R will decompose into
the union of two submonoids of the monoid (MI,◦) of maps from the set of ideals of R to itself, one
being a left but not a right act of the other.

Certainly, if fc is a prime operation over any commutative ring, then fc is the identity on the set
of principal ideals of R since g R = g fc(R) = fc(g) for all g ∈ R . However, it is not known whether fc

must be the identity over one-dimensional domains. It may be that for one-dimensional semigroup
rings, the set of prime operations will be the singleton set consisting only of the identity.

There will certainly be more prime operations if the ring is a normal domain of dimension 2 or
more since the integral closure does not agree with the identity for all ideals of height 2 or more.
Moreover, integral closure is a prime operation in any normal domain.
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