CASE REPORT

Renal outcome with eculizumab in two diarrhea-associated hemolytic–uremic syndrome cases with severe neurologic involvement

Zelal Ekinci a,*, Kenan Bek a, Mehmet Baha Aytac a, Aynur Karadenizlib, Veyser Sabri Hancerc

a Department of Pediatric Nephrology, School of Medicine, Kocaeli University, Kocaeli, Turkey
b Department of Medical Microbiology, School of Medicine, Kocaeli University, Kocaeli, Turkey
c Department of Medical Biology and Genetics, School of Medicine, Istanbul Bilim University, Istanbul, Turkey

Received 8 November 2013; received in revised form 3 July 2014; accepted 30 July 2014
Available online 11 October 2014

Summary The kidney and brain are the two target organs in patients with Shiga toxin-producing Escherichia coli-associated hemolytic–uremic syndrome (STEC-HUS). Activation of the alternative complement pathway occurs in patients with STEC-HUS. A monoclonal antibody (eculizumab) directed against C5 has been reported to be effective against severe neurologic involvement in patients with STEC-HUS. We report on two STEC-HUS children with severe neurologic involvement treated with eculizumab. Despite prompt resolution of initial neurologic findings upon treatment with eculizumab, proteinuria and hypertension persisted in these patients. The persistence of these two risk factors is particularly emphasized to discuss the long-term effects of eculizumab, especially on renal involvement.

* Corresponding author. Kocaeli University Hospital, Department of Pediatric Nephrology, School of Medicine, Kocaeli University, 41380 Umuttepe, Kocaeli, Turkey. E-mail addresses: zekinci@outlook.com, zbircan@kocaeli.edu.tr (Z. Ekinci).

http://dx.doi.org/10.1016/j.hkjn.2014.07.001
1561-5413/© 2014, Hong Kong Society of Nephrology Ltd. Published by Elsevier Taiwan LLC. All rights reserved.
Introduction

The recent outbreak of *Escherichia coli* O104:H4 (EHEC O104:H4) in Germany in May 2011 provided a great deal of new information for the management of Shiga toxin-producing *E. coli*-associated hemolytic–uremic syndrome (STEC-HUS) patients, especially for severely infected cases. The prompt resolution of neurologic findings in STEC-HUS patients upon treatment with eculizumab right at the peak of that outbreak had been reported from Canada. A total of 328 patients and 13 children were treated with eculizumab during the outbreak in Germany. There was also a limited outbreak of diarrhea-associated hemolytic–uremic syndrome (D+HUS) in Turkey in 2011. We had some experience in treating patients with eculizumab during that outbreak, and would like to discuss two of them from our experience to demonstrate the effectiveness of the drug and its safety.

Case reports

Case 1

A 9.5-year-old girl presented with visual hallucinations, lethargy, vomiting, and abdominal pain 3 days after experiencing watery diarrhea. The patient had watery diarrhea with vomiting that lasted for 2 days. Her urine output was decreased in the past 2 days and she was apathetic and hallucinating since that morning. On physical examination she had tremor in her hands, altered consciousness, and confusion with normal blood pressure (100/60 mmHg, <95th percentile). Based on low platelet count (88.2 × 10^3/μL), low haptoglobin level (<8 mg/dL), fragmented erythrocytes in the blood smear, and high creatinine (5.02 mg/dL) and lactate dehydrogenase (LDH; 2934 U/L) levels, D+HUS was diagnosed. Leukocytosis was also present (21.6 × 10^3/μL). Complement C3 level was normal (93 mg/dL). *E. coli* O157:H7 serotype was isolated from her stool culture and polymerase chain reaction (PCR) detected Shiga toxin 2. The patient received plasma exchange (PE) therapy with a dose of 60 mL/kg fresh frozen plasma—five times initially on a daily basis and five times/week for the following 2 weeks together with hemodialysis. However, neurological disturbance including somnolence and hallucinations persisted. Because magnetic resonance imaging (MRI) device was temporarily unavailable at that time, noncontrast tomography was performed for cranial imaging and the result was normal. On the 19th day of hospitalization during the 15th PE session, the patient complained of blindness and then developed a generalized tonic–clonic convolution and became unconscious. Her blood pressure, plasma calcium level (9.6 mg/dL), and electrolytes were within normal limits. Because of extreme agitation, midazolam infusion together with 2 L/minute oxygen was administered. She was vaccinated immediately against *Neisseria meningitidis*, *Haemophilus influenzae*, and *Streptococcus pneumoniae* infections (all at the same time) and a prophylactic antibiotic was prescribed. Eculizumab therapy (Soliris; Alexion Pharmaceuticals, Cheshire, CT, USA) was initiated immediately on the day of convulsion at a weekly dose of 600 mg for 3 weeks. Just before the eculizumab infusion was started, her hemoglobin level (9.05 g/dL), platelet count (246 × 10^3/μL), and LDH level (280 IU/L) were stable but she was still anuric. Following the first dose of eculizumab, the patient’s neurological condition improved dramatically within 48 hours; however, anuria slowly resolved over 6 days after the first eculizumab infusion. The course of the laboratory findings are shown in Fig. 1 (Case 1). Nephrotic-range proteinuria (45.78 mg/m^2/minute) and diminished renal functions [estimated glomerular filtration rate (eGFR); 44.93 mL/minute/1.73 m^2] persisted on the 90th-day visit. The patient was hypertensive, and thus required treatment with ramipril. At the end of 1st year of treatment, her serum creatinine level was still above the normal limits (1.08 mg/dL, eGFR: 63.65 mL/minute/1.73 m^2) and mild proteinuria was recorded (13.82 mg/m^2/minute). The patient’s blood pressure was under control with ramipril treatment. An analysis of factor I, H, and MCP genes did not identify any mutation.

Case 2

A 20-month-old girl was admitted with altered consciousness. She had a history of watery diarrhea for 4 days, which was treated with ceftriaxone. On the 4th day, the patient developed altered consciousness, weakness, and convulsion. An initial examination revealed an unconscious and pale child with normal blood pressure (90/60 mmHg, <95th percentile). Based on low platelet count (89.10 × 10^3/μL), fragmented red blood cells in the blood smear, low hemoglobin (8.84 g/dL), low haptoglobin (<8 mg/dL), high creatinine (6.46 g/dL), and high LDH (2934 U/L) levels, D+HUS was diagnosed. Complement C3 level was 75 mg/dL (90–180). During admission in the emergency department, her serum sodium level was 120 mEq/L and she was treated with 3% NaCl to control convulsions. In 48 hours, her serum sodium level was increased to 135 mEq/L and her consciousness was normal. Peritoneal dialysis (PD) was initiated on the day of admission. Neither Shiga toxins 1 and 2 could be shown with PCR nor could enterohemorrhagic *E. coli* be isolated from the stool, possibly because of the previous ceftriaxone treatment. On the 4th day of hospitalization while her serum sodium level was 137 mEq/L and blood pressure was normal, she presented with altered consciousness and dystonic movements. MRI revealed diffusion restriction in the right hemisphere. Laboratory evaluation on that day revealed the following measurements: hemoglobin, 7.79 g/dL; platelets, 95.20 × 10^3/μL; LDH, 3254 U/L; creatinine, 7.83 mg/dL; and haptoglobin level <8 mg/dL. The course of the laboratory findings is shown in Fig. 1 (Case 2). She was still anuric and thus PD was continued. Because of the difficulties involved in initiating PE therapy for infants and a previous report demonstrating the effectiveness of eculizumab in STEC-HUS patients with neurologic involvement, treatment with eculizumab was initiated at a dose of 600 mg/week for the 1st week on the day of altered consciousness and dystonic movements. The treatment was continued at a dose of 300 mg/week for the 2nd week and 300 mg every 2 weeks from the 3rd week onward. Vaccination against *H. influenzae* and *S. pneumoniae* infections was performed as previously described. Vaccination against *N. meningitidis* infections was performed immediately prior to treatment with eculizumab and prophylactic antibiotics were prescribed. Recovery of consciousness and dystonic movements were observed after 48 hours. Platelets increased immediately on the 1st day.
Figure 1 Course of laboratory findings of patients during the eculizumab therapy period (black arrows are days of eculizumab treatment). Case 1 received 15 sessions of plasma exchange before eculizumab therapy was initiated. Cr = creatinine; Hb = hemoglobin; LDH = lactate dehydrogenase; Plt = platelet.
Caret. Menne et al reported no demonstrable benefit of supportive care. Even in STEC-HUS cases with O104:H4, there is involvement. In addition, administration day, dosage, interval, and the number of times the drug was administered (twice and 4 times in Lapeyraque et al’s cases, and 3 times in our cases) are quite similar. The common features observed between our cases and those reported by Lapeyraque et al in terms of long-term renal involvement were particularly interesting for us. This made us think that the long-term renal effect of the drug, especially for persistent proteinuria and hypertension, is not as favorable as in resolving acute neurologic findings. Considering these well-known risk factors for renal disease progression, we believe that they warrant special attention in the follow up of these patients.

The high cost of the drug and ongoing doubts about its safety lead to a considerable delay in deciding whether the drug should necessarily be prescribed. Even in our patients, the drug could have been used during the late phase of the disease, probably after the cessation of the alternative complement pathway activation. In this context, the residual renal damage can be attributed to the late prescription of the drug. However, it is obvious that only randomized clinical trials (RCTs) can prove or disprove this hypothesis. It is also clear that acute nature and varying severity of the disease render such RCTs very difficult to be designed. Therefore, it seems that sharing personal clinical experience will continue to be important in order to develop treatment initiatives until such studies become available. For this reason, we considered important to report the clinical course of these two cases.

Conflicts of interest

All contributing authors declare no conflicts of interest.

References