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ABSTRACT 

The authors supply the derivative of an orthogonal matrix of eigenvectors of a real 
symmetric matrix. To illustrate the applicability of their result they consider a real 
symmetric random matrix for which a more or less standard convergence in distribu- 
tion is assumed to hold. The well-known delta method is then used to get the 
asymptotic distribution of the orthogonal eigenmatrix of the random matrix. © 1997 
Elsevier Science Inc. 

I N T R O D U C T I O N  

Consider a real symmetric p × p matrix M, with distinct eigenvalues A t 
and associated normalized eigenvectors w~ (i = 1 . . . . .  p). I t  is well known 
that then real-valued functions ~b i and vector functions f~ are defined for all 
matrices Z in some neighborhood J ~ M )  c ~pxp of M, such that 

= X,,  L ( M )  = w ,  
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and 

Zfi = $i f i ,  fi'fj = 6ij [Z ~M~(M)],  

6ij being the Kronecker delta, 
Kollo and Neudecker (1993) gave the derivatives of f/ for the case of 

0 symmetric perturbations dZ defined at M, viz. f i ( z ) / O z  [ . . . . .  where 

z = D  ÷ vecZ and m = D  ÷ vecM,  

1 D being the pZ × UP( P + 1) duplication matrix and D ÷ its Moore-Penrose 
inverse. See Magnus and Neudecker (1995) for details on derivatives and the 
duplication matrix. 

In the present paper we shall give a compact expression for the full 
derivative a vec F ( z ) / O z ' l  . . . .  where F = ( f l  . . . f p ) .  It will be established 
by treating the full system of eigenequations. 

DEVELOPMENT 

Let 

ZF = F ~ ,  F ' F  = I (1) 

link the eigenvector and eigenvalue functions f i (z)  and ~hi(z), where 

F = F ( z )  = [ f / ( z )  .-. f p ( Z ) ] ,  * = q t (z )  = E,O~(z)E,,, 

E .  = eie'i, 

and e, is the ith unit vector of dimension p (i = 1 . . . . .  p). We then find the 
following result: 

THEOREM. 

0 vee F ( z )  . . . .  + 
Oz' = ( I ® W ) ( A ® I - I ® A )  ( W ' ® W ' ) D ,  (2) 

where W = (w I --. wp), W ' W  = I, and A = ZihiEi i .  
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Clearly w i and A i (i = 1 . . . . .  p) are orthogonal eigenvectors and eigen- 
values of M. 

Proof. Taking differentials of ZF = Z ~  at the point z = m yields 

( d Z ) W  + M d F  = ( d F ) A  + W d * ,  (3) 

from which follows 

a s  

d *  = W ' ( d Z ) W  + W ' M d F  - W ' ( d F ) A  

= W ' ( d Z ) W  + A W '  dF - W ' ( d F ) A  = [ W ' ( d Z ) W l d ,  (4) 

Clearly 

KB += - B + K ,  (8) 

because KB = - B K  and (KBK)+= KB + K. Using (6), (7) and (8) produces 

( I  ® W ) K  d vee Q = 0. 

(AW' dF)  = A(W'  dF)  = (W'  d F ) . A  = 

A a generically being the diagonal matrix obtained from the (square) matrix 
A. Premultiplieation of (3) by W'  and veetorization give by (4) the equation 

(A ® t - I ® A ) ( I  ® W ' ) d  vec F = ( I  - K d ) ( W '  ® W ' )  d vee Z. (5) 

We have used the property K d vee A = vee A d for square A. 
Define then B -'= A ® I - I ® A and C := I - K d. Clearly C = B+B. 

The solution for (5) is now 

d v e e F  = ( I  @ W ) B + ( W  ' @ W ' )  d v e e Z  + ( I  ® W ) K  d vecQ,  (6) 

Q being an arbitrary matrix. Differentiation of F ' F  = I at the point z = m 
yields 

( I  ® W' )  d v e c  F = - K ( I  ® W ' )  d v e c  e .  (7) 
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The solution (6) can then be written as 

d v e c F = ( I ® W ) ( A ® I - I ® A ) + ( W ' ® W ' ) D d Z ,  (9) 

which yields 

vec F ( z ) ..... 
c~z' = ( I  ® W ) ( A  ® I - I ® A) + (W'  ® W' )D.  • 

TONU KOLLO AND HEINZ NEUDECKER 

AN EXAMPLE 

Assume the convergence 

~/-~t)( ~l(n ) -- M) D..4"(O, D+ GD+') 

holds for an estimator M(n) of M from asample size n, where 1~/1(n) is a real 
s^ymmetric p × p random matrix. Let W(,) be orthogonal eigenmatriceS of 
M(,). We shall use the well-known convergence result due to Anderson 
(1958): Let {(y(n))} be a sequence of random vectors Y(n), and b be a 
compatible fixed vector. Assume that 

fnn ( Y(n) - b) D./I/'( O, T) (convergence in distribution), 

or equivalently that ~ny(n ) is asymptotically normally distributed with mean 
v~nb and variance T. Let f ( z )  be a vector function of a vector variable z with 
first and second derivatives existing in a neighborhood of z = b. Then 

1/-n[f(y(n)) - f (b )]  o ~ J//'(O, ATA'), 

where 

a = __af(Z)oz, z-b 

is a matrix derivative. This yields, in conjunction with the Theorem, for 
n ---> O0, 

vec( n,- W) 
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where 

r = ( I  ~ W ) ( A .  I - I ~ A)  ÷ (W'  ® W ' ) C  

× ( W  ~ W ) ( A  ~ I - I ~ A)  ÷ ( I  ~ W ' ) .  

Clearly T contains the asymptotic variances and covariances of the 
eigenveetors tb(,~ and t~(n)j. The article by Kollo and Neudecker (1993) only 
gave, the variances. See their Theorem 4.1. We find as asymptotic covariance 
between t~(,)~ and t~,(j~ the matrix 

r,j = [w: .  w ( ~ , i -  A~ + w']C[wj ~ w ( ~ I -  A~+ W'], 

where w, = W. i and tb~n)i = (~z).~ (i = 1 . . . . .  p) 
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