Tônu Kollo
University of Tartu
Tartu, Estonia
and
Heinz Neudecker
Instituut voor Actuariaat en Econometrie
University of Amsterdam
Roetersstraat 11
1018 WB Amsterdam
The Netherlands

Submitted by Richard William Farebrother

Abstract

The authors supply the derivative of an orthogonal matrix of eigenvectors of a real symmetric matrix. To illustrate the applicability of their result they consider a real symmetric random matrix for which a more or less standard convergence in distribution is assumed to hold. The well-known delta method is then used to get the asymptotic distribution of the orthogonal eigenmatrix of the random matrix. © 1997 Elsevier Science Inc.

INTRODUCTION

Consider a real symmetric $p \times p$ matrix M, with distinct eigenvalues λ_{i} and associated normalized eigenvectors $w_{i}(i=1, \ldots, p)$. It is well known that then real-valued functions ψ_{i} and vector functions f_{i} are defined for all matrices Z in some neighborhood $\mathscr{M}(M) \subset \mathbb{R}^{p \times p}$ of M, such that

$$
\psi_{i}(M)=\lambda_{i}, \quad f_{i}(M)=w_{i}
$$

LINEAR ALGEBRA AND ITS APPLICATIONS 264:489-493 (1997)

and

$$
Z f_{i}=\psi_{i} f_{i}, \quad f_{i}^{\prime} f_{j}=\delta_{i j} \quad[Z \in \mathscr{N}(M)]
$$

$\delta_{i j}$ being the Kronecker delta.
Kollo and Neudecker (1993) gave the derivatives of f_{i} for the case of symmetric perturbations $d Z$ defined at M, viz. $\partial f_{i}(z) /\left.\partial z^{\prime}\right|_{z=m}$, where

$$
z=D^{+} \text {vec } Z \quad \text { and } \quad m=D^{+} \text {vec } M
$$

D being the $p^{2} \times \frac{1}{2} p(p+1)$ duplication matrix and D^{+}its Moore-Penrose inverse. See Magnus and Neudecker (1995) for details on derivatives and the duplication matrix.

In the present paper we shall give a compact expression for the full derivative ∂ vec $F(z) /\left.\partial z^{\prime}\right|_{z=m}$, where $F=\left(f_{1} \ldots f_{p}\right)$. It will be established by treating the full system of eigenequations.

DEVELOPMENT

Let

$$
\begin{equation*}
Z F=F \Psi, \quad F^{\prime} F=I \tag{1}
\end{equation*}
$$

link the eigenvector and eigenvalue functions $f_{i}(z)$ and $\psi_{i}(z)$, where

$$
\begin{gathered}
F=F(z)=\left[\begin{array}{lll}
f_{1}(z) & \cdots & f_{p}(z)
\end{array}\right], \quad \Psi=\Psi(z)=\sum_{i} \psi_{i}(z) E_{i i} \\
E_{i i}=e_{i} e_{i}^{\prime}
\end{gathered}
$$

and e_{i} is the i th unit vector of dimension $p(i=1, \ldots, p)$. We then find the following result:

Theorem.

$$
\begin{equation*}
\left.\frac{\partial \operatorname{vec} F(z)}{\partial z^{\prime}}\right|_{z=m}=(I \otimes W)(\Lambda \otimes I-I \otimes \Lambda)^{+}\left(W^{\prime} \otimes W^{\prime}\right) D \tag{2}
\end{equation*}
$$

where $W=\left(w_{1} \cdots w_{p}\right), W^{\prime} W=I$, and $\Lambda=\Sigma_{i} \lambda_{i} E_{i i}$.

Clearly w_{i} and $\lambda_{i}(i=1, \ldots, p)$ are orthogonal eigenvectors and eigenvalues of M.

Proof. Taking differentials of $Z F=Z \Psi$ at the point $z=m$ yields

$$
\begin{equation*}
(d Z) W+M d F=(d F) \Lambda+W d \Psi \tag{3}
\end{equation*}
$$

from which follows

$$
\begin{align*}
d \Psi & =W^{\prime}(d Z) W+W^{\prime} M d F-W^{\prime}(d F) \Lambda \\
& =W^{\prime}(d Z) W+\Lambda W^{\prime} d F-W^{\prime}(d F) \Lambda=\left[W^{\prime}(d Z) W\right]_{d} \tag{4}
\end{align*}
$$

as

$$
\left(\Lambda W^{\prime} d F\right)_{d}=\Lambda\left(W^{\prime} d F\right)_{d}=\left(W^{\prime} d F\right)_{d} \Lambda=\left[W^{\prime}(d F) \Lambda\right]_{d}
$$

A_{d} generically being the diagonal matrix obtained from the (square) matrix A. Premultiplication of (3) by W^{\prime} and vectorization give by (4) the equation

$$
\begin{equation*}
(\Lambda \otimes I-I \otimes \Lambda)\left(I \otimes W^{\prime}\right) d \operatorname{vec} F=\left(I-K_{d}\right)\left(W^{\prime} \otimes W^{\prime}\right) d \operatorname{vec} Z \tag{5}
\end{equation*}
$$

We have used the property K_{d} vec $A=\operatorname{vec} A_{d}$ for square A.
Define then $B:=\Lambda \otimes I-I \otimes \Lambda$ and $C:=I-K_{d}$. Clearly $C=B^{+} B$. The solution for (5) is now

$$
\begin{equation*}
d \operatorname{vec} F=(I \otimes W) B^{+}\left(W^{\prime} \otimes W^{\prime}\right) d \operatorname{vec} Z+(I \otimes W) K_{d} \operatorname{vec} Q, \tag{6}
\end{equation*}
$$

Q being an arbitrary matrix. Differentiation of $F^{\prime} F=I$ at the point $z=m$ yields

$$
\begin{equation*}
\left(I \otimes W^{\prime}\right) d \operatorname{vec} F=-K\left(I \otimes W^{\prime}\right) d \operatorname{vec} F \tag{7}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
K B^{+}=-B^{+} K, \tag{8}
\end{equation*}
$$

because $K B=-B K$ and ($K B K)^{+}=K B^{+} K$. Using (6), (7) and (8) produces

$$
(I \otimes W) K_{d} \operatorname{vec} Q=0
$$

The solution (6) can then be written as

$$
\begin{equation*}
d \operatorname{vec} F=(I \otimes W)(\Lambda \otimes I-I \otimes \Lambda)^{+}\left(W^{\prime} \otimes W^{\prime}\right) D d Z \tag{9}
\end{equation*}
$$

which yields

$$
\left.\frac{\partial \operatorname{vec} F(z)}{\partial z^{\prime}}\right|_{z=m}=(I \otimes W)(\Lambda \otimes I-I \otimes \Lambda)^{+}\left(W^{\prime} \otimes W^{\prime}\right) D
$$

AN EXAMPLE

Assume the convergence

$$
\sqrt{n} v\left(\hat{M}_{(n)}-M\right) \xrightarrow{D} \mathscr{N}\left(0, D^{+} G D^{+\prime}\right)
$$

holds for an estimator $\hat{M}_{(n)}$ of M from a sample size n, where $\hat{M}_{(n)}$ is a real symmetric $p \times p$ random matrix. Let $\hat{W}_{(n)}$ be orthogonal eigenmatrices of $\hat{M}_{(n)}$. We shall use the well-known convergence result due to Anderson (1958): Let $\left\{\left(y_{(n)}\right)\right\}$ be a sequence of random vectors $y_{(n)}$, and b be a compatible fixed vector. Assume that

$$
\sqrt{n}\left(y_{(n)}-b\right) \xrightarrow{D} \mathscr{N}(0, T) \quad \text { (convergence in distribution) }
$$

or equivalently that $\sqrt{n} y_{(n)}$ is asymptotically normally distributed with mean $\sqrt{n} b$ and variance T. Let $f(z)$ be a vector function of a vector variable z with first and second derivatives existing in a neighborhood of $z=b$. Then

$$
\sqrt{n}\left[f\left(y_{(n)}\right)-f(b)\right] \xrightarrow{D} \mathscr{N}\left(0, \Delta T \Delta^{\prime}\right)
$$

where

$$
\Delta=\left.\frac{\partial f(z)}{\partial z^{\prime}}\right|_{z=b}
$$

is a matrix derivative. This yields, in conjunction with the Theorem, for $n \rightarrow \infty$,

$$
\sqrt{n} \operatorname{vec}\left(\hat{W}_{(n)}-W\right) \xrightarrow{D} \mathscr{N}(0, T)
$$

where

$$
\begin{aligned}
T= & (I \otimes W)(\Lambda \otimes I-I \otimes \Lambda)^{+}\left(W^{\prime} \otimes W^{\prime}\right) G \\
& \times(W \otimes W)(\Lambda \otimes I-I \otimes \Lambda)^{+}\left(I \otimes W^{\prime}\right)
\end{aligned}
$$

Clearly T contains the asymptotic variances and covariances of the eigenvectors $\hat{w}_{(n) i}$ and $\hat{w}_{(n) j}$. The article by Kollo and Neudecker (1993) only gave, the variances. See their Theorem 4.1. We find as asymptotic covariance between $\hat{w}_{(n) i}$ and $\hat{w}_{n(j)}$ the matrix

$$
T_{i j}=\left[w_{i}^{\prime} \otimes W\left(\lambda_{i} I-\Lambda\right)^{+} W^{\prime}\right] G\left[w_{j} \otimes W\left(\lambda_{j} I-\Lambda\right)^{+} W^{\prime}\right]
$$

where $w_{i}=W_{\cdot i}$ and $\hat{w}_{(n) i}=\left(\hat{W}_{n}\right)_{\cdot i}(i=1, \ldots, p)$

REFERENCES

Anderson, T. W. 1958. An Introduction to Multivariate Statistical Analysis, Wiley, New York.
Kollo, T. and Neudecker, H. 1993. Asymptotics of eigenvalues and unit-length eigenvectors of sample variance and correlation matrices, J. Multivariate Anal. 47:283-300. Corrigendum, J. Multivariate Anal. 51:210.
Magnus, J. R. and Neudecker, H. 1995. Matrix Differential Calculus with Applications in Statistics and Econometrics, Wiley, Chichester.

