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In this paper we have used the homotopy analysis method (HAM) to obtain solutions
of multi-term linear and nonlinear diffusion–wave equations of fractional order. The
fractional derivative is described in the Caputo sense. Some illustrative examples have been
presented.
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1. Introduction

Fractional equations, both partial and ordinary ones, have received more attention in recent years. Various phenomena
in physics, like diffusion in a disordered or fractal medium, or in image analysis, or in risk management have been modeled
by means of fractional equations.
There has been some attempt to solve linear problems with multiple fractional derivatives (the so-called multi-term

equations) [1,2]. Notmuch has been done for the nonlinear problems and only a few numerical schemes have been proposed
to solve the nonlinear fractional differential equations. More recently, applications have included classes of nonlinearmulti-
order fractional derivative equations and thismotivates us to develop a numerical scheme for their solutions [3,4]. Numerical
and analytical methods have included Adomian decomposition method (ADM) [5,6], variational iteration method (VIM) [7],
and homotopy perturbation method (HPM) [7].
In this paper, the homotopy analysis method [8,9] is applied to solve multi-term fractional diffusion–wave equations

P(D)u(x̄, t) =
n∑
i=1

Ni
∂2u
∂x2i
+ ϕ(x̄, t)um(x̄, t),

where

P(D) ≡ Ds1t −
r∑
j=2

λjD
sj
t ,

r ≥ 2, r ∈ N, 0 < sr < sr − 1 < · · · < s2 < s1 < 2, m = 0, 1, 2, . . . ,Ni(x̄, t) ∈ Cα.

Dsjt are Caputo fractional derivatives.
The homotopy analysis method (HAM) [8,10] provides an effective procedure for explicit and numerical solutions of a

wide and general class of differential systems representing real physical problems. Based on homotopy of topology, the
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validity of the HAM is independent of whether or not there exist small parameters in the considered equation. Therefore,
the HAM can overcome the foregoing restrictions and limitations of perturbation techniques so that it provides us with
a possibility to analyze strongly nonlinear problems. This method has been successfully applied to solve many types of
nonlinear problems by others [11–17].
The paper has been organized as follows. Basic definitions are given in Section 2. In Section 3 the homotopy analysis

method is described. Section 4 presents some illustrative example equations.

2. Basic definitions

Definition 1. A real function f (t), t > 0 is said to be in the space Cα, α ∈ R if there exists a real number p (> α), such that
f (t) = tpf1(t)where f1 ∈ C[0,∞]. Clearly Cα ⊂ Cβ if β ≤ α.

Definition 2. A function f (t), t > 0 is said to be in the space Cmα ,m ∈ N
⋃
{0}, if f (m) ∈ Cα .

Definition 3. The left sided Riemann–Liouville fractional integral of order µ > 0, [18,19] of a function f ∈ Cα, α ≥ −1 is
defined as:

Iµf (x, t) =
1

0(µ)

∫ t

0

f (x, τ )
(t − τ)1−µ

dτ , µ > 0, t > 0,

I0f (x, t) = f (x, t). (1)

Definition 4. The (left sided) Caputo fractional derivative of f , f ∈ Cm
−1, m ∈ N

⋃
{0}, is defined as [1,20]:

Dµ
∗
f (x, t) =


[
Im−µf (m)(x, t)

]
m− 1 < µ < m, m ∈ N,

∂m

∂tm
f (x, t) µ = m.

(2)

Note that [18,19]

(i) Iµt f (x, t) =
1

0(µ)

∫ t

0

f (x, s)
(t − s)1−µ

ds, µ > 0, t > 0,

(ii) Dµ∗t f (x, t) = I
m−µ
t

∂mf (x, t)
∂tm

, m− 1 < µ < m. (3)

(iii) Iµtγ =
0(γ + 1)

0(γ + µ+ 1)
tγ+µ, µ > 0, γ > −1, t > 0, (4)

(iv) IµDµ
∗
f (x, t) = f (x, t)−

m−1∑
k=0

∂kf (x, 0+)
∂tk

tk

k!
, m− 1 < µ ≤ m,m ∈ N. (5)

Definition 5. A two-parameter Mittag-Leffler function is defined by the series expansion [21]:

Eα,β(t) =
∞∑
n=0

tn

0(α n+ β)
, α, β > 0.

Then kth-derivative of Mittag-Leffler function is

E(k)α,β(t) =
∂k

∂tk
Eα,β(t) =

∂k

∂tk

∞∑
j=0

t j

0(αj+ β)
=

∞∑
j=0

j(j− 1) . . . (j− (k− 1))t j−k

0(αj+ β)

=

∞∑
j=k

j(j− 1) . . . (j− (k− 1))t j−k

0(αj+ β)
=

∞∑
j=k

j!
(j− k)!

t j−k

0(αj+ β)

= k!
∞∑
j=k

(
j
k

)
t j−k

0(αj+ β)
. (6)

3. Analysis of the homotopy analysis method

We apply the homotopy analysis method to fractional multi-term diffusion–wave equations
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P(D)u(x̄, t) =
n∑
i=1

Ni
∂2u
∂x2i
+ ϕ(x̄, t)um(x̄, t), (7)

u(x̄, 0) = f (x̄), (8)
ut(x̄, 0) = g(x̄), (9)

where

P(D) ≡ Ds1t −
r∑
j=2

λjD
sj
t ,

0 < sr < sr − 1 < · · · < s2 < s1 < 2.

Let us consider the following fractional differential equation

N [u(x̄, t)] = 0, (10)

where N is a nonlinear fractional differential operator, x̄ and t are independent variables, u(x̄, t) is an unknown function,
respectively. For simplicity, we ignore all boundary or initial conditions, which can be treated in a similar way. By means of
generalizing the traditional homotopy method, Liao [10] constructs the so-called zero-order deformation equation

(1− p)L[φ(r, t; p)− u0(x̄, t)] = p h̄H(x̄, t)N [φ(r, t; p)], (11)

where p ∈ [0, 1] is the embedding parameter, h 6= 0 is a non-zero auxiliary parameter, H(x̄, t) 6= 0 is non-zero auxiliary
function,L = Ds1t (n− 1 < s1 ≤ n) is an auxiliary linear operator with the following property

L[φ(x̄, t)] = 0 when φ(x̄, t) = 0. (12)

u0(x̄, t) is an initial guess of u(x̄, t), u(r, t; p) is a unknown function, respectively. It is important, that one has great freedom
to choose auxiliary things in HAM. Obviously, when p = 0 and p = 1, it holds

φ(r, t; 0) = u0(x̄, t), φ(r, t; 1) = u(x̄, t), (13)

respectively. Thus, as p increases from 0 to 1, the solution φ(r, t; p) varies from the initial guesses u0(x̄, t) to the solution
u(x̄, t). Expanding φ(r, t; p) in Taylor series with respect to p, we have

φ(r, t; p) = u0(x̄, t)+
+∞∑
m=1

um(x̄, t)pm, (14)

where

um(x̄, t) =
1
m!
∂mφ(r, t; p)

∂pm

∣∣∣∣
p=0
. (15)

If the auxiliary linear operator, the initial guess, the auxiliary parameter h, and the auxiliary function are so properly chosen,
the series (14) converges at p = 1, then we have

um(x̄, t) = u0(x̄, t)+
+∞∑
m=1

um(x̄, t). (16)

Define the vector

Eun = {u0(x̄, t), u1(x̄, t), . . . , un(x̄, t)}.

Differentiating Eq. (11) m times with respect to the embedding parameter p and then setting p = 0 and finally dividing
them bym!, we obtain themth-order deformation equation

L[um(x̄, t)− χmum−1(x̄, t)] = h̄ H(x̄, t) Rm(Eum−1, x̄, t), (17)

where

Rm(Eum−1, x̄, t) =
1

(m− 1)!
∂m−1N [φ(x̄, t; p)]

∂pm−1

∣∣∣∣
p=0
. (18)

and

χm =

{
0, m 6 1,
1, m > 1. (19)



1340 H. Jafari et al. / Computers and Mathematics with Applications 59 (2010) 1337–1344

Operating the Riemann–Liouville integral operator Is1 on both sides of Eq. (17), we have

um(x̄, t) = χmum−1(x̄, t)− χm
n−1∑
i=0

u(i)m−1(x̄, 0
+)
t i

i!
+ h̄H(x̄, t)Is1 [Rm(Eum−1, x̄, t)]. (20)

In this way, it is easy to obtain um(x̄, t) form > 1, atmth-order, we have

u(x̄, t) =
M∑
m=0

um(x̄, t). (21)

WhenM →∞, we get an accurate approximation of the original Eq. (10).

4. Applying HAM

In this section we apply this method for solving linear/nonlinear fractional multi-term diffusion and wave equations.

Example 1. Consider the linear multi-term fractional partial differential equation [5].

(Ds1t − D
s2
t )u = −

3∑
i=1

∂2u
∂x2i

, −∞ < xi <∞, t > 0, (22)

u(x̄, 0) = e−(x1+x2+x3), 0 < s2 < s1 < 1. (23)

To solve Eq. (22) by means of homotopy analysis method, according to the initial conditions denoted in (23), it is natural
to choose

u0(x̄, t) = e−(x1+x2+x3). (24)

We choose the linear operator

L[φ(x̄, t; p)] = Ds1t [φ(x̄, t; p)], (25)

with the propertyL[c] = 0. where c is constant.
We now define a nonlinear operator as

N [φ] = (Ds1t − D
s2
t )φ +

3∑
i=1

∂2φ

∂x2i
. (26)

Using the above definition, with assumption H(x̄, t) = 1 we construct the zeroth-order deformation equation

(1− p)L[φ(x̄, t; p)− u0(x̄, t)] = ph̄N [φ(x̄, t; p)]. (27)

Obviously, when p = 0 and p = 1,

φ(x̄, t; 0) = u0(x̄, t), φ(x̄, t; 1) = u(x̄, t). (28)

Thus, we obtain themth-order deformation equations

L[um(x̄, t)− χmum−1(x̄, t)] = h̄Rm(Eum−1), (29)

where

Rm(Eum−1) = (D
s1
t − D

s2
t )um−1 +

3∑
i=1

∂2um−1
∂x2i

.

Now the solution of themth-order deformation equations (29)

um(x̄, t) = (χm + h̄)(um−1(x̄, t)− um−1(x̄, 0))+ h̄

(
−Is1−s2um−1 + Is1

3∑
i=1

∂2um−1
∂x2i

)
. (30)

From (24) and (30) and subject to initial condition

um−1(x̄, 0) = 0, m ≥ 1

we obtain
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u0(x̄, t) = e−(x1+x2+x3), u1(x̄, t) = e−x1−x2−x3
(

3hts1

0 (s1 + 1)
−

hts1−s2

0 (s1 − s2 + 1)

)
,

u2(x̄, t) = e−x1−x2−x3
(
3h2ts1

0 (s1 + 1)
+

6hts1

0 (s1 + 1)
+

9h2t2s1

0 (2s1 + 1)
−

h2ts1−s2

0 (s1 − s2 + 1)

−
hts1−s2

0 (s1 − s2 + 1)
+

h2t2(s1−s2)

0 (2 (s1 − s2)+ 1)
−

6h2t2s1−s2

0 (2s1 − s2 + 1)

)
....

Hence

u(x̄, t) = u0(x̄, t)+ u1(x̄, t)+ u2(x̄, t)+ · · · .

When h̄ = −1, we have

um(x̄, t) = e−(x1+x2+x3)
m∑
k=0

(−3)k
(m
k

) tm(s1−s2)+ks2

0(m(s1 − s2)+ ks2 + 1)
, m = 0, 1, 2, . . . ,

u(x̄, t) =
∞∑
m=0

um(x̄, t) = e−(x1+x2+x3)
∞∑
m=0

m∑
k=0

(−3)k
(m
k

) tm(s1−s2)+ks2

0(m(s1 − s2)+ ks2 + 1)

= e−(x1+x2+x3)
∞∑
k=0

∞∑
m=k

(−3)k
(m
k

) tm(s1−s2)+ks2

0(m(s1 − s2)+ ks2 + 1)
.

Thus in view of (6) we have

u(x̄, t) = e−(x1+x2+x3)
∞∑
k=0

(−3)k
tks1

k!
E(k)s1−s2,ks2+1(t

s1−s2),

which is in agreement with the given solution using ADM [5].

Example 2. Consider the two-dimensional fractional two-term wave equation

(Ds1t − λD
s2
t )u = 2

(
∂2u
∂x21
+
∂2u
∂x22

)
, −∞ < xi <∞, t > 0, (31)

u(x̄, 0) = sin x1. sin x2, (32)
ut(x̄, 0) = 0, 1 < s2 < s2 < 2. (33)

To solve Eq. (31) by means of HAM, according to (32), it is natural to choose

u0(x̄, t) = sin x1. sin x2. (34)

We chooseL = Ds1t with the propertyL[c] = 0, where c is constant.
We define a nonlinear operator as

N [φ] = (Ds1t − λD
s2
t )φ − 2

(
∂2φ

∂x21
+
∂2φ

∂x22

)
. (35)

Assume that H(x̄, t) = 1, we construct the zeroth-order deformation equation

(1− p)L[φ(x̄, t; p)− u0(x̄, t)] = ph̄N [φ(x̄, t; p)]. (36)

According to Eqs. (17)–(19), we obtain themth-order deformation equations

L[um(x̄, t)− χmum−1(x̄, t)] = h̄Rm(Eum−1), (37)

where

Rm(Eum−1) = (D
s1
t − λD

s2
t )um−1 − 2

(
∂2um−1
∂x21

+
∂2um−1
∂x22

)
.

Now, the solution of Eq. (37) form ≥ 1 becomes

um(x̄, t) = (χm + h̄)(um−1(x̄, t)− úm−1(x̄, 0)t − um−1(x̄, 0))− h̄
(
λIs1−s2um−1 + 2Is1

(
∂2um−1
∂x21

+
∂2um−1
∂x22

))
. (38)
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From (34) and (38) and subject to initial condition

um−1(x̄, 0) = 0, úm−1(x, 0) = 0 m ≥ 1

we now successively obtain

u0(x̄, t) = sin x1. sin x2, u1(x̄, t) = sin(x1) sin(x2)
(

4hts1

0 (s1 + 1)
−

hts1−s2λ
0 (s1 − s2 + 1)

)
,

u2(x̄, t) = sin(x1) sin(x2)
(
4h2ts1

0 (s1 + 1)
+

4hts1

0 (s1 + 1)
+

16h2t2s1

0 (2s1 + 1)
−

h2λts1−s2

0 (s1 − s2 + 1)

−
hλts1−s2

0 (s1 − s2 + 1)
+

h2λ2t2(s1−s2)

0 (2 (s1 − s2)+ 1)
−

8h2λt2s1−s2

0 (2s1 − s2 + 1)

)
,

....

Hence u(x̄, t) = u0(x̄, t)+ u1(x̄, t)+ u2(x̄, t)+ · · ·. When h̄ = −1, we obtain

u0(x̄, t) = sin x1. sin x2,

um(x̄, t) = sin x1. sin x2
m∑
k=0

(−4)k
(m
k

)
λm−k

tms1−(m−k)s2

0(ms1 − (m− k)s2)+ 1
, m = 0, 1, 2, . . . .

Thus, the solution u is

u(x̄, t) = sin x1. sin x2
∞∑
k=0

(−4)k
tks1

k!
E(k)s1−s2,ks2+1(λt

s1−s2),

which is in agreement with the obtained solution using ADM [5].

Example 3. Consider the nonlinear fractional equation

(D
3
2
t − D

1
2
t )u+ uxx + u

2
= 0, −∞ < x <∞, t > 0, (39)

u(x, 0) = x, ut(x, 0) = sin x. (40)

According to (11), the zeroth-order deformation can be given by

(1− p)L[φ(x, t; p)− u0(x, t)] = ph̄H(x, t)N [φ(x, t; p)]. (41)

According to the initial conditions (40), we can choose the initial guess as follows:

u0(x, t) = x, ú0(x, 0) = sin x. (42)

and we choose the auxiliary linear operator

L = D
3
2
t . (43)

We also define a nonlinear operator as

N [φ(x, t; p)] = (D
3
2
t − D

1
2
t )φ + φxx + φ

2. (44)

Using the above definition,with assumption H(x, t) = 1 we obtain themth-order deformation equations

D
3
2
t [um(x, t)− χmum−1(x̄, t)] = h̄Rm(Eum−1), (45)

where

Rm(Eum−1) = (D
3
2
t − D

1
2
t )um−1 + (um−1)xx +

m−1∑
i=0

uium−1−i.

The solution of themth-order deformation equations (45):

um(x, t) = (χm + h̄)(um−1(x, t)− úm−1(x, 0) t − um−1(x, 0))

+ h̄

(
−I−1um−1 + I

3
2 (um−1)xx + I

3
2

m−1∑
i=0

uium−1−i

)
. (46)
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Fig. 1. h̄-curve of u(0.5,0.5).

Fig. 2. u(0.5, t).

Table 1

x h̄ = −1.05 h̄ = −1
t = 0.1 t = 0.5 t = 1 t = 0.1 t = 0.5 t = 1

0.2 2.48× 10−12 0.00177 0.00227 4.06× 10−9 0.00503 0.00601
0.4 3.91× 10−9 0.00053 0.00288 5.34× 10−9 0.00242 0.0051
0.6 1.25× 10−9 0.00154 0.00066 2.13× 10−9 0.00030 0.00613
0.8 2.76× 10−9 0.00109 0.00049 2.63× 10−9 0.00161 0.00495
1 5.02× 10−9 0.00001 0.00085 6.08× 10−9 0.00139 0.0030

From (42) and (46) and subject to initial conditions um(x, 0) = 0, úm(x, 0) = 0, m ≥ 1 we obtain

u0(x, t) = x, u1(x, t) = −h t sin(x)− h t x+ 0.752253 ht3/2x2,
u2(x, t) = −h sin(x) t − h2 sin(x) t − h2 x t − h x t + 0.752253 h x2 t3/2

+ 0.752253 h2 x2 t3/2 + 0.5 h2 sin(x) t2 + 0.5 h2 x t2

− 0.601802 h2 x sin(x) t5/2 + 0.333333 h2 x3 t3 + 0.333333 h2 t3

− 0.902703 h2 x2 t5/2 + 0.300901 h2 sin(x) t5/2 − 0.601802 h2 x sin(x) t5/2

....

Hence, the solution of Eq. (39) in series from is obtained as

u(x, t) = u0(x, t)+ u1(x, t)+ u2(x, t)+ · · · .

In Figs. 1 and 2 u(x, t) = (u0 + · · · + u7) is drawn.
The following tables show the error value for the HAM approximate solution uwhen h̄ = −1, h̄ = −1.05, h̄ = −1.2 and

ADM solution (u(x, t) = (u0 + u1 + u2)) [5]. It is clear that we obtain the better results when h̄ = −1.05 (see Table 1 and
Table 2).

5. Conclusion

In this work, the HAM was applied to derive approximate analytical solutions of both linear and nonlinear multi-term
fractional partial differential equations. The explicit series solution linear fractal partial diffusion–wave equations are ob-
tained, which are the same as those results given by the Adomian decomposition method for h̄ = −1. This accords with the
conclusion that the homotopy analysis method logically contains the Adomian decomposition method [10,9].
The HAM provides us with a convenient way to control the convergence of approximation series by means of the so-

called h̄-curve, it is easy to determine the valid regions of h̄ to gain a convergent series solution, which is a fundamental
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Table 2

x h̄ = −1.2 ADM [5]
t = 0.1 t = 0.5 t = 1 t = 0.1 t = 0.5 t = 1

0.2 0.00001 0.00086 0.0042 0.0094 0.4555 4.0243
0.4 0.00003 0.00029 0.00104 0.0095 0.3927 3.7036
0.6 0.00005 0.00131 0.00177 0.0086 0.4067 4.343
0.8 0.00007 0.0011 0.00221 0.0074 0.5323 6.052
1 0.00010 0.00048 0.000627 0.0064 0.79030 8.667

qualitative difference in analysis between HAM and other methods. The results show that HAM is a powerful mathematical
tool for solving wide classes of multi-term fractional differential equations.
We point out that the corresponding analytical and numerical solutions are obtained usingMathematica.
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