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INTRODUCTION 

Let 1M be an oriented finite Riemannian manifold of dimension n with 
Lipschitz boundary (Morrey [6]). Th e analogues for forms of the Dirichlet 
and Neumann problems can be formulated in the following way (Conner [2], 
Duff and Spencer [3], Friedrichs [4], and Morrey [6]). 

If w is a p-form on IM, the tangential boundary value of w is its tangential 
component Z’w, and its normal boundary value is its normal component NW, 
where Tw and NW are forms defined in aiVl (Duff and Spencer [3]). We remark 
that T* = *N, where * is the Hodge star operator. 

A p-form 7 defined in the boundary will be called admissible if T is closed 
and SC, 7 = 0 over every p-cycle in the boundary which bounds in M. 

A prescribed tangential boundary value will always be required to be 
admissible, and a prescribed normal boundary value will be required to be 
the star of an admissible form in t3M. 

Solutions are then obtained of the problem of showing the existence of a 
unique harmonic p-form satisfying either 

DIRICHLET DATA: prescribed relative periods and tangential boundary value. 

NEUMANN DATA: prescribed absolute periods and normal boundary value. 

In this paper, we will show the existence of solutions of a nonlinear elliptic 
equation satisfying Dirichlet or Neumann boundary conditions. Our 
methods are based on previous work on compact manifolds [9]. However, 
complete results are obtained only for p = 1; see the Remark at the end of 
Section 1. 

In Section 1, the theorems are stated. In Sections 2, 3, and 4 we give applica- 
tions to gas dynamics, minimal surfaces and surfaces with prescribed mean 
curvature. For a survey of these topics, we refer to Bers [l] and Serrin [7]. 
In the last section, the theorems are proved. 

1 
0001~8708/79/010001-15$05.00/O 

Copyright 0 1979 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81199514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SIBNER AND SIBNER 

1. STATEMENT OF THEOREMS 

The p-forms at x E M form a finite-dimensional inner product space. Let 
( , )z denote the inner product and 1 I2 the associated norm. Let ( , ) = 
sM ( , )% dV be the global inner product of two p-forms on M and 11 )I the 
associated norm. 

For a given smooth form w, Q(W) = 1 w Iz a is a C” function on M. Following 
the usual assumptions made in gas dynamics, a function 0(x, t): M x R+l -+ R+l 

is called regular if for all (x, t), 

(a) 0 < k < B < l/k < co, 

(b) 0 < c < (a/at)(tOz(x, t)) < l/c < co. 

13(x, t) is called admissible if (a) holds and if there exists t, , 0 < to < CO, 
such that for all x and t < to , 

(b’) 0 < (~/~t)(tOz(x, t) < co. 

The sonic speed associated with 8 is QB = lub t, over all to for which (a) 
and (b’) hold, and a p-form w is said to be subsonic if maxzEM Q(w) < QB . 

Now suppose p(x, t) is a given admissible density function on M which 
is of class C2+p in x and C1+u in t. Let d be exterior differentiation on forms 
and 6, its adjoint. For a p-form w, p(x, Q(w))w is also a p-form. We say that 
w is p-harmonic if dw = 6pw = 0. 

Let Ci+u(M) denote the space of p-forms whose components are in Cl+“. 
All spaces carrying the boundary and homology conditions are to be regarded 
as subspaces of Cl+@(&?). 

Inhomogeneous Dirichlet data are given by an element of the space 

where 9r = Ker d and 9a = C1+U(M). 
Since we can always find a closed form with prescribed relative periods 

and admissible tangential data, the first function space represents the Dirichlet 
conditions as defined in the introduction. The second factor gives the inhomo- 
geneous term in the equation. 

Inhomogeneous Neumann data belong to the space 

.A$ = Ker d and Jr/-, = Ker 6 if n<3 

=o if n>3. 

The restriction to homogeneous data for n > 3 is due to a gap in the dif- 
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ferentiability results. In fact, for n = 3, a completely different estimate of 
Ladyzhenskaya and Ural’tseva [5] is needed for the nonlinear boundary condition 
and we assume more smoothness of the boundary; namely, aM must be of 
class C2. 

Let 9 be a function space of forms on M. (For our purposes, dp will either 
be 9 or ~4’). We denote by ~(9) the space of paths on 9’. These will be one- 
parameter families 7(s), s E I, satisfying: 

(i) T(O) = 0, 

(ii) for each s ~1, T(S) E 9, 

(iii) T(S) depends continuously on s in the topology of 9. 

The following theorems will be obtained in Section 5: 

THEOREM 1. Let p be admissible with sonic value Q, . 

(a) There is an open connected set 0 C 9 containing the origin such that 
for each pair (y, u) E 8, there is a unique subsonic l-form w E Cl+u’(M) such that 

w has the same relative periods and tangential boundary data as y  and 

dw = 0, sp, = 6a. 

(b) If (Y(S), 4s)) E 4-Q) is a path, then the solution W(S) of (a) depends 
continuously on s in the uniform norm and either 

(1) w is subsonic for all s E I, or 

(2) there exists a number s, such that w(s) is subsonic for s < s, and 

maxzsM Q(4)) - Q. m s 7 s, . 

THEOREM 2. Let p be admissible with sonic value Q, . 

(a) There is an open connected set 0 C.K containing the origin such that 
for each pair (y, K) E 8, there is a unique subsonic p-harmonic 1 -form w E Cl+“‘(m) 
huving the same absolute periods as y  and the mass $0~ Npw = NK on the 
boundary. 

(b) For (y(s), K(S)) E x(X), a path, the same conclusions hoZd as in part (b) 
of Theorem 1. 

Remark. If p is regular, weak versions of these theorems are valid for 
p-forms, p > 1. However, because of a gap in the differentiability theory 
for systems, one cannot use the same techniques to prove the nonregular 
Theorems 1 and 2 above for p > 1. 
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2. MINIMAL SURFACES 

Theorem 1 can be applied to the problem of obtaining minimal hyper- 
surfaces of i~n+l given in nonparametric form x,+~ = $(x1 ,..., x,). In this 
case the appropriate p = (1 + Q)- v is admissible with Q, = 00 (but not 
regular since (d/dQ)(Q$) + 0 as Q - cc). For simplicity we discuss only the 
case n = 2. 

Let Sz be a bounded, simply connected plane domain bounded by a C2 
curve and let f: 852 ---f If3 be boundary data in C”+“(Z@). Then one seeks a 
surface z = 4(x, y) of minimal area and finite gradient passing through the 
curve z = f(~, y), (x, y) E U. The classical results are: 

(i) If Sz is convex, then for anyf there exists a minimal surface z = 4(x, y) 
with z = f on afi. 

(ii) If a is not convex, then for every E > 0, there exists an f with 
maxo 1 f 1 < E for which there is no minimal surface given by z = 4(x, y) 
with z = f on 3M. 

However, we obtain from Theorem 1 

EXAMPLE 1. For simplicity choose a family of boundary data f (t) given by 
tf for some fixed f. (Th e modification for the more general example of an 
arbitrary family f(t) is immediate.) Then our results imply (writing wt = d& 
in Theorem 1) for any 52, and any f E C a+a there is a t such that, for every 
t < t, , there exists a unique minimal surface zt = &(x, y) with st = tf on asZ 
(and maxo j grad & 1 < co). If f is nonconstant, then max / grad& [ -+ co as 
t 7 t, . (By the maximum principle this occurs at a boundary point.) 

Remark. The classical result (i) shows D convex implies that, in fact, t, = 00. 

Remark. Consider the regular tetrahedron ABCD with base ABC in the xy 
plane and apex D. Let D, be the centroid of triangle ABC and D, the point 
on the line segment D,D which divides it in the ratio t. Then for t = 0 we 
have the point D, and D, = D. We ask for a minimal surface z = &(x, y) 
spanned by the (space) quadrilateral ABD,C. For t = 0 the quadrilateral 
is planar and a solution exists. The case t = co is the well-known Schwarz 
example for which no solution exists. The above example shows that there 
is a critical t, such that solutions exist for t < t, but the corresponding surfaces 
z = &(x, y) have somewhere a tangent plane which tends to vertical as t 7 t, . 
We do not know the value of t, . 

It is clear that more general applications of the theorems could be given. 
In particular, one can consider minimal surfaces over multiply connected 
domains. The following three examples for doubly connected domains indicate 
the variety of situations which can occur. 
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EX~~MPLE 2 

EXAMPLE 2 (see figure). Let Q be a bounded doubly connected domain 
in W. Admisslble homogeneous Dirichlet data given by a closed l-form y 
give rise to the following interpretation. Suppose first that J Ty = 0 on each 
boundary component rj of 0. Choose a fixed point Pi on each I’j . Then we are 
given continuous functions fj on I”j (where f,(P) = $. Ty), each determined 
up to a constant. In addition, however, the differench rra = fa(Pz) - fi(Pl) 
is specified by the relative period of y. If we draw the cylinders with bases 
r, and r, , we can think of these data as follows: The shape of the curves 
z = f,(P), P E rj , are given, but the curves are allowed to slide vertically 
on their cylinders subject to the restriction that the difference in height between 
the points of the curves sitting over PI and P, is prescribed by rla . The data 
(iIf , t2f2, ts~+& are parametrized by points t = (tl , t, , ta) E R3. (In the 
notation of Theorem 1, a path in W parametrized by t induces a path in 9, 
each closed form y(t) providing the above data where ti = ti(t), i = 1,2, 3.) 

Our results show that there exists an open set 0 C R3, containing the origin, 
such that for t E 0 there exists a unique minimal surface zt = &(x, y) (with 
finite gradient) satisfying at = tjfi on Fi and z(P.J - z(PJ = t3r12 . Again 
one has continuous dependence, of the family, on t and maxn 1 grad+, [ ---f cc 
as t tends to the boundary of 0. As in Example 1, the last conclusion means 
that the family of surfaces & “acquires” a vertical tangent (at a point on aa). 

Remark. If the ri are concentric circles and the fi are constant then the 
solutions are catenoids. 

EXAMPLE 3 (see figure). If, in Example 2, we remove the restriction that 
the integral of Ty be zero on each boundary component, the curve fi(.I’,) 
describes a helix, lying on the cylinder over rj (and again, only determined 
up to a vertical motion). The admissibility condition j Ty = 0 over the whole 
boundary 852 implies that the two helices have the same pitch. Since the helices 
are periodic in their z coordinate, the definition of n,, (which describes the 
relative period) presents no problem. 
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EXAMPLES 3, 4 

The homogeneous Dirichlet data give the shape of the helices and their 
relative position. Theorem 1 gives the existence of a family at = &(x, r) of 
(multivalued) minimal “ramp” surfaces having properties analogous to the 
surfaces of Example 2. 

Remark. If the Fi are concentric circles and the curves .a = fi describe 
circular helixes, then the surfaces obtained are helicoids-right helicoids 
if the relative period nrs is zero. 

EXAMPLE 4 (see figure). If, for the doubly connected domain Sz, we give 
Neumann boundary data we obtain, by Theorem 2, a family of “ramp” minimal 
surfaces as in Example 3, where now the data ty give the prescribed pitch 
of & and the normal derivatives at the boundary surfaces-the cylinders. 
More precisely it gives p(Z&/an), where p = (1 + Q)-‘12 and Q = 1 grad& 12. 
The case a&/&z = 0 corresponds to a free boundary problem in the class of 
all ramped surfaces of prescribed pitch and with boundaries on the cylinders. 

3. SURFACES WITH PRESCRIBED MEAN CURVATURE 

We now consider the analogous problem for surfaces of prescribed mean 
curvature (and finite gradient). Such surfaces are described by an inhomo- 
geneous system dw = 0, 6pw = 2/l for a l-form w. Locally (globally if G 
is simply connected), we can write w = ds, and obtain the equation 6(pd+) = 2A 
where (1 E Cl(Q) is the required curvature of the manifold x,+r = $(x1 ,..., x,). 

Again, for simplicity, we restrict outselves to surfaces in KP defined over 
bounded simply connected domains D C R2. (However, see Serrin [7] for how 
to make the obvious generalizations to 11 > 2.) The known results corre- 
sponding to (i) and (ii) are [7]: 

(i’) If at each point of &?, the inequality 2 ( (1 1 < K holds, where K 
is the curvature of aQ, then for any boundary data f E C2+n on %2, there exists 
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a surface z = $(x, y) with z = f on Xi and having mean curvature (1. (Note 
that the hypothesis implies that G is convex.) 

(ii’) If the inequality 2 1 (1 1 < K fails to hold at a single point of X?, 
then there exists arbitrarily small data f for which there exists no solution 
surface. 

However, Theorem 1 gives 

EXAMPLE 5. Let 52 be convex, /l E Cl(a), and f E Cz+ti(3sZ). Then there 
exists a family of surfaces z t = &(x, y) for 0 < t < t, for which zt = f on 
aG and the mean curvature of & is equal to t/l. As t 7 t, , maxI; 1 grad IJ$ / + co. 
The convexity of Sz ensures that a solution (a minimal surface in fact) exists 
for t = 0. 

Remark. The classical results (i’) and (ii’) imply for a convex domain J2 
with boundary curvature K, that for fl a constant, t, = minao K/2 1 A /. 

Remark. As in Example 1 we could of course have allowed an additional 
parameter by varying f. 

Remark. If fi is not convex and (1 fixed, then we cannot be certain that a 
solution exists for f = 0. If, however, it is known that a solution exists for, 
say, f. then the statement of Theorem 1 may be modified to allow paths in 
the parameter space 9 with initial points other than the origin. The necessary 
changes present no difficulties. 

Remark. Since surfaces of constant mean curvature arise as soap films 
separating regions of differing pressure, we can visualize the case of Sz not 
necessary convex, f = 0 and mean curvature tA, , (1, a constant, as follows. 

If a hole JJ is cut in the top of an enclosed chamber and the pressure within 
the chamber increased, then our results show the existence of solutions, i.e., 
bubbles of constant mean curvature td, , at least up to the point when the 
bubble has somewhere a vertical tangent. This phenomenon is observed when 
a balloon or an inner tube with a “weak spot” is inflated. 

4. COMPRESSIBLE SUBSONIC FLOWS 

Theorem 2 applies to the problem of showing the existence of a steady 
compressible flow on a manifold with boundary. The mass density p = p(x, Q) 
is admissible with a finite sonic speed. (For example, in the special case of a 
polytropic flow, the sonic speed Q1, = 2/(r + I), where y is the adiabatic 
constant.) The components of the p-harmonic form give the velocity components 
of the flow. 

In particular, one has the following. 
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EXAMPLE 6. Let S be a smooth compact manifold embedded in Rn. For a 
given mass density p, one can ask for a steady compressible flow inside S with 
prescribed circulations C = {c~} and no mass flow through the boundary 
(which is the manifold S). By Theorem 2, there exists a t, such that, for t < t, , 
there is a unique subsonic flow, described by a l-form UQ , having circulations 
tC. In fact, Theorem 2 gives more; we can obtain a mass flow N(pwt) = tNK 
through the boundary (where the coclosed form K carries the mass flow data). 

Remark. The l-homology of a solid torus T in R3 is generated by a single 
closed curve. If it is assumed that there is no “seepage” (i.e., no mass flow 
through the boundary) then it follows that there exists a unique subsonic 
flow in T with prescribed circulation c for 0 < c < c, . As the circulation 
increases to c, , the speed of the flow tends somewhere in T to sonic speed. 
This must occur at the boundary (cf. [lo]). 

Remark. An idealized reaction turbine provides a concrete illustration of 
the preceding; the mass flow is prescribed on the boundary of the runner, 
a solid torus. It is normal component points inward at the guide vane exit 
(which is the runner entrance-where the curvature is positive if T is a 
“standard” torus) and outward at the inner chamber (the runner exit-where 
the curvature is negative). If the turbine is unloaded, so that no torque is 
developed, then the tangential component of the flow velocity at the runner 
entrance determines the circulation in T. 

5. PROOFS OF THE THEOREMS 

Let 9s be the Hilbert space completion of smooth p-forms on M with 
respect to the inner product ( , ). The following orthogonal decompositions 
of 9s are valid (cf. [2, 3, 61): 

where, 

~9’~ = {dv j TV = 0}, s,* = {ST / NT = O}, H = (0 j du = Sa = 0}, 

8 = {dv}, J?* = {Sv}, and HN = {u 1 da = &J = 0, Nu = 0). 

Let 0(x, t) be regular as defined in Section 1. Then 8 induces the following 

VARIATIONAL PRINCIPLE. Suppose 9s = I’ @ I’l with I’ a closed subspace. 
Let a and /3 be given p-forms on M. Then, there exists a unique p-form 7 
such that 
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(1) 7--(YE, 

(2) e(x, Q(+ - B E V’. 

Proof. Let E(T) = Q slM(J-f(T) 0(x, t) dt) dV be the energy functional defined 
by 0 and let 

The conditions on 0 ensure that 

exists, is unique, and satisfies (2), which is just the Euler equation of the varia- 
tional problem. See [9], where a similar argument is given in more detail. 

COROLLARY (Continuous dependence). Suppose a(s), /3(s) E w(&) are paths. 
Consider the mupping of s into rQ , where rg is the extremal. I f  this mapping is 
compact in the uniform topology, then 7Q is a continuous function of s. 

Proof. Suppose s, converges to so . By continuity, OL, = OL(S,J + IX,, = c~(s,,) 
in -I;pz and p, -+ &, in &. By assumption, a subsequence of {TV} converges 
uniformly to TV . W e c aim 1 that T,, is extremal which, by uniqueness, shows 
that the choice of a subsequence was unnecessary. For suppose 9 - CQ = v E V. 
Then, qua = ‘Y, + v is admissible for cy, and I(T,J < I(v,J for every n, since 
T, is extremal. Since the integrals converge uniformly, I(7,) < I(v), which 
proves the claim. 

Assuming p is regular, we will solve the regular Dirichlet and Neumann 
problems and then obtain the nonregular solutions from these (see Section 1). 

REGULAR THEOREM 1. Let (y, u) E 59. Then, there is a unique w E C1+u’(M) 
which satisfies dw = 0, 6pw = 6~ and w - y  E &YT . The solution depends con- 
tinuously on y  and 0. 

REGULAR THEOREM 2. Let (y, K) EM. Then, there is a unique w E Cl+u’(M) 

which satisfies dw = Spw = 0, w - y  E d and Npw = NK. The solution depends 
continuously on y  and K. 

We first obtain weak solutions of these theorems for arbitrary p and then use 
Di Giorgi-Moser-Morrey techniques to show differentiability in the case p = 1. 

In Regular Theorem 1, apply the variational principle with V = 8, , 0 = p, 
01 = y and /Z = O. We obtain 

(1) T-YE&r, 
(2) p7 - cr E fF’,l. 
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Setting 7 = W, we obtain from (l), since &J = 0, that w is a weak solution 
of dw = 0, and from (2), that w is a weak solution of 6pw = 6~. 

In Regular Theorem 2, we recall (cf. [9]) that if p is regular, there is a con- 
jugate function Y, also regular, such that 7 = *pw if and only if w = *VT. 
The correspondence is one-one and continuous in any of the function space 
topologies we consider. 

We now apply the variational principle with v = gal, 6 = V, OL = *K, 

and /3 = *y and obtain 

(1) 7 - *K E&*l 

(2) VT - *y E d*. 

Letting w = *VT, we find that w - y G 8 and pw - K E El. Using the 
second decomposition of gz and dy = 8K = 0, we see that w is a weak solution 
of dw = 6pw = 0 and Npw = NK. 

Having obtained weak solutions to these problems, we now show that they 
are smooth if p = 1. 

The first step is to write down the Euler equations for both problems. 
Choose local coordinates (x1 ,..., x,) so that a coordinate patch is given 

locally by a serniball 

S, = x c xi2 < r2 and x, > 0 
I I 

with the boundary represented by x, = 0. In Regular Theorem 1, in these 
coordinates, w = wi dxi and Q(W) = gijwiwj . The integrand in I(w) is 

f(x, w) = ‘7 (L”‘W’p(x, t) dt - (w, o)), 

and the Euler equation is 

for all 5 E Com(Sr), 

where 

af i &Y2gi~(p(x, Q(w)) wj - 4 a,i = j=l 

and TW = Ty on aM. 
In Regular Theorem 2, we derive the Euler equation for the conjugate 

variational problem in two dimensions. Letting 
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the integrand is 

g(x, S) = g; (J-oQfG) v(x, t) dt - (7, *+j 

and the Euler equation is 

(4) 

% - i g’l”g”i(v(x, Q(6)) Bj - (*y)j) 
si$ - j=l 

and Ti;, = T*K on 3M. 
We demonstrate differentiability for w. Since the Euler equation and boundary 

conditions are completely analogous, the same results are true for 6, and hence 
for *vi;), which is the solution of Regular Theorem 2, for n = 2. 

In higher dimensions, the Euler equation for the conjugate problem gives 
rise to a system which cannot be handled by standard techniques. It is therefore 
necessary to treat the mass flow boundary value problem directly. 

Let B be the l-form which solves the problem in Regular Theorem 2. Then, 
pB - K E &+I and therefore 

n 

Ix 
g’P(g”jpf& - q) $ dx = 0 for every t: E H,1(M) 

81 i.i=l 3 

and Npb = NK on aM. 
If K = 0 then NL;) = 0. Differentiability for this problem is then basically 

the same as it is for the tangential problem and is true in any number of 
dimensions. If K # 0, and n = 3, then a more delicate argument due to 
Ladyszenskaya and Ural’tseva [5] gives the necessary results. We first sketch 
the differentiability theory for w, the solution of the tangential problem. Then, 
we will describe the techniques used in the inhomogeneous mass flow problem. 

Since dw = dy = 0, there exist functions y and # in Sr such that w = dp 
and y = d#. Let x = v - 4. 

LEMMA 1. In S, , x = 0 for x, = 0 and satisfies 

where 

(i) k I 6 I2 < Ci,i &EiP < K I 5 I’, 
(ii) & Efi < M. 
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Proof. Setting Aii = g112gijp(X, Q(W)) and Eij = g1’2(Ai~~~ - uj) in the 
Euler equation (3), conditions (i) and (ii) follow from the fact that p is regular 
and y and a are continuous. 

Choose a unit vector e in a tangential direction, say xk . Let 

LEMMA 2. In S, , W = 0 for x, = 0 and satisfies 

where 

(i’) c I 6 1’ d Xi.5 BijSiE’ < C I 6 I23 

(ii’) C ) Fij I2 < N(l + 1 w I”). 

Proof. Applying the difference quotient procedure in S, , let 

Bi5 = s,’ & (x + t he, w(x) + t Am) dt, 

Fij = 
s 

1 ay 
o 

-----(x+the,w(x)+tdw)dt+B,$$, 
awi ax, 3 

where &J = U(X + he) - W(X). 
Since 

& = (PP + hwkw,)(gj”w,)) F2, 

where p is regular, condition (i) holds. 
Since y, u E Cl+p and 

a2f --=j&&( awiaxk 
g1/2gij)(pwj _ u5) + glPg"j (& wj - uj ) - g1i2gi5 31, 

we see that (ii’) holds. 
Standard arguments applied to W show 

LEMMA 3. The derivatives of the components of w are in g2 and 

I 1 Vwj I2 dX < N’, j = l,..., n, 
s, 

with N’ depending only on c, C, and N. 
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THEOREM (Morrey). Let 3M be Lips&z&z. Let u E H&(M) be a function 

satisfying 

s 
V{(a . Vu + e) dx = 0 for all 5 E CT’,,*. 

Suppose matrix a satisjies (i) with constants b and B, and matrix e satisJies 

(ii”) js, 1 e I2 dx < LP-*+~~, 0 < (Y < 1, for every r, where j e I2 = 

Xi,j I eij 12- 
Then, there exists c+, , 0 < 01~ < 1, depending only 012 n, b, and B, such that 

u E P(m), where /3 = min(ors , a). Also 

(iii) ss, 1 Vu I2 dx < L’c-~+~~ where L’ depends only on n, b, B, L, and 01. 

To complete the proof of Regular Theorem 1, let u = x of Lemma 1. 
Condition (ii”) of Morrey’s theorem is satisfied with 01 = 1. Therefore, X, 
and hence v, is Holder continuous and 

s, 1 VT I2 dx = 1 / C,J 12 < L’yn--2+2ao for every r. 
I sv 

Next, let u = W in Lemma 2. Condition (ii’) and the above inequality imply 
(ii”). Therefore, with or, replaced by 011 and /3 = min(ol,, o(1), we find that 
W E Ca independently of h. Letting h -+ 0 and using the fact that y is con- 
tinuously differentiable, it follows that w is Holder continuous with exponent 
/3 = min(ol, , ar). Standard arguments for linear elliptic equations with Holder 
continuous coefficients now give w E Cr+u’(m) with p’ = min(a, , aI , p), 
which means w is a classical solution. 

Next, we briefly describe the differentiability theory for the mass flow 
problem. The solution &I is closed and therefore, B = d$ = d$ locally, where 

Isr i t1 g’/2P (P g - pi) $, dx = 0 for all [ E H21(M) 
3 

and p(&$/ax,) = K, on the boundary. Letting W = (#(LX + he) - @(x))/h, 
where e is a unit vector in the tangential direction, say xk , we find, applying 
the difference quotient procedure, that 

LEMMA 2’. W satisfies the equation 

fbr all 5 E H,l(M), 

with conditions (i’) and (ii’) as in Lemma 2 valid. 

LEMMA 3’. The derivatives of the components of B are in 9g with norms 
depending onZy on the constants in (i’) and (ii’). 
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This lemma is proved by letting 5 = v2@‘, where 7 is a function which 
vanishes outside the circular part of the boundary of S,, . Note that it is not 
necessary for the functions 5 to vanish on the boundary of M. 

If n = 3, then b E H,1(M) w ic im h’ h ’ pl ies that @ E H22(S,). From Sobolev’s 
lemma, $ is continuous and 1 $(x)1 < C I/ +I\: . 

THEOREM (Ladyzhenskaya and Ural’tseva). The solution $ E Cl+a(S,) for 

SOme 01 and II $ IL is bounded by a constant depending only on max j @(x)1, 
the constants in (i’) and (ii’), and the boundary of M, where the boundary is of 
class c-2. 

It follows that B E Ca, and is, in fact a classical solution. 

LEMMA 4. Suppose (y, u) and (y, K) are paths in 9 or N. Then, the extremal 

wQ , for each s, depends continuously on s in the uniform topology. 

Proof. If (s,) is a bounded sequence in 1, then We = w(s,J E Co(M) for 
each n, with the same modulus of continuity. Hence, {wn} are equicontinuous. 
Since they are uniformly bounded in Z2, they are uniformly bounded. By 
Arzela’s theorem, the mapping from s E I to wQ , the extremal, is compact. 
Hence, the conclusion of Lemma 4 follows from the corollary to the variational 
principle. 

This completes the proofs of the regular theorems. 
The method of Shiffman regularization (see [S] or [9]) now gives the solution 

of Theorems 1 and 2. 
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