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A theorem of Chaundy is exploited to prove the existence of only one 
ordinary differential equation of the third order of the type 

d(x)y”’ + Lqx)y” + %yx)y’ = xy 

from which biorthogonal polynomials are derivable. The method of 
proof permits us to discuss differential equations of the first and second 
order as well and shows that no first order ordinary differential equation 
and only five second order ordinary differential equations of the above 
type will generate biorthogonal polynomials. 

I. INTRODUCTION 

The object of this paper is to examine the differential equation (d.e.), 

d(x)y”’ + Fqx)y” + %qx)y’ = Ay, 

in order to determine all differential equations of the above type which give 
rise to biorthogonal polynomials. 

After defining the concept of biorthogonality to be used, it will be proved 
that no first order d.e., and only five second order d.e. of the above type can 
generate biorthogonal polynomials. The polynomials thus derived are the 
Hermite (and the trivially found pseudo-Hermite), Laguerre, Jacobi, pseudo- 
Jacobi, and the Bessel polynomials. The pseudo- Jacobi polynomials may be 
easily related to the Jacobi polynomials, but they do not appear to be discussed 
in the literature. Except for the “pseudo” polynomials, the properties of the 
above polynomials are discussed extensively in the literature [l-4]. 

* The material in this paper is a slightly extended version of the author’s doctoral 
thesis presented at New York University, 19.58, under the direction of Professors 
Bernard Friedman and Wilhelm Magnus. The author wishes to acknowledge his 
indebtedness to them for their many valuable suggestions and comments. 

t Present address: NDA Development Division of United Nuclear Corporation. 
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The principal theorem of this paper asserts that there is only one third 
order d.e. of the above type from which polynomials, biorthogonal in a sense 
to appear, are derivable. The appropriate d.e. are derived, and their polyno- 
mial solutions discussed in Sections IV and V. These polynomials were first 
discovered by Spencer and Fano [5], and were used in calculations involving 
the penetration of gamma rays through matter. 

II. GENERAL THEORY 

In this section we develop the general theory to be used in the later sections. 

DEFINITION 1. Two polynomials zr(x), Y,(P) will be called biorthogonal 
with respect to a weight function p(x), if they satisfy a scalar product of the 
form, 

where 

p(x) is a weight function, having as many continuous derivatives as 
the order of the d.e. we consider 

x1(x) is a polynomial of degree I in x 
yJx”) is a polynomial of degree n in xm 

N, # 0, is a constant of normalization, 
r is an arc or a closed curve in the complex plane, 

6 = 0 
1 

for nfl 
77.2 1 for n = I 

m is an integer > 1. 

If, when m = 1, z,(x) = yn(x), then we call the polynomials “self-ortho- 
gonal” or merely “orthogonal.” 

DEFINITION 2. Let 

where the prime denotes derivative with respect to x. 
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In a straightforward manner we arrive at 

We define the operator A to be the “reduced adjoint operator” to the “for- 
ward” operator 9. Its relation to the formal adjoint operator, is that we have 
removed the function p(x) in such a way that the zL(x) shall be a polynomial of 
degree 1 in X. We will refer to&x, = h,z, as the “reduced adjoint d@rential 
equation”, (r. a. d. e.) and to .N(y,, pzJ as the “conjunct” or “bilinear conco- 
mitant.” 

We now pose the following question. Given the differential equation 

d(x)y”’ + 9Y(x)y” + %?(x)y’ = hy P-1) 

(where the prime ,denotes derivative with respect to x), then under what 
conditions will (2.1), along with its r. a. d. e., have polynomial solutions of 
degree n in xm and x respectively, for m a fixed integer > 1, and n = 0, 1, ..., 
whenever X = A,, a parameter independent of X, and YQZ, .@,% are functions of 
x independent of n? 

THEOREM 1. (Bochner [6]). If 01, ,B, y, S, f, 7, 5, 0, K are arbitrary real 
numbers, then a necessary condition that 

A(u)y”’ + B(u)y” + C(u)y’ = h,y, (2.2) 

(where the prime deflates derivative with respect to u) has polynomial solutions 
of order exactly n in u, for n = 0, 1, 2, 3 is that, 

A(u) = au3 + pu2 + yu + 6 (2.3) 

B(u) = 5u” + TU + 5 (2.4) 

C(u) = eu + K. (2.5) 

PROOF. We assume our polynomials to be of the form, 

y,(u) = 2 a&, 
j=O 

aFLn = 1; anj real. (2.6) 

For n = 0, (2.2) is satisfied only if A, = 0. For n == 1, we see that 
C(U) = h,(u + a,,), and thereby satisfies (2.5). For n = 2, we have 

2B(u) + C(u) (2~ + a,,) = h2(u2 + aplU + a,,), 

or B(u) satisfies (2.4). For n = 3, a similar argument gives (2.3). 
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Note that if A, = A, = ha = A, = 0, then necessarily C(u) = B(u) = 
A(u) = 0. We have thus shown: 

COROLLARY 1. If A, = A, = Aa = ha = 0, then C(u) = B(u) = A(u) = 0, 
or no d. e. of type (2.2), having polynomial solutions of all orders can occur. 

THEOREM 2. (Chaundy [7]). Equation (2.2) will have a solution given by 
(2.6) for n = 0, 1, “‘, when Eqs. (2.3), (2.4), (2.5) hold, provided An # A, 

for n # 1, where 

A, = oln(n - 1) * (n - 2) + &(n - 1) + 0n. 

PROOF. The proof rests on our ability to determine a,,j for j = 0, *.*, 
n - 1, such that arm = 1. In order to determine the a,,i we proceed as 
follows: 

Substitute (2.6) into (2.2). Upon multiplying both sides of the equation 
by u3, we have 

2 a,Lj{u”+jhj + u”+jgj + ul+‘fj + ujej} = h, $O a,ju3+j, 
j=o 

where 

hj = aj( j - 1) * (j - 2) + [j( j - 1) + 8j, (2.7) 

gj = Pj( j - 1) * (j - 2) + vj( j - 1) + 4 (2.8) 

fj = yj( j - 1) * (j - 2) + li( j - 11, (2.9) 

ej = Sj( j - 1) . (j - 2). (2.10) 

If we compare coefficients of like powers of u, we arrive at a set of n + 1 
equations in the unknowns a,, j, j = 0, ..*, n - 1, and A,. Since we desire 
a n.n = 1, we have, 

A, = h, = oln(n - 1) * (n - 2) + &(n - 1) + On, (2.11) 

and if we replace hj by its equivalent hj we have, 

an,SLl + gn = kb-l, 

an,n-dn-2 + an,n-lgn-l +fn = JLan.n-2 

%,j& + a92,j+lfj+i + aa,j+2fj+2 + %j+3ej+3 = 4&j, 

(2.12) 

(2.13) 

(2.14) 

for j = 0, 1, ..., n - 3. 
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Equations (2.11), (2.12) (2.13), (2.14) may be solved for A,, ~,j = 0, *.., 
n - 1, provided only that A, - hj # 0 for j = 0, ***, n - 1, but this is 
assured by the hypothesis. 

COROLLARY 2. There is only one linearly independent polynomial of degree 
exactly n in x, which can be a solution of (2.2). 

PROOF. Suppose 

yn = $ anjxj 
j-0 

and 

where an,, = b,, = 1, are two linearly independent solutions of (2.2). It 
follows that 

Y, = Y,~ - z, = 2’ cnjxj 
j-0 

is a polynomial of degree at most n - 1, and must satisfy (2.2). We wish to 
show that Y, = 0, or equivalently, cnj = 0 for j = 0, 1, ..., n - 1. If we 
substitute Y, into (2.2) we find, by comparing the highest power of x on both 
sides that Xn--l~,,n--l = &c,,~-~. But A, # A,-i, whence c,,,-i = 0. By a 
repeated application of this argument we conclude that cnj = 0 forj = 0, *.*, 
n - 1, and all n. 

If we desire Eq. (2.2) to have polynomial solutions of degree n in x*, we 
merely make a change of independent variable such that u = xm. This 
change of variable transforms Eq. (2.2) into Eq. (2.1) where, 

.&g(x) = Eg A(xm), 

@x) = 3(1 - m>x2-“” Jx”) + x2-2m 
m3 

(2.15) 

(2.16) 

v(x) = (l - m) (l - 2m) x1--3m A(xm) 

m3 

+ (1 - m)x1-2m qxm) 1 C(x") x1- 
m2 m 

(2.17) 

(Note that for m = 1, A@’ = A, L% = B, ?F? = C.) Equation (2.1) will have 
polynomial solutions of order n in x m for h = A,, when the conditions of 
Theorem 2 are satisfied. 
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The r.a.d.e. to Eq. (2.1), after some manipulation, may be recognized to be, 

- dx”’ + [ ?!a - f (dp)‘] z” + [ - $ (alp)” + a (9’p)’ - q z’ 
+ $ [- (Jdp)” + (cgp)” - (%p)‘]z = AZ, (2.18) 

where the prime denotes derivative with respect to x. If we now ask that (2.18) 
have polynomial solutions of degree n in x when X = A,, we find, by applica- 
tion of Theorem 1, that 

- (dp)“’ + (Lsp)” - (Vp)’ = 0, (2.19) 

-~=axowc”+Ex2+/.Lx+v, (2.20) 

D-$(~p)‘=5s2+915+W=~*, 

- a (s9p)” + f (9p)’ - %T = ex + 7 = %T*. 

(2.21) 

(2.22) 

The appearance of 01,[, and 6’ is forced since Eq. (2.2) and (2.18) must have 
the same eigenvalue X = A,, for n = 0, 1, .... We will refer to Eq. (2.19)- 
(2.22) as our “compatibility equations.” Each of these equations must be 
satisfied if we are to have biorthogonal polynomials, but they by themselves 
are not sufficient. We will require in addition that our polynomials satisfy a 
scalar product as defined previously. Hence the “conjunct” given by 

N(yn, pzr) must vanish identically for all n, I = 0, 1, *se. 
By virtue of (2.19) we have, 

(Ja2p)” - (@p)’ + %?p = K, a constant. (2.23) 

If we carry out the differentiations in N(y,, pzr) and substitute for (2.23) we 
get, with some manipulation, 

+ g!p klY:L - 4Ynl> II- = 0. (2.24) 

We are now in a position to apply our equations of compatibility, and our 
conjunct condition, in order to analyze their consequences. 
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III. DISCUSSION OF FIRST AND SECOND ORDER DIFFERENTIAL EQUATIONS 

THEOREM 3. There exist no biorthogonal polynomials associated with jirst 
order d$ferential equations of type (2.1). 

PROOF. This follows immediately since for first order d.e., d(x) = 
S?(x) = 0. Hence, the forward d.e. becomes, 

VYiL = &lYn, (3.1) 

and the r.a.d.e. is given by, 

- vz:, = A,&. (3.2) 

Therefore A, from (3.1) is, 

A, = On, (3.3) 

and A, from (3.2) must be 

A,, = - en. (3.4) 

Equations (3.3) and (3.4) together imply that A, = 0. If we now invoke 
Corollary 1, Theorem 3 follows. 

We now consider the possibility of there being biorthogonal polynomials 
associated with second order differential equations. We assume here that 
d(x) = 0. For any m we have, 

which follows from (2.16) and (2.4). On the other hand (2.21) requires 
that 

g(x) = [x2 + cpx + w. (3.6) 

For m > 3, (3.5) and (3.6) will be consistent only if L%(x) = 0, or the d.e. 
reduces to the first order differential equation previously discussed. 

For m = 2, we will get consistency only if E = 5 = 9 = 0, and if, 

Equation (2.22) gives, 

L 2 
t 
3& +z7 + 2K - v __-, 

P ?1 2x 1 (3.8) 
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where we have tacitly assumed that 7 # 0. (If 7 = 0, we would again have 
the first order d.e. discussed previously.) 

A useful identity involving derivatives of p is given by, 

If we substitute (3.8) and (3.9) into (2.19), we find that the coefficient of x2 
that results is 3e2/47, which must vanish identically. Thus 6’ = 0, and we 
previously had [ = 0, or h, = 0 for all n. Corollary 1 thus leads us to conclude 
that we can have no biorthogonal polynomials associated with second order 
d.e. when m >, 2. 

We now come to the case of m = 1. It will become convenient to categorize 
our r.a.d.e. according to the behavior of the quadratic coefficient a’(~) = B(x). 
Following Bochner [6] we convert B(X), via a real linear transformation of 
the form t = YX + S, Y # 0, to their so called “normal form.” This amounts 
to placing the zeros of B(x) at convenient places on either the real or imaginary 
axis. We will assume that the transformation has been carried out, leaving 
only the five following possibilities. 

1. B(x) = 1 = 5, [ = 7 = 0, 
2. B(x) = x, 6 = [ = 0, 77 = 1, 
3. B(x) = 1 - x2, {=l=-[,7=0, 
4. B(x) = 1 + x2, 5 = 1 = 4, 77 = 0, 
5. B(x) = x2, [ = 7~ = 0, 6 = 1. 

(In place of 3 and 4, Bochner chose B(x) = x(1 - x), that is, both zeros on 
the real axis. By considering the possibility of zeros on the imaginary axis, 
we have found a set of “pseudo- Jacobi” polynomials not previously discussed 
elsewhere.) 

In order to facilitate matters, we detour for a short while and analyze our 
conjunct condition. Equation (2.24) h w en specialized to second order de. 
for m = 1 becomes, 

We have previously assumed that 

and we now assume, 

z, = z. b,pj, b,, = 1. 

(3.11) 

(3.12) 
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Consider (3.10) when z,, = 1, y1 = x + a,,, then 

P(x + al”) + w9Pl Ii- = 0. (3.13) 

Similarly for .ei = x + b,,, y,, = 1, we have, 

Nx + ho) - WPI II- = 0. (3.14) 

For r an arc in the complex plane, with distinct end points (a, b), we find 
by adding (3.13), (3.14) that k 3 0. Consequently, from (3.14) or (3.13) we 
have, 

For yz = x2 + a29 + a20, z. = 1, we have, since k = 0, 

M+(x) (2x + a2Jl Ii- = 0, (3.16) 
or 

bB(b)p(b) - uB(a)p(u) = 0. (3.17) 

But (3.17) and (3.15) imply B(b),@) = B(a)p(a) = 0, since b # a. For k = 0, 
it follows from (2.19) and (2.22), that 7 = K, and hence for second order 
differential equations with m = 1, the polynomials are “self-orthogond,” i.e., 
yn = Z,t. In this case the forward d.e. and the r.a.d.e. are identical! Two 
interesting facts have emerged from this development, namely, from (2.23), 

C-B’ f-L--, 
P B 

where C - B’ is linear in x; and B(x)p( x must vanish at the end points of r ) 
if r is not a closed curve. Both of these facts are assumed by Jackson [3, p. 1621 
in the derivation of the classical orthogonal polygomials. 

We are now prepared to discuss Cases l-5. Our intention is to display the 
biorthogonal polynomials derivable from the appropriate d.e. when I’ and the 
associated parameters are properly chosen. Case 1 leads to the Hermite and 
pseudo-Hermite polynomials, Case 2 leads to the generalized Laguerre 
polynomials, Cases 3 and 4 lead to the Jacobi and pseudo- Jacobi polynomials, 
and finally Case 5 leads to the generalized Bessel polynomials. 

Case 2. B(x) = 1 = 5, [ = r) = 0. 
Equation (2.22), with no loss of generality, may be reduced to 

!L = &! 
P ' 

(3.19) 

p zzz poe@la (3.20) 

t Lemma I of section IV gives an alternative method of deducing yn =z,,. 
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(where p0 may be chosen as unity?), and the appropriate differential equation 
is given by, 

y; + exy; = ney,. (3.21) 

Since we wish p(x)B(x) to vanish on (a, b) we must choose 8 < 0 and the 
interval (- m, m), or 0> 0 and the interval (- im, im). If we choose 0 = - 1 
we get the Hermite polynomials as defined by Jackson, i.e., 

y,(x) = H,(x) = (-)nez’12 & eed12. (3.22) 

If we choose 19 = 1 we get what we will call the pseudo-Hermite polynomials. 
These polynomials are given by Y$~(x) = (- i)“H,(ix). 

Case2. B(x)=x,t=[=O,7j=l. 
Equation (2.22) reduces to, 

L=e 1 tKwl) 
P X 

or 

The d.e. one arrives at is, 

Xy; + (eX + K)y; = ?dy,. 

For p(x)B(x) to vanish at (a, b) we choose K > 0, 6 = - 1 and (0, 05) 
for the interval of integration. This leads to the generalized Laguerre equa- 
tion whose solution is given by 

y, = LF-l)(x) = ( -)nxlTKez & (xK-l+ne-z). 

The ordinary Laguerre equation results if K I 1. 

Case 3. B(x) = 1 - x2, 5 = 1 = - t, 7] = 0. 
Equation (3.18) becomes, 

P' -= (e + 2)X + K = tB - E> - (B + 3x- B 

P 1 - x2 1 - x2 1 +x 

where 8 + 2 = - (6 + /?), and K = p - ~7. Hence 

p = (1 + x)S(l - x)“. 

(3.23) 

(3.24) 

(3.25) 

& 

1 -x’ 
(3.26) 

(3.27) 

t A similar choice is made throughout this paper. 
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In order for p(x)B(x) to vanish at (a, b) we choose a = - 1, b = 1 and 
require that /?, ~7 > - 1. The differential equation may easily be seen to be, 

(1 - x”)y; + [/? - ol - (2 + ol + ,+]y:, = - n(n + 1 + G + p)~~. (3.28) 

The polynomial solutions of this d.e. are the Jacobi polynomials, given by 

y,(x) = 4”qx) = &$(I - x)-” (1 + x)-” $ ((1 - x)C+n (1 + x)0’“}, 

(3.29) 

which include as special cases, the Legendre polynomials when a = p = 0, 
the ultraspherical polynomials when 6 = p, and the Tchebycheff polynomials 
when a =: p = f i. 

Case 4. B(x) = 1 + x2, 5 = 1 = 5, 77 = 0. 0, K real numbers. 
Equation (3.18) becomes 

or 

kc=-- (6 - 2)X + K 

P 1$x” ’ 
(3.30) 

p = (1 + $)e/z-1 eK arctan m = (1 + ,$)@I+1 exp 2i ]n [ K (;;,I 

=(l +ix) le/2-1-w/2) 
( 

1 _ ,)cs/a,-l+ciK/2,~ (3.31) 

For p(x)B(x) to vanish at (a, b), we choose the interval to be (- i, i) and 
require that 8 > 0. For such a weight function the conjunct will vanish 
for all K The differential equation we arrive at is 

(1 + X’)j’; + (OX + K)Y; = + + 0 - l)Yw (3.32) 

A natural question to ask at this point is the relationship between the poly- 
nomial solutions of (3.31) and the Jacobi polynomials. 

If we consider the change of variable x = - it, then (3.32) gives, 

(1 - P)$ - (,i + e+t:, = - 2+t + e - I)~+~, (3.33) 

where the prime denotes derivative with respect to t. For comparison we 
write the Jacobi d.e. as, 

(1 - X2)y; + (K + ox)& = - ?2(?2 - i - o)J’, (3.28) 

where we have replaced the combinations of 6, p by K, 8, and where the 
prime denotes derivative with respect to x. The similarity is now quite clear. 
If the pseudo- Jacobi (p. J.) polynomials are evaluated for a pure imaginary 
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argument, and further, OPT. - 8; ~a,,. -+ zk, we then arrive at the ordinary 
Jacobi polynomials. Specifically we have, 

/??+G = en, - 2 and . . p-6 = -hcp.J,. 

This requires c?, p to be complex conjugates of each other. If we pursue this 
we see that for x pure imaginary, 

yn(x) = q,“‘(x) = &$I + ‘)- xL (;+;+8)P exp [- i(f7 - G) arctan x]. 

g {( 1 + XY)[(cr+B)/21+n exp [i@ - &) arctan XI>. 

The fact that the Jacobi polynomials may be interpreted for complex values 
a, /? is stated b y S zego [2, p. 621. However, Szego does not list the orthogonal- 
ity of these polynomials as one of their properties, nor does he state that 

6, p must be complex conjugates if P$$’ is to be a polynomial with real 
coefficients. 

Cuse.5. B(x)=Xa,~=[=o,.C$=l. 

Equation (2.22) reduces to, 

or 

p = x@-2e-K/x. (3.35) 

The restriction that p(x)B(x) vanish at (a, b) makes it necessary to choose 
(a, b) to be (0,~) for 6 < 0. On the other hand, for sufficiently large values 
of n, the scalar product of definition 1 will not exist, and hence we discard 
this possibility. There exists however a hitherto unexplored possibility, 
namely, a closed curve in the complex plane. In particular we choose with 
Krall and Frink [4], the perimeter of the unit circle. (This choice is not 
unique-see [4].) For this contour the conjunct will surely vanish when- 
ever 1 0 1 is an integer but two points remain unclear: K need not be zero, and 
we cannot as yet be sure that such polynomials may be normalized. We 
proceed as follows: If K # 0 then (2.22) gives, 

(3.36) 

4 
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If we substitute (3.36) into (2.19) we get, after some manipulation, 

x2 -5 i 
-~+f+~+~j 

+ (4x - 8x - K) (f ;$)+2-B=0. (3.37) 

The above leads to, 

Q(J2 - K) = 0, (3.38) 

252a - 2-0 + (4 - ep-2 - KU = 0, (3.39) 

u2 - u + (4 - qu + 2 - e = 0. (3.40) 

From (3.38) either Q = 0 or Q = K. Suppose Q = 0, then KU = 0. If u = 0 
then p would be a constant and there would be no hope of normalizing our 
polynomials. We therefore assume that K = 0, and since u = 0 - 2 equation 
(3.40) is identically satisfied. 

If we solve (3.36), we get p = x8-z. For 0 > 2, there is no hope of normal- 
izing our polynomials-and for B < 2, there will exist a number (2 - 01 
such that for an index n greater than 2 - 0 no normalization can exist. 
This follows since the solution of the forward equation is easily recognized 
to be xn + bnxT, for 0 < 7 < n - 1 such that n + 7 + 0 - 1 = 0, where 
b, = 0 if Y > n - 1 or 7 < 0. All we need show is that if n > 2 - 0, then 
(x” + 6&‘)2~@-2 can have no term in x-l. This is sufficient since any other 
integral power of x around this contour vanishes. We consider xzn+e--2, 
Xn+r+e-2 , x2r+a-2 clearly for n > 2 - 8,7 would be negative, thereby excluding 
the last two terms. The minimum power of the first term, in this case, becomes 
x2-e, and since 2 - 0 must be positive our conclusion follows. Consequently, 
for K = 0 no polynomials of interest can arise. 

We now treat the case where Sz # 0, or (3.38) requires that J2 = K. In 
that case, we have K = T = J2 as well, or the forward and r.a.d.e. are identical. 
If we assume K = 0, we are back in the previous case and hence, we choose 
K # 0. Equations (3.39) and (3.40) are satisfied identically in either case. The 
weight function becomes 

p = xe-2e-Kj2, 

and for this weight function one may easily show that k 3 0. The appropriate 
d.e. is given by, 

x*y; + (ex + K)yn = ncn + e - ijyn. 

The generalized Bessel polynomials may be given by, 

(3.41) 
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The Bessel polynomials proper are given by (3.42) when 0 = K = 2. The 
demonstration of the normalization of the Bessel polynomials is proved in [4], 
along with many other properties of interest. For 8 an integer, the generalized 
Bessel polynomials are capable of a similar treatment as the Bessel poly- 
nomials, however for nonintegral values of 0, Krall and Frink introduce a 
weight function other than the one considered here. 

With the conclusion of Case 5 we now summarize the results of this 
section in the following theorems. 

THEOREM 4. The only second order d.e., of type (2.1), apart from real 
linear transformations, which give rise to biorthogonal polynomials, are those 
discussed in Cases l-5. Moreover, the polynomials derivable from these d.e. are 
orthogonal. 

THEOREM 5. The only second order d.e., of type (2.1), apart from real 
linear transformations, which give rise to orthogonal polynomials whose scalar 
product is defked on the real line, are those discussed in cases l-3. The polyno- 
mials so derivable are the Hermite, Laguerre and Jacobi polynomials. 

IV. DISCUSSION OF THIRD ORDER DIFFERENTIAL EQUATIONS 

This section is devoted to the principal theorem of this paper, namely: 

THEOREM 6. There exists only one ordinary d.e. of type (2.1) of the third 
order, apart from real linear transformations, from which biorthogonal polyno- 
mials are derivable. 

The proof of this theorem depends on our ability to show that no biortho- 
gonal polynomials are possible for m > 3, and for m = 1. The proof for 
m 3 3 will follow from a direct application of our compatibility equations. 
Although this direct application when applied to m = 1 will also work, it is 
immensely tedious. Instead we appeal to an indirect argument to show that 
no biorthogonal polynomials are possible. Finally, a discussion for m = 2 
will lead to the differential equations for the only biorthogonal polynomials 
possible. 

PROOF. An examination of Eqs. (2.15) and (2.20) shows that, 

- s (CfAF + f!?xzm + yxm + 6) = axa + 6x2 + px + Y. (4.1) 

For any m > 1, we see that (Y = 0. Moreover, for m 3 4 it is quite clear 
that 01, /3, y, 6, e, p, Y are all identically zero. Hence it follows that & = 0, 
or no third order differential equation leading to biorthogonal polynomials 
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is possible when m > 4. For m = 3 we have LY, y, 6, E, p are zero, and 
- /I/27 = Y. If p = 0, the same conclusion as above follows. For /3 # 0, 
we find that Eq. (2.21) gives, 

=85x”+~x+9w+2~-- 
p B B fix 8” 

(4.2) 
--. 

If we now turn our attention to (2.19) we see that it may be equivalently 
stated to be, 

I,, 

- (.a?” - 93” + V’) = 0. (4.3) 

By virtue of some obvious identities such as (3.9) and 

1,) 

P -= 
P 

($,” + +c (Jcj’ + (Lj3, (4.4) 

we may evaluate (4.3) for the coefficient of the highest coefficient in x, which 
must be identically zero. If we carry this program out, we find that necessarily 

11(8)2g==, 
27 p (4.5) 

Since fi # 0 we conclude that [ = 0. If we apply the same procedure again 
we fmd, 

92 2 
+o (4.6) 

or v = 0. 

We now apply a similar program to Equation (2.22), or 

-3&$+(2&6~‘)$-3~&‘“+2~‘-~=6’x+~. (4.7) 

The coefficient of the highest term in x when 5 = v = 0, becomes 4813 = 0, or 
0 = 0 too ! But 01 = 8 = 0 = 0 implies that A, E 0 and if we apply Corollary 1 
we see that hence no biorthogonal polynomials are possible when m = 3. 

We now consider the case of m = 1. The proof of this case depends on the 
following two lemmas. 
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LEMMA 1. If two sequences y,(x), zL( x , are both polynomials of orders n, 1 ) 
in x respectively, such that they satisfy a scalar product of the form 

then necessarily zn(x) = m(x), where n, 1 = 0, I, -a. . 

PROOF. As before, we assume that the leading coefficient of our polyno- 
mials is equal to one. Hence for n = 1 = 0, y,, = x0. Suppose now that 
zn(x) = m(x) for n = 0, 1, ..a, M - 1. Then we wish to conclude that 
~~(32) = yM(x). Since zM and yM are both polynomials, there exists some 
linear combination of the yn such that 

z&f = f$ hjyi(x). 
j=O 

Since the coefficient of the highest power of x on both sides is unity, we see 
that h, = 1. Our scalar product holds for n = 0, .a., M - 1, and in parti- 
cular we see that, 

J Xanpdx = 3 hj J” yjynpdx = 2 hjN,S,j = 0, 
I- j=O l- j=o 

for each value of n. The last term implies, however, that h, E 0 for n = 0, 
aa. M - 1, since N, # 0 or z, =yM. 

Lemma 1 implies that if m = 1, so that the forward and r.a.d.e. both have 
polynomial solutions satisfying a scalar product of the form we consider, 
then independently of the fact that they satisfy a d.e. of some order, the 
polynomials of the same index must be identical. We now state and prove 
a second Lemma. 

LEMMA 2. If the polynomial solutions of the forward and r.a.d.e. of type 
(2.1) are m(x), then J%‘(X) SE 0. 

PROOF. The forward d.e. is given by, 

=@wY;;’ + +9y:: + %(x)r;l = &,m, 

and the r.a.d.e. is given by, 

- J+)yY + ps*(x)y; + v*(x)y; = Any,. 
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Since m G= 1, d is at most cubic, g’, GY* are at most quadratic polynomials, 
and finally %?, ‘%‘* are at most linear polynomials. If we subtract the second 
from the first we get, 

2&Y;’ + (g - &9*)y; + (g _ q$*ly; = 0. 

This must be true for n = 0, 1, a’., and is in particular, true for rz = 1, 2, 3. 
For n = 1 we see that it can only be true if V= %*. For n = 2, it can be true 
only if &? = a*. For n = 3 it will be true only if zz? = 0, and the Lemma is 
proved. 

We now return to the case where m = 2, this being the only case to be 
considered in our discussion for third order d.e. 

Form=2,Eq.(4.1)gives. ~=y=6==E=Y=O,and-/?/8=~. We 
now assume, with no loss of generality, that p = 8 = ms, or ~2 = x. Equa- 
tion (2.21) gives, 

P' 55 -q - 24 - 4w -=---- 
P 4 T+ 12x ++ 

X3 
(4.8) 

If we examine (4.7) for the highest power of x we find that, p/S = 0 or 
[ = 0. Similarly, if we examine (4.7) for the lowest power of x, we find that 
<2/48 = 0, or ?, 3 0. Hence (4.8) becomes, 

where 

TJ a=----; 
3 

m= 7-24-44~ 
12 - 

For the sake of compactness we state the following formulas found so far for 
m = 2. 

d(x) = x, (4.10) 

B(x) = q , (4.11) 

V(x) = 12 -lx+ 2K + :, (4.12) 

99’” = qJx + w, (4.13) 

%?* = ex + 7. (4.14) 
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If we substitute Eqs. (4.9)-(4.14) into Eqs. (4.3) and (4.7) and equate the 
coefficients of the powers of x on both sides of the equation we find, after 
some manipulation, 

x: 

const: - 302f2 + 9 (+ - 6) - 7 - $ zz 0, 

x-l: ~J~u-~u~~+~cJQ(~-~)-(~~-~+~~)~=O, 

x-2: - 252 + 3Q2 - Q3 + (L? - J-2) (+ - 6) 

~(12--++K+Q-~)~o 
4 9 

from Equation (4.3). Equation (4.7) gives 

a X: g”+-=O 
2 

constant: - 6aQ + (5 - 12) u = T 

x-1: - 3(@ - Q) + (5 - 12) fJ - (l2 - ; + ZK) = 0. 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

We previously had that 01 = f = 0, and if h, is to be different from zero, 
we require that 0 # 0. For 0 # 0, then we may use (4.19) and (4.16) to show 
that 

rl = 20 + 8Q. (4.22) 

Equation (4.22), together with (4.20), give 

7 = - 2(1 + Q)u. (4.23) 

Equations (4.22) and (4.21) give 

K==2(9+1)@+2). (4.24) 

Equations (4.17) and (4.18) are identically satisfied when we substitute (4.22) 
and (4.24) into them. Finally from our definitions of u and D we have, 

cp = - 30, (4.25) 

w = - (1 + Q). (4.26) 
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We previously had p = - /3/8 = - 1. We are now in a position to write 
the forward d.e., 

XYZ’ + 2(1 + Q)y;l + [+x + Q(l ,’ Q, ] y:, = Anyn, (4.27) 

and the r.a.d.e. is given by, 

- xx;’ - (1 + Q + 3ax)z;’ + [ex - 2(1 + Q)a]x; = A,.+ (4.28) 

The appropriate weight function, except for an arbitrary multiplicative con- 
stant, taken as unity, is, 

p = xQeox. (4.29) 

Equation (4.27) h as o p ly nomial solutions of order n in x2, and (4.28) has 
polynomial solutions of order 1 in x, when A, = nf?, n = 0, 1, a... The con- 
stant k in Eq. (2.23) is easily evaluated by considering ~2, L%‘, and ‘% in terms 
of 52, u, 0 giving, 

(xl+?eox)” - 2(1 + Q) (X?eor)’ + [$ + ‘(’ ,- “‘1 xPeoz = k. (4.30) 

By virtue of (4.19), k is easily shown to be zero. 
We now turn our discussion toward the evaluation of the conjunct. We 

require that the conjunct vanish for n, 1 = 0, 1, a.., so that for n = 0, I = 1, 
we have y0 = 1, zr = x + bi,,, or necessarily, 

or 

[2(x1+Qeoz)’ - 2(1 + 52)xQeu2] ip = 0, (4.31) 

xl+oeox = 0 (4.32) 
r 

For r we select a segment, one of whose end points is zero and the other 
+a, and choose Q > - 1 when D < 0. (If the second end point is at --co 
we would require (T > 0, but this case is easily reduceable to the above.) 
u may now be chosen to be - 1 with no loss of generality. Under these 
assumptions it is easily shown that the conjunct vanishes identically. Note that 

m 
xl+Ws(x,y~ - xtyh, + y,x;‘) i = 0, 

‘0 
m 

and 

[2(x1+Qems)’ - 2(1 + !2)sQe-z]y,x; :-= 0, 
0 

[2(1 + G)xQe-n - (xl+Qe’e-Zy]zlyk m --m 0. 
0 
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The first two statements follow in an obvious fashion, but the third depends 
on the fact that r: is expressible as x times a polynomial of degree n - 1 in x2. 
This completes Theorem 6, cited at the beginning of this section. 

V. DISCUSSION OF THE POLYNOMIALS OF SPENCER AND FANO 

In this section we solve the differential equations leading to the Spencer 
and Fano polynomials and exhibit some of their properties. We let 0 = - 1 
or 0 = - 2, and rewrite (4.28), (4.27) as follows, 

x4” + (1 + Q - 3x)&’ + 2(x - 1 - S2)z; = 2&, (5.1) 

XY;’ + 2(1 + qy; + p ,’ 9 - *] y; = - 2ny,* (5.2) 

Equation (5.1) has for its coefficients linear functions of x. Such equations 
are always solvable by the techniques of the Laplace transformation [S]. 
Suppose, 

%(X) = j c e%(W, (5.3) 

is a representation of x1(x) for some contour c and some function v(t), both 
of which are to be determined. Then replacing x1(x) by this integral in (5.1) 
gives, 

[xt3 + (1 + Q - 3x)t2 + 2(x - 1 - Q)t - 2Z]eztv(t)dt = 0. (5.4) 

If we integrate (5.4) by parts, we find that a necessary and sufficient condition 
that the integral (5.3) be a solution of (5.1) is that, 

s 
e {[(l + Q)t(t - 2) - 2&(t) - i [t(t - 1) (t - 2)~(t)]>eztdt 

+ eztt(t - 1) (t - 2)9~(t) 1 = 0. (5.5) c 
Let us choose y(t) so that, 

[(l + Q)t(t - 2) - 2&(t) = ; [t(t - 1) (t - 2)&)]. (5.6) 

This is a first order d.e. whose solution is easily verified to be 

&) _ To (t - 1)2z+Q 
2ni [t(t - 2)lzf1 ’ (5.7) 
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where &27ri is an arbitrary multiplicative constant. We must now choose c 
such that, 

e”Q(t - 1) (t - 2) V(t) 1 = E! e”t(t - lP??l? i = 0. 
[t(t - 2)]” :e (5.8) c 

Equation (5.8) will surely hold if c is a closed contour enclosing t = 0, but 
excluding t = 1, 2, as long as I is an integer. (This particular choice of con- 
tour does not restrict .Q in any way, however it will become clear in the treat- 
ment of (5.2) that we require Q to be integral. We will continue with that 
assumption, i.e., D is integral.) Hence, we have for this contour, 

This may easily be evaluated by Cauchy’s integral formula, giving, 

e"'t(t - l)?fZ" , 

z&4 = Fg [ (t - 31+1 ] Itzo' 

If we place x0(x) = 1, we get v0 = 2 (- l)l+“, or 

z7(x) = (-)Q 8 ezt(l - t)Q+2L 
2V! w C (1 - t/2)1+1 II t=O’ 

(5.10) 

(5.11) 

and if 

(5.12) 
j=O 

then 

(5.13) 

where 

b,, = $$. 

Instead of discussing (5.2) directly, it will be more expedient to discuss 
the formal adjoint differential equation to (5.1) for a function 

where Y,(X) satisfies, 

YJx) = xQe-zy,(x), 

- XK’ + (-Q - 2 - 3x)YZ + 2(Q - 2 - <%)YA = (2n + 2)Y,. (5.14) 



BIORTHOGONAL POLYNOMIALS 59 

If we suppose that 

represents a solution for some contour c’ and some function 9(t), then as 
before, 

J ,,[- xt(t + 1) (t + 2) + (Q - 2)t2 + 2(Q - 2)t - 2(rz + l)]ezt$(t)dt = 0. 
(5.16) 

Integrating by parts we get, 

s [(Q - 2)t” + 2(Q - 2)t - 2(n + 1) + (t + 1) (t + 2) + t(t + 2) 
c’ 

+ t(t + l)]ezt$(t)dt + 1 t(t + 1) (t + 2)tJ’(t)e%t 
c’ 

- t(t + 1) (t + 2)ezt#(t) ic)= 0. 

We shall choose 4(t) such that 

f@+2”f~;“+~2, 
Jivt) 

then the solution to (5.18) is given by, 

$0 [t(t + a1 
w = G (t + l)zn+l+Q ’ 

for t,4,/2?Ti an arbitrary constant. Suppose we choose c’ such that, 

- t(t + 1) (t + 2)ezt$(t) (CI = - & eet ~!t~l~jj~~ ie, = 0, 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

then it is clear that if we choose a contour encircling t = - 1 such that n, Q 
are integral, (5.20) will hold. We therefore arrive at 

ezf[t(t + 2)]” 
y&9 = & 1,. (f + 1)21L+l+Q dt* (5.21) 

We may simplify (5.21) by moving our contour such that t + 1 = s, or 

(5.22) 
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where c” is the new contour. Equation (5.20) gives, 

40 ea(s-l) (s2 - I)“+’ 
27i-i 9n+? 

~ = 0 
c” 

The application of Cauchy’s integral formula on (5.22) gives, 

(5.23) 

(5.24) 

Note that e%Y,(x) will be a polynomial of degree 2n + Q for a contour c” 
encircling the point s = 0, when n, Sz are integers. If we choose #,, = 1, and 
perform the necessary differentiations we get, 

@Y,(x) = e”e-@y%(x) = $ (-)j (J (2yTL)l , 
j=O 

(5.25) 

or 

(5.26) 

which is easily verified to be a solution of (5.2). We are now in a position 
to determine a convenient normalization of these polynomials. Their biortho- 
gonal character for n # I followed directly from the fact that the conjunct 
vanished identically for A, # A,. We now establish their normalization. We 
evaluate iV,, given by (5.27) in direct fashion 

s 
m zYL(x)yJx2)xQee-zdx = N,, 
0 

(5.27) 

Since xj forj less than n is some linear combination of z,, for m = 0, e-e, j, and 
yn(x2) is orthogonal to each of these, it suffices to consider just the term 
b,,x”. Therefore 

or 

(5.29) 

(5.30) 
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or 

(5.31) 

or 

(->” dn ___ [,n+Q(1 _ X2)n] i 
2%! dx” x-1 

=iv,= 1. (5.32) 

It is not difficult to establish some contiguous relationships between the 
polynomials corresponding to Q and 2 + Q. In order to do so, we return to 

(5.9) 

then applying the operator 

to both sides gives, 

If we apply 

to (5.9) we get, 

Subtracting (5.34) from (5.33) gives, 

q(x) = zf”“(x) - 4y(4. (5.35) 

An analagous procedure may be carried out for the Y,“(x). Since 

(5.22) 

then 

& [e”Yt+2(x)] = & J,, e”s~~n+l+p” = e”Yz(x), (5.36) 

(5.37) 
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or by subtracting (5.37) form (5.36) we have, 

and finally, 

e’Yr2(x) = e5Yz - eeYE+l, (5.38) 

,xo+2y~+"(4 = &Gyz - &Jy~+,. (5.39) 

With some simple manipulations (5.39) is seen to be equivalent to the well 
known relation between the binomial coefficients, 

(” 7 ‘) = (;) + (j” 1) * 
Another property of these polynomials that we choose to find is a recur- 

rence relation among four neighboring polynomials. We begin with a study 
of the .zJx). 

nt-2 

X2Zn(X) = 2 c,jzj, (5.41) 
j=O 

where 

I 

to 
c,j = x2x,(x)y3(x2)x?e-zdx. 

0 

In particular, c,,~ = 0 for j < n - 1 since x2yj is a linear combination of 
Yj+17 ..., yo, and x, is orthogonal to each of these terms. By equating like 
terms of x on both sides of (5.41) we get 

b n,k-2 = 1%” c&k, 

where it is to be assumed that b,,j = 0 for j > n, or j < 0. Equation (5.42) 
may be solved explicitly for cnj. 

b 
C n,ntz = 

n.n 
b ntz,nt2 

(5.43) 

cn,n = $ (bn.n-2 - cn,n+Az+2,n - cn.n+lbn+l,nl (5.45) 
n,n 

GLn-1 = && (b,,n-1 - cn,n,-zbn+m--I - cwz+A+l,n--l - CAL-J (5.46) 
n 1,n 1 

c .= ?I,3 - 0 (5.47) 

for j < n - 1, where the coefficients btj are directly evaluated from (5.13). 
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A similar procedure, if carried out for the yn(zz) would 

where 

h+l 

x2y&") = 2 47jY,W>. 
j=o 

such that d,, = 0 for j < n - 2. It then follows that, 

which permits us to solve for dsj when j = n + 1, n, n - 
Finally, we exhibit a generating function for the m(x) 

notice that 

@v&c) = 2 (-)j (7) (2;y& . 
j=O 

If we multiply both sides by tn and sum on n we get, 

9i+o * = go (-)j (2j + Q)! n=i 3 tn 20 

= 2 (_)i x2j++Q 

j=O 
(2j + s-i?)! (1 $+i- 
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be as follows: 

(5.48) 

(5.49) 

(5.50) 

1, n -2. 
polynomials. We 

(5.51) 

= (1 - t)‘Ql2)-1 cos x 
! li 

c_ (O/2)--1 
t 

tQi2 ___ - z &$ [+i12j/~ 1-t 

for Q an even integer, and 
(5.52) 

- (Q-3)/2 
-- 

j=o 

for Q an odd integer. 
With this we conclude our discussion of the Spencer and Fano polynomials. 
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VI. CONCLUSION 

It would be of interest to determine the extent to which our theory may 
be generalized to ordinary differential equations of some fixed order greater 
than three. Theorems 1 and 2 are easily generalizable, but the equivalent 
of our compatibility equations and our conjunct conditions rapidly become 
unwieldy. For odd order d.e. Lemmas 1 and 2 easily generalize and answer 
the nonexistence of self-orthogonal polynomials,* but it remains a difficult 
task to determine whether any biorthogonal polynomials are possible. On 
the other hand, for differential equations of even order we have even less 
information. For instance, it is not difficult to prove the existence of at least 
one d.e. (and hence, many) of even order having nonself-orthogonal polyno- 
mials for its solution. One arrives at such an equation by iterating the dif- 
ferential operators appearing in the Spencer and Fano d.e. once, giving a d.e. 
of sixth order having the Spencer and Fano polynomials as their solution. 
This same device when applied twice to the second order d.e. of Cases l-5 
also lead to sixth order d.e. having as solutions the polynomials discussed 
in Cases 1-5. 

Another set of questions left unanswered concerns the merit of deliberately 
using nonself-orthogonal polynomials for the expansion of arbitrary functions. 
Questions of convergence of such systems are left open, along with their 
related moment problems which are barely hinted at in the existing literature. 

Finally, the full exploration of the specific polynomials of Section V might 
be carried out in an attempt to broaden the field of special functions. 
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