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Let A and B be positive operators on a complex Hilbert space H. The parallel 
sum A : E of A and B is the strong operator limit (as ~10) of the net 
(A + &)(A + B + 2s) -’ (B + a). I f  this net converges in norm, then (following Green 
and Morley), we say that the pair (A, B) is of class UUP. It is known that if 
Range A c Range(A + B), then (A, B) is a UUP-pair. In this work we establish that 
Range(A) G Range(A + B) if and only Range(B) E Range(A + B). We also show 
that if AB + BA + BZ > 0, then Range A c Range(A + &) for a11 real c1 with GL > 1 
and that if AL? + BA > 0, then Range (A) E Range(A + GIB) for all a 2 0. This implies 
several previously known results, e.g., that if AB= BA, then (A, B) is a UUP-pair. 
Finally we establish a number of other results which relate the class UUP to range 
inclusion. 0 1991 Academic Press. Inc. 

1. 1NTR00UcT10~ 

If A and B are invertible positive operators, their parallel sum A : B is 
defined by A : B = (A - ’ + B-l)- ‘; this definition is motivated by the 
parallel connection of resistors in electrical networks (see [2, 141). 
Anderson and Duflin have studied this operation for operators on a linite- 
dimensional space [2]; some extensions of the theory to infinite dimen- 
sional Hilbert spaces have been given by Anderson and Schreiber [3] and 
Fillmore and Williams [S]. In each of these three papers some form of 
generaized inverse has been used for noninvertible operators. Anderson and 
Trapp base their definition of A : B on the shorted operator (see [l] or 
[4]). In practice one must usually compute the parallel sum A : B of A and 
B by some limiting or iterative technique as, for example, 

where the limit is taken in the strong operator topology 141. If the net 
(A + E) : (B+E) does converge in norm, then the pair (A, B) is said to 
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be uniformly and universally parallelizable, or of class UUP [9]. This 
definition is due to Green and Morley, who studied the class UUP and 
showed [9] that if AB = BA, then (A, B) is of class UUP, that if A and B 
have closed ranges, then (A, B) is of class UUP if and only if A + B has 
closed range, and that (A, B) is of class UUP if and only if the process of 
computing the parallel sum commutes with every representation of the 
C*-algebra B(H). 

Bunce [6] and Morley [ 121 have independently established that if 
Range(A) c Range(A + B), then (A, B) is of class UUP, but the converse 
does not hold [lo]. We do have, however, a principle of symmetry for 
range inclusion, namely that Range(A) c Range(A + B) if and only if 
Range(B) c Range(A + B). 

In Section 3 below, we establish this principle of symmetry together 
with some corollaries, and we obtain conditions on the (positive) 
operators A and B which will guarantee that (A, MB) is of class UUP for 
all real N > 1. We show in particular that if AB+ BA + B* >, 0, then 
Range A E Range(A + MB) for all such c(, and that if AB+ BA b 0, then 
Range(A) c Range(A + aB) for all c( > 0. These results imply several pre- 
viously known results, e.g., that if AB= BA, then (A, B) is of class UUP 
[9], and they may be of use in the study of the shorted operator, since the 
short of A to the range of a projection P can be expressed as the norm limit 
of the sequence , . ‘A . nP} K: i [4]. Section 5 contains an alternative treat- 
ment of the parallel sum irid some further characterizations of range inclu- 
sions. In Particular, we establih that Range(B) c Range( A + B) if and only 
if B( A + B + l/n) ~ ’ (A + B)“* converges strong operator to K(A + B)“2 for 
some K E B(H), and that this strong operator convergence holds if and only 
if the same sequence is in fact norm convergent. We also show that these 
conditions imply that (A + B)+A and (A + B)+ B are bounded, where + 
denotes the Moore-Penrose pseudoinverse [S]. 

2. PRELIMINARIES 

We shall be concerned with a complex Hilbert space H with inner 
product ( , ). A bounded linear Hermitian operator A on H wil be called 
positive if (Ax, x) 2 0 for all x E H. For positive operators B and C, we say 
that B 2 C if B - C is positive; we recall [ 111 that if a net A, of positive 
operators is monotone and bounded, then the net has a limit in the strong 
operator topology. The range of the operator A is denoted below by R(A), 
the null space by N(A). For a positive operator A, the unique positive 
square root is denoted by A “’ Observe that for A Z 0, R(A) c R(A”‘), and . 

x E N(A) if and only if x E N(A’12) whence R(A = R(A) (= the 
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orlthogonal complement of N(A)). Some basic results concerning the 
ranges of linear operators are given by Douglas [7] and Fillmore and 
Williams [S]. 

LEMMA 1 (Douglas). Let A and B be (bounded) operators on the Hilbert 
space H. The following statements are equivalent: 

(1) UW)sR(B)). 
(2) AA* < A2BB* for some 12 0. 

(3) There exists a bounded operator C such that A = BC. Moreover, tf 
(1 ), (2), and (3) are valid, then there exists a unique operator so that 

(a) IJC11’=inf{p/ AA* duBB*) 

(b) N(A)=N(C), and 

(c) R(C) E R(B*). 

COROLLARY 1. Let A and B be bounded operators on H, There exists an 
invertible C on H such that A = BC if A and B have the same range and 
nullity. 

THEOREM 1 (T. Crimmins quoted in [ 83). If A, BE B(H), then 

R(A) + R(B) = $/AA* + Bb*). 

The algebra B(H) of all bounded linear operators on H is a C*-algebra, 
i.e., a Banach *-algebra with an isometric involution T+ T* satisfying 
11 T*TII = 1) TII * for all T. In particular, B(H) is (via the standard norm for 
operators) a Banach space. The Banach space double dual B(H)** is also, 
in a natural way [9, 111, a C*-algebra and the universal representation 
(see [9, 111) of B(H) allows us to regard B(H)** as a weak operator 
closed (hence norm closed) adjoint-closed subalgebra of B(K), where K is 
a rather large Hilbert space obtained from B(H) by means of the 
Gelfand-Naimark-Segal construction [ 111. Let A b A^ be this universal 
representation of B(H), so that T B(H) + B(K) is an isometric *-preserving 
algebra isomorphism of B(H) into B(K). The Hilbert space K is called the 
universal representation space of the C*-algebra B(H). 

The map A HA preserves the norm and all algebraic structure and all 
that is implied by algebraic structure. For instance, an operator A is 
positive if and only if there is a B with A = B*B, in which case we also have 
A = d*B (since B* = (B*) 3. W e conclude that A is positive whenever A is 
positive. The map At+ A^ is therefore order preserving. The map A H A 
does not, however, preserve strong or weak operator limits or certain 
infinite operations such as suprema and infima (see, for example, [9]). 
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We shall be interested in a class of pairs of positive operators which was 
first defined by Green and Morley, and we quote here their definition and 
some related results which will be used in our later discussion. 

DEFINITION (Green and Morley [9]). Let A and B be two positive 
operators on a Hilbert space A. We say that the pair (A, B) is unzformly 
and universally parallelizable (or of class UUP) if the net (A + E) : (B-t E) 
converges in norm. 

THEOREM 2 (Bunce [6] and independently Morley [ 123). Suppose A 
and B are two bounded positive operators on H and R(B) c R( A + B). Then 
(A, B) is a UUP pair. 

LEMMA 2 (Bunce, unpublished [6]). Let A and B be positioe operators 
in B(H). Zf sup,,,, I(B(A+B+2&.)‘1(<n3, then B=(A+B)C for sonle 
CE B(H). 

LEMMA 3 (Green and Morley [9]). Let A and B be positive operators 
on a Hilbert space H. If A and B commute, then (A, B) is UUP. Moreover 
R(B) s R(A + B). 

THEOREM 3 (Green and Morley [9]). Let A and B be positive operators 
in B(H), each of which has closed range. Then the following properties are 
mutually equivalent: 

(1) A + B has closed range; 

(2) (A:B)-=A:& 

(3) (A, B) is of class UUP. 

3. RANGE INCLUSION 

We begin with a principle of symmetry for range inclusion. 

THEOREM 4. Let A and B be bounded operators on H. Then R(A) c 
R(A + B) if and only if R(B) c R(A + B). 

Proof Suppose R(A) s R(A + B), then by Douglas’ lemma (Lemma 1 
above) there exists a bounded operator C on H such that A = (A + B)C. 
Clearly D = 1 - C is a bounded operator on H, and (A + B) D = 
(A+B)(I-C)=A+B-(A+B)C=A+B-A=B. Thus by Douglas’ 
Lemma R(B) c R( A + B). By symmetry nothing remains to be proved. 
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Remark 1. The calculations in the proof of Theorem 4 can be made 
to show the following more general result: if A and B are linear trans- 
formations on a vector space X, then R(A) G R(A + B) if and only if 
R(B) E R(A + B). 

By applying (2) of Douglas’ lemma, one gets a characterization of R(A) 
due to Shmulyan [ 131: 

LEMMA 4 (Quoted in Fillmore and Williams [8]). Zf A E B(H), then 
ye R(Aj ifand only if 

where the supremum is taken over all x which are not elements of N(A*). 

COROLLARY 2. Let A and B be bounded operators on H, The following 
conditions are equivalent. 

(1) R(A)G R(A+ B) 

(2) R(B)ER(A+B) 

(3) su~,(lx,A~)lIll(A*+B*)xll)<~ foryEH 
(4) supx(Ix, B.YM~V*+B*~~~)~ WforyEH. 

Proof By Theorem 4, (1) is equivalent to (2). The equivalence of (1) 
and (3) (or (2) and (4)) is an immediate consequence of the Lemma 4. 

LEMMA 5. Zf A, BE B(H) and R(A)r R(A+ B), then (A+,B)+A, 
(A + B)+B, are bounded operators on H, where (A + B)+ denotes the 
(possibly unbounded) Moore-Penrose pseudoinverse of A + B [S]. 

Proof: Without loss of generality we may suppose that A + B is one 
to one (see Remark 2 below). By Lemma 1 there exists a YE B(H) such 
that (A + B) Y= B. Notice that since A + B is one to one and 
(A + B)(A + B)+B = B (because (A + B)(A + B)+ is the projection on 
R(A + B)), we have (A + B)‘B = Y. The proof is completed by Theorem 4. 

Remark 2. If A + B is not one to one H, then we can consider 

A+B:N(A+B)‘-+H. 

Notice that A + BE B(N(A + B)I, H) is one to one and if R(A) E 
R(A + B), then by the previous lemma (A+ B)+A is bounded, i.e., 
(A + B)+AE B(N(A+ B)l, H). Now (A + B)+A can be extended to a 
bounded operator on H. 
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4. SUFFICIENT CONDITIONS WHICH IMPLY RANGE INCLUSION 

LEMMA 6. Let A and B be bounded positive operators on H. Then 
R( A + B) is closed if and only if R( A + aB) is closed for all a > 0 if and only 
if R(A + aB) = R(A) + R(B) for all a > 0. I f  R(A + B) is closed, then 
R(A) C_ R(A + aB) and R(B) c R(A + aB) for all a > 0. 

Proof Closure of R(A + B) implies the closure of R(A + B)‘!*. But 

R(A + aB)‘!* = R(A”*) + R((aB)“‘) 

= R(A ‘I*) + R( B”*) = R( A + B)’ ’ 

for all aE [w+ by Theorem 1 (Crimmins’ theorem). This implies that 
R(A + aB)“* and R(A + aB) are closed for all a E Iw +. Hence 

R(A+aB)= R((A+aB)“*)=R(A’*)+ R((aB)“*) 

= R( A”*) + R( B”‘), 

which includes both R(A) and R(B). 

LEMMA 7. Let A and B be bounded and self-adjoint on H. Lj’ 
AB + BA 3 0, then R(A) and R(B) are included in R( A + aB) for all a E iw 
with a b 0. 

Proof Suppose AB + BA Z 0. Since A and B are self-adjoint A* = A*A, 
B* = B*B and hence a(AB+ BA) + a*A’+ B* > B2 for all a 20. This 
implies that B2 < (aA + B)*. Similarly we can conclude that a2A2 < 
(aA + B)*. Now the result follows by Lemma 1 (Douglas’ lemma). 

LEMMA 8. Let A and B be bounded and self-adjoint on H. Lf 
AB + BA + B* 2 0, then R(A) c R( A + aB) and R(B) E. R( A + aB) for all 
a E [ 1, a)). Moreover for each a E [ 1, co), there exist a nonexpansive map C, 
such that A = (A + B)C,. 

Proof Leta~1andAB+BA+B2>0,thena(AB-tBA+B2)+A2>A7. 
But (a2-a)B*>O, so (A+aB)*=a(AB+BA+B2)+A’+(a2-a)B*> 
A*. Thus R(A) E R(A + as). 

Now by Lemma 1 (Douglas’ lemma) there is a bounded operator C, 
such that A = (A + aB) C, and /( CJ * = inf{ p ( A2 < p(A + B)* }. Therefore 
/(C,II < 1, because A2 < (A + aB)‘. Also R(B) c R(A + aB) for all a >, 1 by 
Theorem 4. 

COROLLARY 3. Let A and B be bounded positive operators such that 
AB+ BA 3 0. Then (A, aB) and (B, aA) are UUP for all a E Iw+. 
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Proof By Lemma 7, R(A) c R(A + a@ and R(B)G R(crA + B) for all 
uER+. Hence (A, crB) and (B, UA) are UUP for all CI > 0 by Theorem 2. 

COROLLARY 4. Let A and B be bounded positive operators such that 
B+BA+B2~0.Then(A,aB)isUUPforallcr~IWfwitha~1. 

Proof By Lemma 8, R(A) G R(A + ctB) for all tl E [ 1, cc ). Hence 
(A, MB) is UUP for all a~ [l, 00). 

LEMMA 9. Let A and B be bounded positive operators such that 
A = (A + B) C for some C satisfying /I Ck)j - 0 as k + co. Then, R(B) = 
R(A + B) and R(A) E R(B). 

Proof: It is well known that (/Ckj( + 0 as k --) 03 if and only if spectral 
radius of C is less than one, which implies that I- C is invertible [ 111. 
Now observe that B= (A + B)(I- C) an Z-C is invertible. Notice that 
from Corollary 1, it follows that two positive operators have the same 
range if and only if they differ by an invertible factor. This implies that 
R(B) = R(A + B) and hence that R(A) c R(A + B) = R(B) by Theorem 4. 

Here we give two examples. The first example shows that there exist two 
non-commuting positive operators A and B such that AB + BA 3 0 (an 
example for Lemma 7). The second example exhibits two non-commuting 
positive operators such that AB + BA + A2 2 0 and yet AB + BA 3 0 (an 
example for Lemma 8). 

EXAMPLE 1. Define B,=[; y] and A,= [‘y :] (x> 1). It is not 
difficult to verify that A, 2 0, B, >, 0, 

BJx= [ 100x x 

1 1 1 ’ A,B,= [ 100x 1 
x 1 1’ 

A,B, + B,A, = 
200x x+1 
x+1 1 2 ’ 

and A,B, # B,A, (because x # 1). 

Notice that A,B, + B,A, > 0 if and only if x > 0 and 400x - (x + 1)’ > 0. 
Thus 1 < x < 199 + ,/600 is sufficient for A,B, + B,A, to be positive. 
Now let A and B be the block diagonal matrices whose ith blocks are 
given, respectively, by A, and B, with x = 2 + l/i. It is evident that A > 0, 
BaO, AB+BAaO, and ABfBA. 

It follows that R(A) E R(A + crB) for all c( > 0 by Lemma 7. This implies 
that (A, txB) and (B, clA) are UUP for all u 3 0 by Corollary 3. 
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EXAMPLE 2. This example gives two positive operators A and B such 
that AB + BA + B2 > 0 and AB + BA g+ 0. Define 

B,=[r :], &=[: ;], and 

It is easily verified that A,B,+ B,A, $ 0 and that T,+ Bz= [-c:i ‘fr2]. 
Notice that A,B, + B, A, + B: >/ 0 is and only if x > 4/3. Now let A and B 
be the block diagonal matrices diag{ A i’, and diag{ Bi}, i = 1, 2, . . . . 
respectively, whose ith blocks are given respectively by A, and B., 
with x= 413 + l/i. It is evident that A 2 0, BaO, AB + BA $ 0, and 
AB + BA + B2 Gz 0. Therefore by Lemma 8 and Corollary 4, R(A) E 
R(A +crB) and (A, aB) is UUP for each tl~ [l, KI). 

PROPOSITION 1. Let A and B be two positive operators. Then (A, B) is 
UUP if and only if (UAW, UBV) is UUP for each unitary operator U 
on H. 

Proqf. a,: T-+ U*TU is a *-isomorphism of B(H) onto B(H). It 

follows that r,( T-‘) = (a,(T))-’ for any invertible T, and hence that 

Since a, is isometric, the result is immediate. 

5. AN ALTERNATIVE APPROACH TO PARALLEL SUMS 

Let H be a complex Hilbert space with inner product ( , ) and let C be 
a positive operator with N(C) = 0. Observe that (CX, x) = 0 if and only if 
C’12x =0 if and only if Cx = 0, so we may define a new inner product 
( 3 >cby 

<x, Y > = (Cx, Y). 

Let H, be the completion of H with respect to ( , )c. Thus HC consists 
of (equivalence classes of) all sequences {x,} that are Cauchy relative to 
( , )c. This means that 

(W,-GA (x,--x,))+0 

as n, m -+ co. If 06 A <C, then given such an H,-Cauchy sequence, 
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we have (A(x,-X,),X,-x,)<((C(x,-x,),x,-x,)) and therefore 
(A”‘x,},“= i is H-Cauchy. If ( y,} is equivalent to Ix”> then 

so Al/*x, and A”*y, have the same limit in H. We may therefore define an 
operator a: Hc+ H by Ax* = A”2(lim,,, A”‘x,) where x, is any 
He-Cauchy sequence converging to x*, with x, E H. 

T. D. Morley has proposed the following conjecture: 

Morley’s Conjecture. (A, B) is UUP if and only if 

lim (A+B+E)-‘B (strong limit) 
El0 

exists as a bounded operator from H to H, +B. This would mean that 
(A, B) is UUP if and only if (A + B)i’* (A + B + l/n)- ’ Bx is H-Cauchy for 
each x E H. 

In view of this conjecture we investigate the behavior of the sequence 
((A+B)“~(A+B+~/~)~~B},“=,. 

THEOREM 5. Suppose r;4 is a P-algebra and 06 Bg A in d. For 
n = 1, 2, . ..) let u, = B1’*(nPIZ+A)-‘A. Then 

(i) u,*u, < A. (i) u,*u, < A. 

(ii) (ii) JJu, - u,(I < Il(n-’ -m-l)(m-‘Z+A)-l (n-‘I+ A)-1A3’21( d JJu, - u,(I < Il(n-’ -m-l)(m-‘Z+A)-l (n-‘I+ A)-1A3’21( < 
In.’ -m In.’ -m y*, lp1’*-24,1I y*, llB1’*-u,lI < IInPIA”*[n-‘I+ A]-‘11 6 (l/n)n-‘I*. < IInPIA”*[n-‘I+ A]-‘11 6 (l/n)n-‘I*. 

(iii) (iii) {~n*~~}~= I converges to B. {~n*~~}~= I converges to B. 

Proof. These assertions are an immediate consequence of [ll, 4.6.21, 
p. 2901 if we consider 5&I = JX! and 4 to be Z, the identity map on the 
C*-algebra &. 

THEOREM 6 (Anderson and Trapp [4], Fillmore and Williams 
183). Let A and B be positive operators on H. Then there are unique 
operators C and D which satisfy 

A”2 = (A + B)“2 C, N(C*) 2 N((A + B)“‘), 

B1/* = (A + B)l’* D, N(D*) 1 N((A + B)“2). 

Remarks 3. Let A, B, C, and D be as above. In fact one has 
C= ,/mt & and D = Jmt ,/%, even though fii may be 
unbounded. Also since R(A) E R(A1’2) s R(A + B)‘12, there are operators E 
and F given by Lemma 1 such that A = (A + B)“‘E, B = (A + B)li2 F, 
R(E) c R(A + B), and R(F) c R(A + B). By the uniqueness condition of 
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Lemma 1 (Douglas’ lemma), E= CA’12, F= DB”‘, and E+ F= (A + B)‘,’ 
(because A + B= (A + B)‘j2 (A + B)“’ and (A + B) = (A + B)“’ (E+ F)). 

LEMMA 10. Let A and B be positive operators, and R(B) E: R(A + B). 
Then {(A+ B)‘j2 (A+B+ l/n))‘B},“=’ is a norm convergent sequence in H 
and its limit is F (recall B = (A + B)‘12 F). 

Proof. First we show that the given sequence is Cauchy. If we replace 
both A and B in Theorem 5 by A + B, it follows that 

u, = (A + B)‘l* (n-II+ A + B)(A + B) and 

llum-uU,lI <l~n~‘-rn~‘/‘!~. 

Furthermore, from Lemma 1, there exist a A 2 0 such that B2 < 12(A + B)‘. 
Hence 

61. In. ’ -rn~‘lW 

This implies that {(A + B)“’ (A + B + l/n)-’ B},“=, is a Cauchy sequence 
and hence it converges to a limit T*. From this it follows that 
{B(A+B+~/~)~‘(A+B)“~}~~’ converges to T in norm. Again from 
Theorem 5 applied to the sequence { B”‘(A + B + l/n) ’ (A + B)} ,“= ’ we 
have B”2(A+B+l/n)-’ (A+B)+B”’ (in norm). Hence B(A+B+l/n) ’ 
(A + B) + B (in norm). On the other hand B(A + B+ l/n))’ (A + B) -+ 
T(A+B) . ‘I2 Thus T(A + B)lj2 = B and hence B = (A + B)“’ T*. Clearly, 
N(T) 2 N((A + B)‘j2), so by the uniqueness of F, T* = F and nothing 
remains to be proved. 

Remark 4. If the conditions of Lemma 10 hold, then we have also that 
(A + B)‘12 (A + B+ l/n)-‘A + E in norm (because R(A) c R(A + B) by 
Theorem 4 ). 

LEMMA 11. Let T be a positive operator and let E, be the range projec- 
tion of T, i.e., the (self-adjoint) projection of H onto R(T). Then the sequence 
{(T+ l/n)-’ Tl,“= I converges in the strong operator topology monotonically 
up to E,. 
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Proof This follows easily from spectral theory and the monotone 
convergence theorem. 

THEOREM 7. Let A and B be bounded positive operators on H. The 
following statements are equivalent: 

(1) R(B)cR(A+B) 

(2) B(A + B + l/n)-’ (A + B)“* * K(A + B)lj2 (strong operator) for 
some KE B(H) 

(3) B(A + B + l/n))’ (A + B)“* --) K(A + B)“’ (norm) for some 
KE B(H) 

(4) {B(A+B+ l/n))‘}~=, is a strong operator convergent sequence. 

Proof: (4)+ (1). If {B(A + B+ l/n)-‘},“_, is a strong operator 
convergent sequence, then by the uniform boundedness principle 
sup, IIB(A + B+ l/n)-‘11 < co. Hence by Lemma 2, R(B) G R(A + B). 

(1) 3 (4). If R(B) G R(A + B), then there exists C with B= (A + B)C, 
by Lemma 1 (Douglas’ lemma). Therefore B(A + B + l/n)-’ = 
C*(A+B)(A+B+ l/n)-’ and hence I/B(A+B+ l/n)-‘11 = (IC*(A+B) 
(A + B+ l/n))‘11 < IIC*II II(A + B)(A + B+ l/n)-‘11 d I(C*Il. 

(i)=+ (3). Suppose R(B)&R(A + B). Then by Lemma 10, (A + B)“* 
(A+B+l/n)-‘B+F=DB”* in norm. From Lemma 5, we have that 
X= (A + B)+ B is a bounded operator on H. 

Now we claim that X*(A + B)‘12 = B”*D*. Indeed, (A + B)(A + B)+ 
is the projection on R(A + B), so R(B) E (A + B) implies that 
B = (A + B)(A + B)+B = (A + B)X. Thus X*(A + B) = B = B”*B”* = 
B”*D*(A + B)1’2. Therefore, X*(A + B)t12 = B1’2D*, since both vanish on 
N((A + B)“‘). Thus ((A + B)‘12 (A + B+ l/n)-‘B)* + X*(A + B)“*. 

(2)=+ (1). Suppose that B(A + B + l/n))’ (A + B)l/’ - K(A + B)‘/* 
(strong operator) for some KE B(H). We show that R(B)cR(A + B). 
Since by Lemma 11, (A + B + l/n)-’ (A + B) + E, + B (the range projection 
of A + B) in the strong operator topology by Lemma 11, we have 
B( A + B + l/n) ~ ’ (A + B) + B (strong operator). Therefore, B = K( A + B) 
and hence R(B) G R(A + B) by Lemma 1. 

COROLLARY 5. If R(B) G R(A + B), then 

)I B”‘D*xJI 
““,’ I/(A + B)“*xll < O”’ 

where the supremum is taken over all x which are not elements of 
N((A + B)“‘). (B and D are as above.) 
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Proof We showed in the previous theorem that X*(A + B)“’ = B’I*D*. 
Thus 

11 B”*D*xl( IIX*(A + D)“*x(I 

Sup lI(A + B)1’2~(I =“’ (l(A + B)“2x/I 

<sup /W*lI ll(A + B)“‘xIl = IIx*,/. \ /(A + B)“2.xIl 

COROLLARY 6. Zf R(B) E R( A + B), then 

sup IIWA + B + lb-’ (A + B)L’2~ - B1’2D*xll < 2 lltA + BJ+ B,, 
ll(A + B)“2xll \ 

Proof From the proof of Theorem 7, X*(A + B) = Band X*(A + B)“” = 
B”2D* where X= (A + B)+B. Thus 

sup \lB(A + B+ l/n)-’ (A + B)“*x- B”*D*xIj 

lI(A + B)“‘xl( 

= sup IIX*(A + B)(A + B + l/n)-’ (A + B)li2x - X*(A + B)“2xIl 

ll(A + B)1’2xll 
=sup Ilx*[(A+B)(A+B+l/n)~‘-Z](A+B)‘!*xll 

II (‘4 + B)“*xll 

( because(A+B)(A+B+k) ‘<1). 

Remark 5. If {(A + B)“’ (A + B + l/n)-’ Bx},“=, is a Cauchy sequence 
for each x E H, then by the principle of uniform boundedness 

PROPOSITION 2. Let A and B be two bounded positive operators and 
suppose that 
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Then 
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is Cauchy for each x E H. 

Proof: It is easy to see (from the spectral theory of A + B) that 

(1) (A+B+l/n)-2<(A+B+l/m)-2forn<m. 

(2) (A+B)(AfB+l/n)-*,<(A+B)(A+B+l/m)-*forn<m. 

(3) B(A + B)(A + B + l/n)-*B = (B(A + B + l/n)-’ (A + B)“‘) 
(B(A + B + l/n)-’ (A + B)lj2)* < B(A + B)(A + B + l/m)-‘B = 
(B(A + B+ l/m)-‘(A + B)“‘)(B(A + B+ l/m)-’ (A + B)l12)* for n Qm. 

Hence 

for all n < m and all x E H. From boundedness of {(A + B)1’2 
(A+B+l/n)-‘B},“=,, it follows that { II(A +B)‘12 (A + B+ l/n)-‘Bxll ),“=, 
is a bounded monotone sequence in R for each x E H. Hence { I[(.4 + B)1’2 
(A + B+ l/n)-‘BxII},“=, is a convergent sequence and is therefore Cauchy 
for each x E H. 
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