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a b s t r a c t

An a posteriori upper bound is derived for the nonstationary convection–diffusion problem
using the Crank–Nicolson scheme and continuous, piecewise linear stabilized finite
elements with large aspect ratio. Following Lozinski et al. (2009) [13], a quadratic time
reconstruction is used.
A space and time adaptive algorithm is developed to ensure the control of the relative

error in the L2(H1)norm.Numerical experiments illustrating the efficiency of this approach
are reported; it is shown that the error indicator is of optimal orderwith respect to both the
mesh size and the time step, even in the convection dominated regime and in the presence
of boundary layers.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Deriving robust a posteriori error estimators for stationary convection–diffusion problems with continuous, piecewise
linear stabilized finite elements has generated a lot of papers, from both theoretical and experimental point of views,
see for instance [1–5] for isotropic meshes and [6–9] for anisotropic meshes. However, fewer papers are available for the
nonstationary case, we refer for instance to [10,11].
Concerning parabolic problems and the Crank–Nicolson scheme, it was observed in Section 2.1 of [12] that the standard

energy technique yields to a suboptimal a posteriori error estimator. The so-called Crank–Nicolson reconstruction was then
introduced in order to restore the appropriate rate of convergence in time. In [13], an alternative piecewise quadratic time
reconstruction was proposed, an adaptive space and time algorithm was proposed and numerical results were performed
with both error estimators. Moreover, anisotropic finite elements were used.
Our goal is to extend the results presented in [13] to unsteady convection–diffusion problems and to test the quality of

our error indicator in the convection dominated regime and in the presence of boundary layers.
The paper is organized as follows. In Section 2 we introduce the model problem and its time and space discretization.

Then, we derive in Section 3 an a posteriori upper bound for the error, the involved constant being independent of the time
step, mesh size and aspect ratio. In Section 4, a description of the adaptive time and space algorithm is proposed. Finally,
in Section 5, we present numerical experiments on several test cases and conclude with the numerical simulation of an
electroosmotic flow in a long rectangular channel.

2. The model and its time and space discretization

LetΩ be a polygonal domainwith boundary ∂Ω , T > 0 the final time, ε > 0 the diffusion coefficient, a : Ω×(0, T )→ R2
an incompressible velocity field, f : Ω × (0, T ) → R a source term, u0 : Ω → R the initial condition. We consider the
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following problem. Find u : Ω × (0, T )→ R such that
∂u
∂t
− ε1u+ a · ∇u = f inΩ × (0, T ),

u = 0 on ∂Ω × (0, T ),
u(·, 0) = u0 inΩ.

(1)

The weak formulation corresponding to (1) is as follows, see for instance [14]. LetW be the functional space defined by

W = {w : Ω × (0, T )→ R such thatw ∈ L2(0, T ;H10 (Ω)) and ∂w/∂t ∈ L
2(0, T ;H−1(Ω))}.

Given a ∈ C1(Ω̄ × [0, T ]) such that diva = 0, f ∈ L2(0, T ;H−1(Ω)) and u0 ∈ L2(Ω), we seek for a solution u ∈ W such
that u(·, 0) = u0 and〈

∂u
∂t
, v

〉
+ ε

∫
Ω

∇u · ∇vdx+
∫
Ω

(a · ∇u)vdx = 〈f , v〉 ∀v ∈ H10 (Ω) and a.e. t ∈ (0, T ), (2)

where 〈·, ·〉 denotes the duality pairing between H−1(Ω) and H10 (Ω).
It is well know that a standard Galerkin space discretization of (2) leads to spurious oscillations in the convection

dominated regime. A remedy is to use a stabilized finite element method, see for instance [15–17] and references therein. In
presence of boundary layers, anisotropically refined meshes can be used to improve the precision of the numerical solution
with a moderate increase of the number of degrees of freedom.
In this paper, an a posteriori upper bound is derived for a fixed triangulation ofΩ . However, in the adaptive algorithm,

the triangulation will be changed when necessary. Therefore, the error due to interpolation between meshes will not be
considered in this study. The numerical results reported at the end of the paper show that this interpolation error is not
important here.
For any 0 < h < 1, let Th be a conforming triangulation ofΩ into triangles K with diameter hK less than h. We define Vh

the usual finite element space of continuous, piecewise linear functions on Th vanishing on the boundary:

Vh =
{
vh ∈ C0(Ω); vh|K ∈ P1; ∀K ∈ Th

}
∩ H10 (Ω).

Moreover, in order to approximate the solution of the above problem, we consider the classical Galerkin Least Squares
method (GLS) with amodified stabilization parameter due to the use of anisotropic finite elements, see [18] for a theoretical
justification in the framework of stationary convection–diffusion. Let N ≥ 1, we introduce a partition (not necessarily
uniform) of the interval [0, T ] into subintervals In = [tn−1, tn], n = 1, . . . ,N , such that 0 = t0 < t1 < · · · < tN = T and
set τn = tn − tn−1. We assume that f ∈ C0([0, T ]; L2(Ω)) and set f n(·) = f (·, tn). We also assume that u0 ∈ C0(Ω̄) and set
u0h = rhu

0 where rh is the Lagrange interpolant corresponding to Vh. Thus, for all n = 1, . . . ,N , the Crank–Nicolson scheme
consists in seeking unh ∈ Vh such that for all vh ∈ Vh we have∫

Ω

unh − u
n−1
h

τn
vhdx+

ε

2

∫
Ω

∇(unh + u
n−1
h ) · ∇vhdx+

1
2

∫
Ω

a · ∇(unh + u
n−1
h )vhdx

+

∑
K∈Th

τK

∫
K

(
unh − u

n−1
h

τn
+
1
2
a · ∇(unh + u

n−1
h )−

1
2
(f n + f n−1)

)
(a · ∇vh) dx =

1
2

∫
Ω

(f n + f n−1)vhdx. (3)

The stabilization parameter τK is defined by

τK =
λ2,K

2|a|∞
ξ(PeK ),

where |a|∞ = ‖a‖L∞(Ω×(0,T )) and the function ξ is defined by

ξ(PeK ) =
{
PeK if 0 ≤ PeK ≤ 1,
1 if 1 ≤ PeK ,

with PeK , the local Peclet number, defined by

PeK =
λ2,K |a|∞
6ε

.

Here λ2,K is the local mesh size in the direction of minimum stretching. Its precise definition will be provided in the next
section.
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3. A posteriori error estimates

3.1. Interpolation estimates for anisotropic finite elements

In order to describe themesh anisotropywe introduce some definitions and properties taken from [19,20]. Similar results
can be found using the framework of [21,22]. For any triangle K of Th, we consider TK : K̂ → K , the affine application which
maps the reference triangle K̂ into K . LetMK ∈ R2×2 and tK ∈ R2 be the matrix and the vector defining such a map, we have

x = TK (x̂) = MK x̂+ tK ∀x̂ ∈ R2.

SinceMK is invertible, it admits a singular value decomposition

MK = RTKΛKPK ,

where RK and PK are orthogonal andΛK is diagonal with positive entries. In the following we set

ΛK =

(
λ1,K 0
0 λ2,K

)
and RK =

(
rT1,K
rT2,K

)
(4)

with the choice λ1,K ≥ λ2,K . We refer to Section 2 of [23] for examples of such a transformation. The classical minimum
angle condition is not required in this context. However, for each vertex, the number of neighboring vertices should be
bounded from above, uniformly with respect to the mesh size h. There is another restriction on the mesh (see [8] for a
rigorous definition and illustrations) that prevents, loosely speaking, the stretching directions r1,K , r2,K from changing too
abruptly between the adjacent triangles of themesh.We suppose in the rest of this paper that the family Thmeets the above
mentioned restrictions. In practice, the BL2D anisotropic mesh generator [24] that we have used meets these restrictions.
We now recall some results on interpolation on anisotropic meshes proved in [20,19].

Lemma 1. Let Ih : H10 (Ω)→ Vh be the Clément interpolation operator [25]. There is a constant C independent of the mesh size
and aspect ratio such that, for any v ∈ H1(Ω) and any K ∈ Th we have:

‖v − Ihv‖L2(K) + λ2,K‖∇(v − Ihv)‖L2(K) + λ
1/2
2,K‖v − Ihv‖L2(∂K) ≤ CωK (v). (5)

Here ωK (v) is defined by

ω2K (v) = λ
2
1,K

(
rT1,KGK (v)r1,K

)
+ λ22,K

(
rT2,KGK (v)r2,K

)
,

λi,K and ri,K are given by (4) and GK (v) is the following 2× 2matrix

GK (v) =
∑
T∈∆K


∫
T

(
∂v

∂x1

)2
dx

∫
T

∂v

∂x1

∂v

∂x2
dx∫

T

∂v

∂x1

∂v

∂x2
dx

∫
T

(
∂v

∂x2

)2
dx

 ,
where∆K represents the set of triangles of Th having a common vertex with K .

3.2. An upper bound for the error based on a three-point reconstruction

For all n = 1, . . . ,N , we set

∂nuh =
unh − u

n−1
h

τn
, un−1/2h =

1
2
(unh + u

n−1
h ),

and

∂nf =
f n − f n−1

τn
, f n−1/2 =

1
2
(f n + f n−1).

Then with these notations, we can rewrite (3) as following∫
Ω

∂nuhvhdx+ ε
∫
Ω

∇un−1/2h · ∇vhdx+
∫
Ω

a · ∇un−1/2h vhdx

+

∑
K∈Th

τK

∫
K

(
∂nuh + a · ∇u

n−1/2
h − f n−1/2

)
(a · ∇vh) dx =

∫
Ω

f n−1/2vhdx. (6)
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We also introduce the continuous, piecewise linear approximation in time uhτ defined for all t ∈ In by

uhτ (x, t) =
t − tn−1

τn
unh +

tn − t
τn

un−1h = un−1/2h + (t − tn−1/2)∂nuh, (7)

where tn−1/2 = (tn + tn−1)/2. Thus, for all vh ∈ Vh, we can rewrite (3) or (6) as∫
Ω

∂nuhvhdx+ ε
∫
Ω

∇uhτ · ∇vhdx+
∫
Ω

a · ∇uhτvhdx+
∑
K∈Th

τK

∫
K

(
∂nuh + a · ∇u

n−1/2
h − f n−1/2

)
(a · ∇vh) dx

= (t − tn−1/2)
∫
Ω

(ε∇∂nuh · ∇vh + a · ∇∂nuhvh) dx+
∫
Ω

f n−1/2vhdx. (8)

We introduce, ũhτ , the three-point reconstruction defined for all t ∈ In, 2 ≤ n ≤ N by

ũhτ (x, t) = uhτ (x, t)+
1
2
(t − tn−1)(t − tn)∂2nuh, (9)

where

∂2nuh =

unh−u
n−1
h

τn
−
un−1h −un−2h

τn−1

(τn + τn−1)/2
. (10)

In order to derive an a posteriori error estimate involving ũhτ , we first need the following result.

Lemma 2. Set for all t ∈ In, 2 ≤ n ≤ N,

f̂ = f n−1/2 + (t − tn−1/2)
f n − f n−2

τn + τn−1
and ûhτ = u

n−1/2
h + (t − tn−1/2)

unh − u
n−2
h

τn + τn−1
.

Let ũhτ be defined by (9) then for all vh ∈ Vh and for all t ∈ In, 2 ≤ n ≤ N, we have∫
Ω

∂ ũhτ
∂t

vhdx+ ε
∫
Ω

∇uhτ · ∇vhdx+
∫
Ω

a · ∇uhτvhdx =
τn−1

2
(t − tn−1/2)

∫
Ω

(
ε∇∂2nuh · ∇vh + a · ∇∂

2
nuhvh

)
dx

+

∫
Ω

f̂ vhdx+
∑
K∈Th

τK

∫
K

(̂
f −

∂ ũhτ
∂t
− a · ∇ûhτ

)
(a · ∇vh)dx.

Proof. Let 2 ≤ n ≤ N and t ∈ In. From (9), we have

∂ ũhτ
∂t
= ∂nuh + (t − tn−1/2)∂2nuh. (11)

Thus, using (8), we have for all vh ∈ Vh∫
Ω

∂ ũhτ
∂t

vhdx+ ε
∫
Ω

∇uhτ · ∇vhdx+
∫
Ω

a · ∇uhτvhdx+
∑
K∈Th

τK

∫
K

(
∂nuh + a · ∇u

n−1/2
h − f n−1/2

)
a · ∇vhdx

= (t − tn−1/2)
∫
Ω

{
∂2nuhvh + ε∇∂nuh · ∇vh + a · ∇∂nuhvh

}
dx+

∫
Ω

f n−1/2vhdx. (12)

We now search for an alternative expression of the first term in the right-hand side of (12). We take the difference between
Eq. (3) at time tn and tn−1 to obtain∫

Ω

∂2nuhvhdx+ ε
∫
Ω

∇

(
unh − u

n−2
h

τn + τn−1

)
· ∇vhdx+

∫
Ω

a · ∇

(
unh − u

n−2
h

τn + τn−1

)
vhdx

+

∑
K∈Th

τK

∫
K

(
∂2nuh + a · ∇

(
unh − u

n−2
h

τn + τn−1

)
−
f n − f n−2

τn + τn−1

)
(a · ∇vh) dx =

∫
Ω

f n − f n−2

τn + τn−1
vhdx.

Thus, as

∂nuh −
unh − u

n−2
h

τn + τn−1
=
τn−1

2
∂2nuh,
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we have∫
Ω

{
∂2nuhvh + ε∇∂nuh · ∇vh + a · ∇∂nuhvh

}
dx

=
τn−1

2

∫
Ω

(
ε∇∂2nuh · ∇vh + a · ∇∂

2
nuhvh

)
dx+

∫
Ω

(
f n − f n−2

τn + τn−1

)
vhdx

+

∑
K∈Th

τK

∫
K

((
f n − f n−2

τn + τn−1

)
− ∂2nuh − a · ∇

(
unh − u

n−2
h

τn + τn−1

))
(a · ∇vh) dx. (13)

It suffices now to insert (13) in (12) to obtain the desired result.

The theorem presented hereafter is themain theoretical result of this paper. The proof use the same arguments as in [13].
We reproduce it for the sake of clarity. In what follows we set e = u− uhτ and ẽ = u− ũhτ .

Theorem 3. Let f̂ and ûhτ be defined as in Lemma 2. Assume that the mesh is such that there exists c independent of the time
step, mesh size, aspect ratio, ε, a, f and u0 such that

λ21,K
(
rT1,KGK (̃e)r1,K

)
≤ cλ22,K

(
rT2,KGK (̃e)r2,K

)
∀K ∈ Th. (14)

Then, there exists C independent of the time step, mesh size, aspect ratio, ε, a, f and u0 such that∫ T

t1
‖∇e‖2L2(Ω) dt +

1
ε
‖e(·, T )‖2L2(Ω) ≤

1
ε

∥∥e(·, t1)∥∥2L2(Ω)
+ C

N∑
n=2

∑
K∈Th

{∫ tn

tn−1

(∥∥∥∥1ε
(
f −

∂ ũhτ
∂t
− a · ∇uhτ

)
+1uhτ

∥∥∥∥
L2(K)
+

1

2λ1/22,K

∥∥∥∥[∂uhτ∂n

]∥∥∥∥
L2(∂K)

)
ωK (̃e)dt

+

(
τ 2n−1τ

3
n

48
+
τ 5n

120

)(∥∥∇∂2nuh∥∥2L2(K) + |a|2∞ε2 ∥∥∂2nuh∥∥2L2(K))+ ∫ tn

tn−1

∥∥∥∥1ε (f − f̂ )
∥∥∥∥2
L2(K)

dt

+
|a|2
∞
λ42,K

ε2

∫ tn

tn−1

∥∥∥∥1ε
(̂
f −

∂ ũhτ
∂t
− a · ∇ûhτ

)∥∥∥∥2
L2(K)

dt

}
. (15)

Here [·] denotes the jump of the bracketed quantity across an internal edge, [·] = 0 for an edge on the boundary ∂Ω , and n is the
unit edge normal (in arbitrary direction).

Remark 1. The estimate in Theorem 3 is not a usual a posteriori error estimation since ẽ = u− ũhτ (and hence the gradient
of u) is still involved in the right-hand side of the estimate. An efficient manner to approximate this quantity was proposed
in [8,23] and uses a Zienkiewicz–Zhu post-processing, see Section 3.3 hereafter.

Remark 2. Condition (14) with c = 1 will be enforced by our adaptive algorithm, see Section 4 hereafter.

Remark 3. In the case of isotropic meshes λ1,K ' λ2,K ' hK , then the above a posteriori error estimate becomes∫ T

t1
‖∇e‖2L2(Ω) dt +

1
ε
‖e(·, T )‖2L2(Ω) ≤

1
ε

∥∥e(·, t1)∥∥2L2(Ω)
+ C

N∑
n=2

∑
K∈Th

{∫ tn

tn−1

(
h2K

∥∥∥∥1ε
(
f −

∂ ũhτ
∂t
− a · ∇uhτ

)
+1uhτ

∥∥∥∥2
L2(K)
+ hK

∥∥∥∥[∂uhτ∂n

]∥∥∥∥2
L2(∂K)

)
dt

+

(
τ 2n−1τ

3
n

48
+
τ 5n

120

)(∥∥∇∂2nuh∥∥2L2(K) + |a|2∞ε2 ∥∥∂2nuh∥∥2L2(K))+ ∫ tn

tn−1

∥∥∥∥1ε (f − f̂ )
∥∥∥∥2
L2(K)

dt

+
|a|2
∞
h4K

ε2

∫ tn

tn−1

∥∥∥∥1ε
(̂
f −

∂ ũhτ
∂t
− a · ∇ûhτ

)∥∥∥∥2
L2(K)

dt

}
without having to assume (14) but with a constant C depending on the mesh aspect ratio.

Remark 4. We will use the terms in the second line of (15) in order to estimate the error due to space discretization and
the terms in the third line of (15) in order to estimate the error due to time discretization. The term in the fourth line of (15)
will be disregarded since it is of higher order.
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Remark 5. The estimate in Theorem 3 is not robust in the sense of [4,10] since 1/ε terms are present in (15). However, the
numerical results of Section 5 show that accurate results are obtained even in the convection dominated regime.

Proof. Let 2 ≤ n ≤ N and t ∈ In. Using (2), (9) and Lemma 2, we obtain for all v ∈ H10 (Ω) and all vh ∈ Vh

1
ε

∫
Ω

∂̃e
∂t
vdx+

∫
Ω

∇e · ∇vdx+
1
ε

∫
Ω

a · ∇ ẽvdx =
1
ε

∫
Ω

(
f −

∂ ũhτ
∂t

)
vdx−

∫
Ω

∇uhτ · ∇vdx−
1
ε

∫
Ω

a · ∇ũhτvdx

=
1
ε

∫
Ω

(
f −

∂ ũhτ
∂t

)
(v − vh)dx−

∫
Ω

∇uhτ · ∇(v − vh)dx−
1
ε

∫
Ω

a · ∇uhτ (v − vh)dx

−
1
2ε
(t − tn−1)(t − tn)

∫
Ω

a · ∇∂2nuhvdx−
τn−1

2
(t − tn−1/2)

∫
Ω

(
∇∂2nuh · ∇vh +

1
ε
a · ∇∂2nuhvh

)
dx

+
1
ε

∫
Ω

(f − f̂ )vhdx−
1
ε

∑
K∈Th

τK

∫
K

(̂
f −

∂ ũhτ
∂t
− a · ∇ûhτ

)
(a · ∇vh)dx.

Note that since a is an incompressible field, we have for all v ∈ H10 (Ω)∫
Ω

a · ∇vvdx = 0.

Then taking v = ẽ, vh = Ih̃e the Clément interpolant of ẽ and integrating by parts, we obtain

1
2ε
d
dt

∫
Ω

|̃e|2dx+
∫
Ω

∇e · ∇ ẽdx =
∑
K∈Th

{∫
K

{
1
ε

(
f −

∂ ũhτ
∂t
− a · ∇uhτ

)
+1uhτ

}
(̃e− Ih̃e)dx

+
1
2

∫
∂K

[
∂uhτ
∂n

]
(̃e− Ih̃e)dx

}
+
1
2ε
(t − tn−1)(t − tn)

∫
Ω

a · ∇ ẽ∂2nuhdx−
τn−1

2
(t − tn−1/2)

×

∫
Ω

(
∇∂2nuh · ∇Ih̃e−

1
ε
a · ∇Ih̃e∂2nuh

)
dx+

∫
Ω

1
ε

(
f − f̂

)
Ih̃edx

−

∑
K∈Th

τK

∫
K

1
ε

(̂
f −

∂ ũhτ
∂t
− a · ∇ûhτ

)
(a · ∇Ih̃e)dx.

Using the fact that ab = 1
2a
2
+
1
2b
2
−
1
2 (a − b)

2, the Cauchy–Schwarz inequality, Lemma 1, the Poincaré inequality, the
inequality ab ≤ 1

2pa
2
+
p
2b
2, for all p ∈ R+ and recall that from (9) we have

‖∇(e− ẽ)‖2L2(K) = ‖∇ (̃uhτ − uhτ )‖
2
L2(K) =

1
4
(t − tn−1)2(t − tn)2

∥∥∇∂2nuh∥∥2L2(K) ,
then

1
2ε
d
dt

∫
Ω

|̃e|2dx+
1
2

∫
Ω

|∇e|2dx+
1
2

∫
Ω

|∇ ẽ|2dx ≤
∑
K∈Th

{
C1

(∥∥∥∥1ε
(
f −

∂ ũhτ
∂t
− a · ∇uhτ

)
+1uhτ

∥∥∥∥
L2(K)

+
1

2λ1/22,K

∥∥∥∥[∂uhτ∂n

]∥∥∥∥
L2(∂K)

)
ωK (̃e)+

{
pτ 2n−1
8

(t − tn−1/2)2 +
1
8
(t − tn−1)2(t − tn)2

}∥∥∇∂2nuh∥∥2L2(K)
+
p|a|2
∞

8ε2
{
(t − tn−1)2(t − tn)2 + τ 2n−1(t − t

n−1/2)2
} ∥∥∂2nuh∥∥2L2(K) + p2

∥∥∥∥1ε (f − f̂ )
∥∥∥∥2
L2(K)

+
p|a|2
∞
τ 2K

2

∥∥∥∥1ε
(̂
f −

∂ ũhτ
∂t
− a · ∇ûhτ

)∥∥∥∥2
L2(K)
+
1
2p
‖∇ ẽ‖2L2(K) +

3+ C22
2p
‖∇Ih̃e‖2L2(K)

}
, (16)

where C1 is the constant of Lemma 1 and C2 is the constant in the Poincaré inequality. Error equidistribution inequality (14)
combined with Lemma 1 implies that

ωK (̃e) ≤ C3λ2,K ‖∇ ẽ‖L2(K) and thus ‖∇Ih̃e‖L2(K) ≤ C4 ‖∇ ẽ‖L2(K) . (17)
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Finally, we use the second inequality of (17) in (16), the inequality τK ≤
λ22,K
12ε , choose p = 1+ C

2
4 (3+ C

2
2 ) and integrate (16)

between t = tn−1 and t = tn, to obtain∫ tn

tn−1
‖∇e‖2L2(Ω) dt +

1
ε

∥∥̃e(·, tn)∥∥2L2(Ω) ≤ 1ε ∥∥̃e(·, tn−1)∥∥2L2(Ω)
+ C

∑
K∈Th

{∫ tn

tn−1

(∥∥∥∥1ε
(
f −

∂ ũhτ
∂t
− a · ∇uhτ

)
+1uhτ

∥∥∥∥
L2(K)
+

1

2λ1/22,K

∥∥∥∥[∂uhτ∂n

]∥∥∥∥
L2(∂K)

)
ωK (̃e)dt

+

(
τ 2n−1τ

3
n

48
+
τ 5n

120

)(∥∥∇∂2nuh∥∥2L2(K) + |a|2∞ε2 ∥∥∂2nuh∥∥2L2(K))

+

∫ tn

tn−1

∥∥∥∥1ε (f − f̂ )
∥∥∥∥2
L2(K)

dt +
|a|2
∞
λ42,K

ε2

∫ tn

tn−1

∥∥∥∥1ε
(̂
f −

∂ ũhτ
∂t
− a · ∇ûhτ

)∥∥∥∥2
L2(K)

dt

}
,

where C = max(1, 2C1, p). Summing up these inequalities on n and noting that ẽ(tn) = e(tn) ∀n, leads to the final result.

3.3. An anisotropic error indicator

Since the a posteriori error estimate of Theorem 3 involves the exact solution u we proceed as in [8,23]. Therefore, we
introduce the Zienkiewicz–Zhu error estimator [26,27], namely, the difference between ∇uhτ and an approximate L2(Ω)
projection onto Vh:

ηZZ (uhτ ) =

(
ηZZ1 (uhτ )

ηZZ2 (uhτ )

)
=

(I −Πh)
(
∂uhτ
∂x1

)
(I −Πh)

(
∂uhτ
∂x2

)
 ,

whereΠh(∇uhτ ) ∈ Vh is defined by its values at each vertex P as

Πh(∇uhτ )(P) =

Πh
(
∂uhτ
∂x1

)
(P)

Πh

(
∂uhτ
∂x2

)
(P)

 = 1∑
K∈Th
P∈K

|K |


∑
K∈Th
P∈K

|K |
(
∂uhτ
∂x1

)
|K∑

K∈Th
P∈K

|K |
(
∂uhτ
∂x2

)
|K

 . (18)

Our error indicator is then obtained by replacing GK (̃e) in ωK (̃e) by ĞK (uhτ ) defined for any vh ∈ Vh by

ĞK (vh) =


∫
K

(
ηZZ1 (vh)

)2
dx

∫
K
ηZZ1 (vh)η

ZZ
2 (vh)dx∫

K
ηZZ1 (vh)η

ZZ
2 (vh)dx

∫
K

(
ηZZ2 (vh)

)2
dx

 .
Approximating in such away GK (̃e) in Theorem 3 and considering Remark 4, we define the anisotropic space error estimator
ηA as

ηA =

(
N∑
n=1

∑
K∈Th

(
ηAK ,n(uhτ )

)2)1/2
,

where the contributions ηAK ,n are defined on each triangle K of Th and each time interval In by(
ηAK ,n(uhτ )

)2
=

∫ tn

tn−1

(∥∥∥∥1ε
(
f −

∂ ũhτ
∂t
− a · ∇uhτ

)
+1uhτ

∥∥∥∥
L2(K)
+

1

2λ1/22,K

∥∥∥∥[∂uhτ∂n

]∥∥∥∥
L2(∂K)

)

×

(
λ21,K

(
rT1,K ĞK (uhτ )r1,K

)
+ λ22,K

(
rT2,K ĞK (uhτ )r2,K

))1/2
dt, (19)

and the time error estimator ηT as

ηT =

(
N∑
n=2

∑
K∈Th

(
ηTK ,n(uhτ )

)2)1/2
,
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where the contributions ηTK ,n are computed on each triangle K of Th and each time interval In by(
ηTK ,n(uhτ )

)2
=

(
τ 2n−1τ

3
n

48
+
τ 5n

120

)(∥∥∇∂2nuh∥∥2L2(K) + |a|2∞ε2 ∥∥∂2nuh∥∥2L2(K))+ ∫ tn

tn−1

∥∥∥∥1ε (f − f̂ )
∥∥∥∥2
L2(K)

dt,

for n ≥ 2. (20)

Note that in our implementation, all the integrals between tn−1 and tn are approximated by the midpoint rule. Moreover, in
order to measure the quality of our estimators, the estimated error is compared to the true error introducing the so-called
effectivity index. Thus, we define the following effectivity indices in space and time

eiA =
ηA(∫ T

0

∫
Ω
|∇e|2dxdt

)1/2 and eiT =
ηT(∫ T

t1
∫
Ω
|∇e|2dxdt

)1/2 .
We will also check the behavior of the Zienkiewicz–Zhu error estimator. We thus introduce the corresponding global
estimator and effectivity index

ηZZ =

(
N∑
n=1

∑
K∈Th

∫ tn

tn−1

∫
K
|ηZZ (uhτ )|2dxdt

)1/2
and eiZZ =

ηZZ(∫ T
0

∫
Ω
|∇e|2dxdt

)1/2 .

4. An adaptive algorithm in space and time

The adaptive algorithm described here is quite similar to those presented in [8,13]. The goal is to build successive
anisotropic triangulations T nh and choose appropriate time steps τn so that the relative error estimated in space and time in
the L2(0, T ;H1(Ω)) norm is close to a preset tolerance TOL, for example

0.75 TOL ≤

(
(ηA)2 + (ηT)2

)1/2(∫ T
0

∫
Ω
|∇uhτ |2dxdt

)1/2 ≤ 1.25 TOL. (21)

Note that since the timeerror estimator needs a solutionun−2h , wedonot change the first time step. Thus, sufficient conditions
to satisfy the above inequality is that, for all n ≥ 1, the error indicator in space is such that

3
4
0.752TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2dxdt ≤
∑
K∈Th

(
ηAK ,n(uhτ )

)2

≤
3
4
1.252TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2dxdt (22)

and, for all n ≥ 2, the error indicator in time is such that

1
4
0.752TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2dxdt ≤
∑
K∈Th

(
ηTK ,n(uhτ )

)2

≤
1
4
1.252TOL2

∫ tn

tn−1

∫
Ω

|∇uhτ |2dxdt. (23)

All the meshes are generated by the BL2D anisotropic mesh software [24] whose also realize the P1-interpolation between
the previous mesh T n−1h and the new mesh T nh . Thus, BL2D provides us a interpolated solution r

n
h (u

n−1
h ) of un−1h on the

new mesh, where rnh is the Lagrange interpolant operator on T nh . We refer to Section 5 of [13] for a complete description of
the adaptive procedure where conditions (5.2) and (5.3) of [13] must be replaced by the present conditions (22) and (23).
Moreover, we decide not to make the time and space adaptation at the same time. We first carry out the space adaptation
before the time adaptation if both conditions (22) and (23) are not satisfied.

Remark 6. Here we do not take into account the interpolation error from mesh T n−1h to T nh and conjecture that this error
can be neglected provided the total number of remeshings does not depend on the prescribed tolerance TOL.Wewill observe
that this assumption is satisfied in practice.
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Fig. 1. Example 5.1. Adapted meshes and isovalues obtained with a tolerance TOL = 0.0625. Top: Time t = 2450, isovalues 0.1, 0.5, 0.9, with 6421 nodes.
Bottom: Final time T = 9000, isovalues 0.01, 0.05, 0.1, with 8884 nodes.

5. Numerical experiments

We apply here our adaptive algorithm to several test cases. We monitor at the final time T the absolute error εabs in
L2(0, T ;H1(Ω)) norm, the relative error εrel in the same norm, the number of nodes nbn, maximum and mean aspect ratio
respectively defined by

ar = max
K∈Th

λ1,K

λ2,K
and ar =

∑
K∈Th

λ1,K
λ2,K∑

K∈Th
1
.

We also report the number of time steps nbτ required to reach the final time and the number of remeshings nbm occurred.
We follow [13] Section 6 and do all the computations by replacing ∇un−1h by its Zienkiewicz–Zhu recovery, Πh

(
∇un−1h

)
,

when T n−1h = T nh and ∇u
n−1
h by Πh

(
∇rnh (u

n−1
h )

)
when T n−1h 6= T nh with Πh defined by (18). In the following section, we

study two Examples, 5.1 and 5.2, taken from [28].

Example 5.1. We first consider a problem for which an analytical solution is known. Thus we consider the convection–
diffusion of a small source in a plane shear flow. We setΩ = (−4000, 26000)× (−3400, 3400), T = 9000, ε = 50, f = 0
and a = (a0+ λy, 0)T where a0 = 0.5 and λ = 1e−3, thus the Peclet number is |a|∞30000/ε = 2340. The initial condition
u0 is a point source of massm at (x0, y0) = (7200, 0). Then the solution of (1) is given by

u(x, y, t) =
m

4πεt(1+ λ2t2/12)1/2
exp−χ , (24)

where

χ =
(x− x̄− λyt/2)2

4εt(1+ λ2t2/12)
+
y2

4εt
and x̄ = x0 + a0t.

To allow the numerical solution of this problem to begin with a finite source size, the computation is started at a time
t = t0 = 2400 with

m = 4πεt0(1+ λ2t20/12)
1/2.

Wepresent in Fig. 1 the adaptedmeshes for a tolerance TOL = 0.0625. On Fig. 2 we present a history of the number of nodes
and of the time step size against time. We see that the number of nodes is quite constant whereas the time step increases
as the solution getting more diffused.
To investigate the efficiency of our adaptive algorithm, we provide in Table 1 (top) numerical experiments with several

values of the tolerance TOL. The result show that eiZZ gets close to one when TOL tends to zero and that the space and time
error estimator are equivalent to the true error as their effectivity indices tend to a constant value. We note that the error
is divided by two each time the tolerance is and that the optimal second order of convergence with respect to the time step
is achieved as the number of time steps is multiplied by

√
2 when TOL is divided by two, see also Fig. 3. We study now the

behavior of the same quantities for a smaller diffusion coefficient. We have reported the results in Table 1 (bottom) with
a diffusion coefficient ε = 1 so that the Peclet number is now 117000. We can observe that the error is still divided by
two each time the tolerance is and that the optimal rate of convergence with respect to the time step is also recovered. The
differences concern the Zienkiewicz–Zhu error estimator and the number of nodes and time steps. Indeed, we observe that
when the diffusion coefficient gets smaller eiZZ is not close to one anymore when TOL tends to zero. Regarding the number
of nodes and time steps it increase as ε decreases which is not surprising according to our space and time indicators. We
conclude that our error estimator is sharp, even in the convection dominated regime.
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Fig. 2. Example 5.1. Number of nodes (left) and time step (right) with respect to time t with a tolerance TOL = 0.0625.

Fig. 3. Example 5.1. True error (left) and total number of time steps (right) at final time T = 9000 with respect to the tolerance TOL (ε = 50).

Table 1
Example 5.1. True error and effectivity indices of the adapted solution at final time T = 9000. Top: ε = 50. Bottom: ε = 1.

TOL εrel εabs eiZZ eiA eiT nbn nbτ nbm ar ar

0.25 0.110 9.750 0.762 2.131 1.162 1134 22 20 5.2 27.8
0.125 0.0504 4.475 0.882 2.451 1.072 2714 27 21 7.3 48.7
0.0625 0.0250 2.218 0.903 2.469 1.154 8884 37 26 9.5 69.4
0.03125 0.0121 1.073 0.915 2.482 1.137 32664 52 29 10.1 88.4
0.25 0.116 10.092 0.574 1.93 0.939 1679 159 44 6.6 48.5
0.125 0.0551 4.856 0.689 2.082 0.978 3728 206 48 9.7 48.6
0.0625 0.0265 2.344 0.767 2.193 1.082 11990 281 55 9.9 93.2
0.03125 0.0129 1.144 0.837 2.279 1.163 40525 400 59 10.6 74.2

Example 5.2. In this examplewe consider amore anisotropic finite elements test case exhibiting both internal andboundary
layers. We set Ω = (0, 1)2, f = 0, T = 0.6, ε = 1e−3, a = (2, 1)T, δ = 7.8125e−3, thus the Peclet number is
|a|∞/ε = 2000. The initial condition u0 = 0 except on ∂Ω where u0 is defined by

u0(x, y) =


1 if x = 0, 0 ≤ y ≤ 1,
1 if 0 ≤ x ≤ 1, y = 1,
(δ − x)/δ if x ≤ δ, y = 0,
0 if x > δ, y = 0,
(y− 1+ δ)/δ if x = 1, y ≥ 1− δ,
0 if x = 1, y ≤ 1− δ.

(25)

Note that we keep the same boundary conditions for the computation of the numerical solution. Thus, this problem exhibits
boundary layers along x = 0 and y = 1 at the initial time. The boundary layer at x = 0 propagates into the domain and
creates an internal boundary layer which finally reaches the boundary at x = 1 and creates a new boundary layer because of
the imposed u = 0 boundary condition. The boundary layer at y = 1 reduces progressively as the solution gets the value of
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Fig. 4. Example 5.2. Adapted meshes (bottom) and isovalues 0.1, 0.5, 0.9 (top) obtained with a tolerance TOL = 0.0625. From left to right: Time t = 0,
0.05, 0.25 and 0.6 (151, 9464, 6050 and 38874 nodes, respectively).

Fig. 5. Example 5.2. Number of nodes (left) and time step (right) with respect to time t with a tolerance TOL = 0.0625.

one on the top of the domain. Thus this problem exhibits both internal and boundary layerswhichmake it a very challenging
problem. Adaptedmeshes are presented in Fig. 4 for a tolerance TOL = 0.0625. On Fig. 5 we present a history of the number
of nodes and of the time step size against time. We see that the number of nodes, initially large due to the discontinuous
boundary condition, decreases as the internal layer propagates into the domain and then increases with the development of
a new boundary layer at the external boundary until finally becoming constant. For the time step, we see that it was initially
very small in order to capture the very large gradient of the solution. Then, progressively it increases as the solution gets
more diffused. Moreover, we observe that near the time t = 0.5 the solution reaches its stationary point. At this moment,
the number of nodes stays constant and the time step increases quickly.
We have reported in Table 2 the total number of time steps required to reach the final time for several values of the

tolerance TOL. We observe that the optimal second order of convergence with respect to the time step is recovered as
the number of time steps is multiplied by

√
2 when TOL is divided by two, see also Fig. 6. Finally, on Figs. 7 and 8 we

present several zooms of the meshes of the numerical simulation reported on Fig. 4. On Fig. 7 we zoom on the left bottom
corner and the right top corner of the domain respectively at the time t = 0.25 (first and third picture) and the final time
T = 0.6 (second and fourth picture). On Fig. 8 we present a progressive zoom of the external boundary layer created by the
discontinuity of the solution due to the imposed zero value condition on this part of the boundary at the final time T = 0.6.

Example 5.3. In this example we study the dynamics of a solute carried by an electroosmotic flow. This kind of motion
arises in microfluidic device and is a consequence of the surface charge of a narrow channel. Indeed, at the fluid–solid
interfaces, the surface charge attracts the counterions and repels the co-ions and thus creating a thin charged layer known
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Table 2
Example 5.2. Number of nodes and time steps of the adapted solution at final time T = 0.6.

TOL nbn nbτ nbm ar ar

0.25 3987 163 93 15.0 190.9
0.125 12222 247 103 17.9 769.7
0.0625 38874 353 109 21.6 2553.8
0.03125 140057 502 130 27.9 9092.1

Fig. 6. Example 5.2. Total number of time steps at final time T = 0.6 with respect to the tolerance TOL.

Fig. 7. Example 5.2. Zoom on adapted meshes of the left bottom corner and the right top corner of the domain respectively at the time t = 0.25 (first and
third pictures) and final time T = 0.6 (second and fourth pictures).

Fig. 8. Example 5.2. From left to right: Zoom of size 1e−1, 1e−2, 1e−3 and 1e−4 of the external boundary layer at x = 1 at final time T = 0.6.

as the electrical double layer or the Debye layer [29,30]. When an external electric field is applied, the counterions, not
attracted by the channel surface, will migrate in the direction of their opposite charge and drag the fluid with them. This is
known as electroosmosis. We consider here the numerical simulation of a solute within a rectangular microchannel. All the
parameters are given in the international unit system. The solute is initially modelled by a rectangular unit pulse. Thus, we
setΩ = (0, 6e−4)× (0, 5e−5), ε = 1e−10, f = 0, T = 0.1. The initial condition u0 is defined by

u0(x, y) =


0.5+ 0.5 tanh

(
x− 1e−4
1e−6

)
if x < 1.5e−4,

0.5− 0.5 tanh
(
x− 2e−4
1e−6

)
if x > 1.5e−4.

(26)
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Fig. 9. Example 5.3. Velocity profiles for various values of κ−1 . From left to right: κ−1 = 1e−7, 5e−7, 1e−6, 2e−6.

Fig. 10. Example 5.3. Adapted meshes and isovalues 0.1, 0.5 and 0.9 obtained with a tolerance TOL = 0.0625. From top to bottom: time t = 0, 0.0001,
and 0.1 (401, 10 663 and 34443 nodes, respectively).

Note that we consider here a mixed Dirichlet–Neumann boundary condition problem. Indeed, we impose u = 0 along the
left and right sides and homogeneous Neumann boundary condition on the top and bottom sides. In the case of a narrow
rectangular microchannel with uniformly charged walls and an imposed constant electric field E along the x-direction such
as E = (Ex, 0)T, the velocity field is horizontal and given by

a(x, y) =

−ε0ζEx4πµ
(1− exp(−κg(y)))

0

 , (27)

where ε0 = 6.95e−10 is the electrical permittivity of the solution, ζ = −0.1 is the potential at the wall, µ = 1e−3 is
the viscosity, g(y) is the normal distance of the wall, Ex = 5e+5 and κ−1 is called the Debye length and it corresponds
to the thickness of the Debye layer. Thus the velocity profile is horizontal, equal to zero on the top and bottom sides of
the domain, constant in the whole domain except in the Debye layer region very close to the wall. The Peclet number is
|a|∞ · 5e−5/ε = 1385. On Fig. 9 we plotted the velocity profile against the normal distance to the wall for various values
of κ−1.
Note that the Debye thickness (κ−1) is usually of the order 10−9, whichwill be the value that wewill use in our numerical

simulations. We can refer to [31,32] for the all set of equations describing the electroosmotic flow in the general case
and [29,33] in the case of rectangular microchannels. The numerical simulations are presented in Fig. 10 for a tolerance
TOL = 0.0625. On Fig. 11 we present the evolution of the number of nodes and of the time step size against time. Here
again, the time step size increases with the diffusion of the solution. The number of nodes increases too as the solution gets
diffused. In Table 3 we have reported the total number of time steps required to reach the final time for several values of
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Fig. 11. Example 5.3. Number of nodes (left) and time step (right) with respect to time t with a tolerance TOL = 0.0625.

Fig. 12. Example 5.3. Total number of time steps at final time T = 0.1 with respect to the tolerance TOL.

Fig. 13. Example 5.3. Adapted meshes and isovalues 0.1 to 0.9 at final time T = 0.1. From top to bottom: tolerance TOL = 0.25, 0.125, 0.0625, 0.03125
(10700, 16201, 34443, 60059 nodes, respectively).

the tolerance TOL. We still observe the optimal second order of convergence with respect to the time step, see also Fig. 12.
Finally, on Fig. 13, we zoom on the solute at final time T = 0.1 for all the four tolerances of Table 3.
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Table 3
Example 5.3. Number of nodes and time steps of the adapted solution at final time T = 0.1.

TOL nbn nbτ nbm ar ar

0.25 10700 864 173 4.5 62.1
0.125 16201 1272 240 5.3 49.7
0.0625 34443 1842 290 5.4 63.2
0.03125 60059 2626 316 5.9 78.3

6. Conclusion

An anisotropic error estimator for the time-dependent convection–diffusion problem using the Crank–Nicolson scheme
has been derived. The corresponding time and space error estimators have been successfully used in a time and space
adaptive algorithm. All the numerical experiments show optimal order with respect to both themesh size and time step and
demonstrate that these indicators provide an efficient tool for the computation of unsteady convection–diffusion problem
exhibiting sharp boundary layers.
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