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Erdős–Ko–Rado theorem
Polar space
Association scheme
Distance-regular graph
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1. Introduction

Finding the largest sets of pairwise non-trivially intersecting elements is one of the classical prob-
lems in extremal combinatorics. We first give the original Erdős–Ko–Rado theorem, published in [9]
in 1961.

Theorem 1. If S is a family of subsets of size k in a set Ω with |Ω| = n and n � 2k, such that the elements of S
are pairwise not disjoint, then |S| �

(n−1
k−1

)
. If n � 2k + 1, then equality holds if and only if S is the set of all

subsets of size k containing a fixed element of Ω .

Variants of this theorem in a wide variety of contexts, including one in projective geometry, were
found subsequently. The projective geometry PG(n − 1,q) consists of the lattice of subspaces of the
vector space V (n,q) of dimension n over Fq . The number of subspaces of dimension k in V (n,q),
with 0 � k � n, is given by the Gaussian coefficient:

[
n

k

]
q
=

k∏
i=1

qn+1−i − 1

qi − 1
.
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(If n < k or k < 0, then
[n

k

]
q is zero. Note that

[n
k

]
q = [ n

n−k

]
q

and
[n

1

]
q = qn−1

q−1 .)

In 1975, Hsieh proved the following q-analog of Theorem 1 in [12].

Theorem 2. If S is a set of k-dimensional subspaces in V (n,q), with n � 2k + 1, pairwise intersecting not
trivially, then |S| � [n−1

k−1

]
q
. Equality holds if and only if S is the set of all subspaces with dimension k, containing

a fixed 1-dimensional subspace of V (n,q).

In this article, we will consider the analogous problem for generators in a polar space. Classical
finite polar spaces are incidence structures, consisting of the subspaces of V := V (n,q) totally isotropic
with respect to a certain non-degenerate sesquilinear or quadratic form f . Incidence is the inclusion
relation. We will only consider classical finite polar spaces, and from now on, polar spaces are implic-
itly assumed to be finite and classical. The rank of the polar space is the algebraic dimension of the
maximal totally isotropic subspaces or generators. We explicitly list the different types of polar spaces
of rank N . For the sake of clarity, we give both the notation related to Chevalley groups and the more
geometric notation, based on the embedding of the polar space in a projective space.

• the hyperbolic quadric DN (q) or Q +(2N − 1,q), with V = V (2N,q) and f a non-degenerate
quadratic form of Witt index N , with parameters (q,1),

• the Hermitian variety 2A2N−1(q) or H(2N − 1,q2), with V = V (2N,q2) and f a non-degenerate
Hermitian form, with parameters (q2,q),

• the parabolic quadric BN (q) or Q (2N,q), with V = V (2N + 1,q) and f a non-degenerate
quadratic form, with parameters (q,q),

• the symplectic space CN (q) or W (2N − 1,q), with V = V (2N,q) and f a non-degenerate sym-
plectic form, with parameters (q,q),

• the Hermitian variety 2A2N(q) or H(2N,q2), with V = V (2N + 1,q2) and f a non-degenerate
Hermitian form, with parameters (q2,q3),

• the elliptic quadric 2DN+1(q) or Q −(2N + 1,q), with V = V (2N + 2,q) and f a non-degenerate
quadratic form of Witt index N , with parameters (q,q2).

The parameters (q,qe) listed above are such that each totally isotropic 2-space (or line) is incident
with exactly q + 1 totally isotropic 1-spaces (or points), and every totally isotropic (N − 1)-space (or
dual line) is incident with exactly qe + 1 maximal totally isotropic subspaces (or generators). We will
also refer to totally isotropic 3-spaces as planes. The projective dimension of a subspace is its dimension
minus one. Polar spaces of rank two are also known as classical generalized quadrangles.

Lemma 3. (See [3], Lemma 9.4.1.) Let P be a polar space of rank N with parameters (q,qe). The number of
totally isotropic subspaces with dimension m is given by

[N
m

]
q

∏m−1
i=0 (qN−i−1+e + 1). In particular, the number

of generators is (qe + 1) · · · (qN−1+e + 1).

The previous lemma also allows us to compute the number of generators through a fixed point in
a polar space of rank N , as it is the number of generators in the residual polar space of rank N − 1
and of the same type.

If two totally isotropic subspaces in a polar space intersect trivially, or hence if they have no
point in common, then we say that they are disjoint. It is our goal to study sets of generators in
a polar space pairwise not disjoint. We will refer to such sets as EKR sets of generators. We will say
that such a set is a maximal EKR set of generators if it is not a proper subset of another EKR set of
generators. A simple example of an EKR set of generators is the point-pencil construction, consisting
of all generators through a fixed point. We will prove in this paper that in many polar spaces, these
are the unique EKR sets of generators of maximum size.

In the case of (classical) generalized quadrangles, the generators are lines. It is a trivial observation
that the maximal sets of lines pairwise intersecting in a generalized quadrangle are the sets of lines
through a point, so we will only focus on polar spaces of rank at least three.

This article is structured as follows. We will give some preliminary observations on maximal EKR
sets of generators in Section 2. In Section 3, we will approach the problem in a graph-theoretic way
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and give bounds on the size of EKR sets of generators already found by Stanton in [14]. We will give
an alternative proof in Section 4 for the characterization in those polar spaces discussed by Tanaka
in [15]. Sections 5, 6 and 7 are devoted to a complete characterization in all but one remaining case.
Finally, we prove in Section 8 that in one particular type of Hermitian variety, the bound from [14]
cannot be reached, and we give a characterization for small rank.

An overview of our results is given in Section 9.

2. General observations on maximal EKR sets of generators

We will first obtain some results by use of purely geometric results, which already hold for EKR
sets of generators when only assuming maximality.

Lemma 4. Let πa, πb and πc be pairwise non-disjoint generators in a polar space. The intersections πa ∩ πb
and πa ∩ πc cannot be complementary subspaces of πa.

Proof. Suppose πa ∩πb and πa ∩πc are complementary subspaces of πa . As πb and πc are assumed to
meet non-trivially, they must have a point p in common, not in πa . This point would be collinear with
all points in πa ∩πb and with all points in πa ∩πc , and hence with all points in 〈πa ∩πb,πa ∩πc〉 = πa ,
which would contradict the assumption that πa is a maximal totally isotropic subspace. �
Lemma 5. Let S be a maximal EKR set of generators. If a dual line is incident with at least two elements of S,
then all generators through it are in S.

Proof. Let μ be a dual line, incident with two distinct elements πa and πb of S . Suppose a third
generator π ′ through μ is not in S . As S is assumed to be maximal, there must be a generator πc ∈ S
disjoint from π ′ and hence also from μ, so it intersects πa in a point not on μ. The generators πa ,
πb and πc contradict Lemma 4. �

The previous lemma motivates us to introduce the following terminology. We say that a dual line
in a polar space is secant, tangent or external with respect to a maximal EKR set of generators S if all,
one or none of the generators through it are in S , respectively.

Let S be an EKR set of generators in a polar space with π ∈ S . Consider all secant dual lines with
respect to S in π . We will refer to their intersection as the nucleus of π (with respect to S), we will
denote it by πs and s will be the projective dimension of πs . The nuclei of the elements of S will play
a crucial role in our characterization of the EKR sets of generators of maximum size. In the following
lemma, we prove fundamental properties of the nuclei.

Lemma 6. Let S be a maximal EKR set of generators in a polar space of rank N and with parameters (q,qe). If
πs is the nucleus of the generator π ∈ S, then the secant dual lines in π are those through πs , and the tangent
dual lines in π are those not through πs . The number of elements of S that intersect π ∈ S in a dual line is
given by qe

[N−s−1
1

]
q.

Moreover, if a generator π ′ ∈ S meets π in just a point, then this point must be in πs .

Proof. Suppose π ∈ S has nucleus πs with projective dimension s. If π ′ ∈ S intersects π in a point p,
then p must belong to every secant dual line μ in π by Lemma 4, hence p ∈ πs .

Let μ be a dual line through πs . By Lemma 5, μ is either secant or tangent. Suppose that μ is
tangent, hence there exists a π1 through μ such that π1 /∈ S . Since S is maximal, there must be a
π2 ∈ S disjoint from π1, but π2 must intersect π , so this intersection would be a point not in μ and
hence not in πs either, contradicting the above. So μ is secant.

The number of dual lines in π through πs is given by
[N−s−1

1

]
q , and through each such dual line

there are qe other elements of S , and hence there are exactly qe
[N−s−1

1

]
q elements of S meeting π in

a dual line. �
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3. Graph-theoretic approach to polar spaces

Theorems 1 and 2 can be interpreted as results regarding the Johnson and Grassmann graphs,
respectively (see for instance Sections 9.1 and 9.3 in [3]). In this article, we have to consider the dual
polar graph, the vertices of which are the generators of a polar space. Two generators are neighbors
in the dual polar graph if they meet in a subspace of codimension one and when we say that two
generators are neighbors, we will mean with respect to this relation, unless stated otherwise. First,
we need some algebraic background.

For any finite set Ω , we can consider the real vector space RΩ , which has an orthonormal basis
corresponding to the elements of Ω . For every subset S ⊆ Ω , we define the column vector χS ∈ RΩ

as the characteristic vector of S , with the entries of χS corresponding to an element of S equal to one,
and all other entries equal to zero.

Bose and Shimamoto [2] introduced the notion of a d-class association scheme on a finite set Ω

as a pair (Ω, R) with R a set of symmetric relations {R0, R1, . . . , Rd} on Ω such that the following
axioms hold:

(i) R0 is the identity relation,
(ii) R is a partition of Ω2,

(iii) there are intersection numbers pk
i j such that for (x, y) ∈ Rk , the number of elements z in Ω for

which (x, z) ∈ Ri and (z, y) ∈ R j equals pk
i j .

All the relations Ri are symmetric regular relations with valency p0
ii , and hence define regular graphs

on Ω .
With each relation Ri , we can associate the (|Ω|× |Ω|)-matrix Ai , the rows and columns of which

are indexed by the elements of Ω and with (Ai)xy = 1 if (x, y) ∈ Ri and (Ai)xy = 0 if not. The axioms
for an association scheme immediately imply that all Ai are symmetric, A0 is the identity matrix,
the sum of all Ai is the all-one matrix and Ai A j = ∑d

k=0 pk
i j Ak . Hence it follows that the vector

space spanned by {A0, . . . , Ad} is closed under multiplication, and we refer to it as the Bose–Mesner
algebra. We also let ◦ denote entrywise multiplication of matrices. Now Ai ◦ A j = δi j Ai , and so the
Bose–Mesner algebra is closed under this multiplication as well.

It can be shown (see for instance [1]) that the real vector space RΩ has a unique orthogonal
decomposition into d + 1 subspaces V j , all of them eigenspaces (or subspaces of eigenspaces) for the
relations Ri of the association scheme. These subspaces are the strata of the association scheme. The
(d + 1)× (d + 1)-matrix P , where P ji is the eigenvalue of the relation Ri for the eigenspace V j , is the
matrix of eigenvalues of the association scheme. The matrices E j defining orthogonal projection onto
the subspace V j also span the Bose–Mesner algebra and are known as the minimal idempotents.

Now let Γ be a connected graph with diameter d on a set of vertices Ω . For every i in {0, . . . ,d},
we let Γi denote the graph on the same set Ω , with two vertices adjacent if and only if they are
at distance i in Γ , and we write Ri for the corresponding symmetric relation on V . The graph Γ is
said to be distance-regular if the set of relations {R0, R1, . . . , Rd} induces an association scheme on Ω .
It can be shown (see Chapter 4 in [3]) that this is equivalent with the existence of parameters bi
and ci , such that for every (v, vi) ∈ Ri , there are ci neighbors vi−1 of vi with (v, vi−1) ∈ Ri−1, for
every i ∈ {1, . . . ,d}, and bi neighbors vi+1 with (v, vi+1) ∈ Ri+1, for every i ∈ {0, . . . ,d − 1}. These
parameters bi and ci are known as the intersection numbers of the distance-regular graph Γ .

Theorem 7. (See [3], Theorem 9.4.3.) Let Γ be the dual polar graph of a polar space of rank N with parameters
(q,qe). This graph is distance-regular with diameter N, and two vertices are at distance i if and only if they
meet in a subspace of codimension i. The intersection numbers are given by:

bi = qi+e
[

N − i

1

]
q
, ∀i ∈ {0, . . . , N − 1}, ci =

[
i

1

]
q
, ∀i ∈ {1, . . . , N}.

The valency of Γi is given by
[N

i

]
qi(i−1)/2qie .
q
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The vector space RΩ orthogonally decomposes as V 0 ⊥ V 1 ⊥ · · · ⊥ V N , where V j is an eigenspace of the

dual polar graph for the distinct eigenvalues qe
[N− j

1

]
q − [ j

1

]
q.

Note that V 0 is, in this ordering, just the subspace spanned by the all-one vector χΩ . This means

that for every subset S , the characteristic vector χS will have the component (χS )tχΩ

(χΩ)tχΩ
χΩ = |S|

|Ω|χΩ in
this V 0.

A subset S of vertices in a regular graph is a coclique if two vertices in S are never adjacent. As EKR
sets of generators are precisely the cocliques of the disjointness relation, we are especially interested
in the graph ΓN . The N + 1 subspaces V j ⊆ RΩ from Theorem 7 are the strata of the induced d-class
association scheme, and hence eigenspaces for all the relations Γ0,Γ1, . . . ,ΓN . Stanton [14] calculated
the eigenvalues of the disjointness graph ΓN between generators in a polar space of rank N with
parameters (q,qe), and obtained the eigenvalue

(−1) jqN(N+1)/2+ j( j−N−1)+(e−1)(N− j)

for the subspace V j .
We will use the following result on cocliques in regular graphs (see for instance Theorem 3.1

in [10]).

Theorem 8. If S is a coclique of a regular graph Γ on a set Ω with valency k and smallest eigenvalue λ < 0,
then:

|S| � |Ω|
1 − k/λ

.

Moreover, if the bound is met, then χS can be written as a linear combination |S|
|Ω|χΩ + v, with v an eigenvector

for λ.

Stanton [14] used the inequality from Theorem 8 to obtain upper bounds on the size of EKR sets
of generators in polar spaces.

Theorem 9. Let S be an EKR set of generators in a polar space P , and consider the decomposition RΩ = V 0 ⊥
· · · ⊥ V N as in Theorem 7.

• If P = Q +(2N − 1,q), with N odd, then |S| is at most half of the total number of generators, and if this
bound is reached, then χS ∈ (V 0 ⊥ V N).

• If P = Q +(2N − 1,q), with N even, then |S| is at most the number of generators through a fixed point,
and if this bound is reached, then χS ∈ (V 0 ⊥ V 1 ⊥ V N−1).

• If P = H(2N − 1,q2), with N odd, then |S| is at most the number of generators in the polar space P
divided by qN + 1, and if this bound is reached, then χS ∈ (V 0 ⊥ V N).

• If P = Q (2N,q) with N odd, or P = W (2N − 1,q), with N odd, then |S| is at most the number of
generators through a fixed point, and if this bound is reached, then χS ∈ (V 0 ⊥ V 1 ⊥ V N).

For all other polar spaces, the size of S is at most the number of generators through a fixed point, and if this
bound is reached, then χS ∈ (V 0 ⊥ V 1).

Proof. This follows from Theorem 8 and the formula for the eigenvalue

(−1) jqN(N+1)/2+ j( j−N−1)+(e−1)(N− j)

of the disjointness graph for V j . For j = 0, one obtains the valency k. One must then consider the
minimal eigenvalue for each possible value of e: 0, 1/2, 1, 3/2 and 2. This minimal eigenvalue is
obtained only for j = 1, except in the following cases: if e = 0 (hence if P = Q +(2N − 1,q)) and N
is odd for j = N , if e = 0 (hence if P = Q +(2N − 1,q)) and N is even for j = 1 and j = N − 1, if
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e = 1/2 (hence if P = H(2N − 1,q2)) and N is odd for j = N , and if e = 1 (hence if P = W (2N − 1,q)

or P = Q (2N,q)) and N is odd for j = 1 and j = N . �
The phenomenon observed in Theorem 9 also has important consequences for the opposite prob-

lem: finding the maximum size of cliques of the disjointness relation. Sets of generators that are all
mutually disjoint are known as partial spreads of the polar spaces. In [18], this was used to obtain a
tight upper bound for partial spreads in H(2N − 1,q2) with N odd.

In light of the description of the characteristic vector from Theorem 8, we give the following
lemma.

Lemma 10. Suppose S is a set of vertices in a regular graph Γ with valency k, with χS a sum of a multiple of
the all-one vector and an eigenvector v of some eigenvalue λ.

• If p ∈ S, then p has |S|
|Ω| (k − λ) + λ neighbors in S.

• If p /∈ S, then p has |S|
|Ω| (k − λ) neighbors in S.

Proof. Let A be the adjacency matrix of the graph Γ . The results follow immediately from:

AχS = A

( |S|
|Ω|χΩ + v

)
= k

|S|
|Ω|χΩ + λv =

( |S|
|Ω| (k − λ) + λ

)
χS + |S|

|Ω| (k − λ)(χΩ − χS),

recalling that χS = |S|
|Ω|χΩ + v . �

4. Classification of the Erdős–Ko–Rado sets of maximum size in most polar spaces

As we will often compare the cardinalities of sets of geometric objects, we need some analytic
tools.

Lemma 11. If n � 1, q � 2, e � 1
2 and qe � 2, then (1 + 1

qe ) · · · (1 + 1
qn+e ) < 2 + 1

qe , and in particular

(1 + 1
3 ) · · · (1 + 1

3n+1 ) < 2.

Proof. As 1 + 1
qe+i is at most exp( 1

qe+i ), the product (1 + 1
qe ) · · · (1 + 1

qn+e ) is at most

(
1 + 1

qe

)
exp

(
1

qe

1

q − 1

)
�

(
1 + 1

qe

)
exp

(
1

qe

)
.

As (1 + x)exp(x) < 2 + x, ∀x with 0 � x � 1/2, this completes the proof of the general statement.
After taking q = 3 and e = 1, one easily proves the last part as well by verifying that

4
3 exp( 1

3 ) < 2. �
Lemma 12.

1. For any n � 0 and q � 3, we have:

n∏
i=1

(
qi + 1

)
< 2qn(n+1)/2.

2. If N � 3, q � 2, e � 1
2 and qe � 2, then:

(
qe + 1

) · · · (qN+e−2 + 1
) −

[
N − 1

1

]
q
q(N−2)(N−3)/2+(N−2)e < 2q(N−1)(N−2)/2+(N−1)e.
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Proof. 1. The result is obvious if n = 0. Suppose n � 1. When dividing both sides by qn(n+1)/2, we
obtain the equivalent inequality:(

1 + 1

q

)
· · ·

(
1 + 1

qn

)
< 2.

As q � 3, this is at most (1 + 1
3 ) · · · (1 + 1

3n ), which is in turn less than 2 because of Lemma 11.

2. As
[N−1

1

]
q > qN−2, the left-hand side is at most

q(N−1)(N−2)/2+(N−1)e
((

1 + 1

qe

)
· · ·

(
1 + 1

qN+e−2

)
− 1

qe

)
.

We can now use Lemma 11 to complete the proof. �
We also give the following general result on polar spaces (see for instance Lemma 9.4.2 in [3]).

Theorem 13. Let P be a polar space of rank N with parameters (q,qe). The number of generators meeting a
fixed totally isotropic subspace πm with dimension m in a subspace of codimension i in πm is given by:

qi(N−m+e+ i−1
2 )

[
m

i

]
q

N−m−1∏
j=0

(
qN−m− j−1+e + 1

)
.

For any generator, there are q
i(i−1)

2 +ie generators intersecting it in a fixed subspace of codimension i.

We know from Theorem 9 that in most polar spaces, the maximum size of an EKR set of generators
is the number of generators through one point, and that the characteristic vector of such a set also
satisfies strong conditions. We will now use this to obtain strong properties of such sets in these
polar spaces.

Lemma 14. Let P be a polar space of rank N � 3, either H(2N,q2), H(2N − 1,q2) with N even, Q (2N,q)

with N even, W (2N − 1,q) with N even or Q −(2N + 1,q). If S is an EKR set of generators of P with |S| equal
to the number of generators through a fixed point, then for every element π ∈ S, the number of elements of S
meeting π in a subspace of codimension i is given by ai = [N−1

i

]
qqi(i−1)/2qie .

Proof. Theorem 9 yields that in these polar spaces, S must have a characteristic vector in V 0 ⊥ V 1.
We know that V 0 and V 1 are not only eigenspaces for ΓN , but for all Γi . For each Γi , let ki denote the
valency and λi the eigenvalue for V 1. Lemma 10 yields that the number of elements of S , meeting a
generator π in a subspace with codimension i, is |S|

|Ω| (ki −λi)+λi if π ∈ S . Instead of explicitly calcu-
lating these eigenvalues, we will derive these numbers by considering the point-pencil construction,
consisting of all generators through some fixed point p. If a generator π is through p, then the num-
ber of generators through p, meeting π in a subspace of codimension i, is the same as the valency of
the i-distance relation Γi in the residual polar space of the same type and of rank N − 1. Theorem 7
now gives us the desired values. �

As an example, we consider the elliptic quadric Q −(7,q) with N = 3 and e = 2. Here, the upper
bound for EKR sets of generators is (q2 + 1)(q3 + 1). If it is reached, the constants (a0,a1,a2,a3) will
be given by (1, (q + 1)q2,q5,0).

We will now characterize the EKR sets of generators of maximum size in almost all polar spaces.
These polar spaces are also treated in Theorem 1 in [15], but we will use an alternative, more local
approach.

Theorem 15. Let P be a polar space as in Lemma 14. If S is an EKR set of generators of P with |S| equal to the
number of generators through a fixed point, then S must be the set of generators through a fixed point.
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Proof. Let us assume that the polar space has parameters (q,qe).
Lemma 14 yields that for any π ∈ S , the number of elements of S meeting π in a subspace of

codimension i is given by qi(i−1)/2qie
[N−1

i

]
q . In particular, the number of neighbors of π in S in the

dual polar graph is qe
[N−1

1

]
q . Hence, Lemma 6 yields that for any generator π , the nucleus is a point.

The number of elements of S meeting π in that point is aN−1 = q(N−1)(N−2)/2+(N−1)e .
Let π1 be an element of S with nucleus p. Suppose that there is an element π ′ ∈ S not through p.

Every π ′′ ∈ S that intersects π1 in just p has the point p as nucleus as well, and hence π ′ and
π ′′ meet in at least a line. The generators through p that meet π ′ in at least a line, correspond
in the residual geometry of p of rank N − 1 with those generators meeting a fixed generator in
a subspace of codimension different from N − 1 and N − 2. Their number is (qe + 1) · · · (qN−2+e + 1)−
q(N−1)(N−2)/2+(N−1)e − q(N−2)(N−3)/2+(N−2)e

[N−1
1

]
q by Theorem 7, and hence we should have

(
qe + 1

) · · · (qN−2+e + 1
) − q(N−1)(N−2)/2+(N−1)e − q(N−2)(N−3)/2+(N−2)e

[
N − 1

1

]
q

� aN−1 = q(N−1)(N−2)/2+(N−1)e,

but this is false by Lemma 12(2). This implies that all elements of S are through p. �
The next sections will be devoted to the remaining polar spaces.

5. Hyperbolic quadrics

In the case of the hyperbolic quadric Q +(2N − 1,q), there are two systems of generators of the
same size. We will refer to them as the Latin and Greek generators, and use the symbols Ω1 and Ω2
for these sets. They have the property that two generators are in the same system if and only if
the algebraic dimension of their intersection has the same parity as N . Moreover, a totally isotropic
subspace of dimension N − 1 is contained in exactly two generators: one in Ω1 and one in Ω2.

The collineation group of Q +(2N − 1,q) acts transitively on the generators, but the dual polar
graph is bipartite with diameter N with the sets of Latins and Greeks as the two bipartite classes
(see for instance Theorems 11.59 and 11.60 in [16]). Hence every collineation either stabilizes both
systems, or switches them.

For this particular dual polar graph, the eigenvalue for the subspace V j from Theorem 7, with

0 � j � N , is given by
[N− j

1

]
q − [ j

1

]
q . Note that the eigenvalues for V j and V N− j are opposite. The

following relation holds between eigenspaces:

V N− j = {v1 − v2 | v1 ∈ RΩ1, v2 ∈ RΩ2, v1 + v2 ∈ V j}.
In particular, V 0 and V N are one-dimensional eigenspaces of this dual polar graph, with V 0 =
〈χΩ1 + χΩ2 〉 and V N = 〈χΩ1 − χΩ2 〉.

Let us first consider the case where N is odd. Here, two generators of the same system cannot
intersect trivially, so the set of all Latins and the set of all Greeks are both EKR sets, and their sizes
meet the eigenvalue bound from Theorem 9. The following algebraic argument quickly establishes
that this is the only possibility.

Theorem 16. Let S be an EKR set of generators in Q +(2N − 1,q) with N odd of size |Ω|/2, then S is one of
the two systems of the hyperbolic quadric.

Proof. Theorem 9 yields that χS ∈ V 0 ⊥ V N . The eigenspace V 0 is spanned by χΩ1 + χΩ2 , while V N
is spanned by χΩ1 − χΩ2 . Hence χS can only be χΩ1 or χΩ2 . �

Next, we consider the case where N is even. Here, two generators of two different systems cannot
intersect trivially, so if S1 is an EKR set contained in Ω1 and S2 is an EKR set contained in Ω2,
S1 ∪ S2 is still an EKR set for the polar space. From now on, we will also denote the rank N by
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2n + 2, which will simplify some of our calculations. The upper bound from Theorem 9 for an EKR
set of generators S in Q +(4n + 3,q) is 2(q + 1) · · · (q2n + 1). This bound can be reached by taking all
generators through a single point, but one could for instance also take all Latins through one point,
and all Greeks through another point to obtain an EKR set of generators. If S1 is a set of Latins, no two
of which disjoint, and σ is any automorphism of Q +(4n + 3,q) switching the Latins and Greeks, then
S1 ∪ Sσ

1 is an EKR set and hence 2|S1| � 2(q + 1) · · · (q2n + 1). Hence the upper bound for an EKR set
of one given system is (q + 1) · · · (q2n + 1). The two systems of generators are projectively equivalent,
so it is enough to classify the EKR sets of size (q + 1) · · · (q2n + 1) of one system in Q +(4n + 3,q).
Therefore, we will consider the half dual polar graph Γ ′ , the vertices of which are the generators of
one system, with two of them adjacent when meeting in a subspace of codimension two. We refer to
9.4.C in [3] for a discussion of this graph.

We will use similar techniques as those applied by Tanaka for the dual polar graph in [15]. There-
fore, we will also need some more algebraic background. The association scheme induced by the dual
polar graph has a natural ordering for its relations, determined by the corresponding distance from a
given generator. One formulates this by saying it is P -polynomial. We will now introduce the dual no-
tion of Q -polynomiality, which gives a special meaning to a certain ordering of the strata instead. Let
(Ω, {R0, . . . , Rd}) be an association scheme with strata V 0, . . . , Vd . Let E j denote orthogonal projec-
tion in RΩ onto V j , and again let ◦ denote entrywise multiplication of elements of the Bose–Mesner
algebra. We say that the ordering V 0, . . . , Vd is Q -polynomial if E1 ◦ E j is a linear combination of
E j−1, E j and E j+1 with non-zero coefficients for E j−1 and E j+1 for every j with 0 � j � d, where we
let E−1 and Ed+1 simply be zero.

For the following properties of the half dual polar graph, we refer to Theorem 9.4.8 and Corollary
8.4.2 in [3].

Theorem 17. Let Γ ′ be the half dual polar graph, with set of vertices Ω being the set of the generators of one
system in the hyperbolic quadric Q +(2N − 1,q). This graph is distance-regular with diameter d = � N

2 , and
two vertices are at distance i if and only if they meet in a subspace of codimension 2i.

The valency of Γ ′
i is given by

[N
2i

]
qqi(2i−1) , and the intersection numbers by: bi = q4i+1

[N−2i
2

]
q (0 � i �

d − 1) and ci = [2i
2

]
q (1 � i � d).

The vector space RΩ orthogonally decomposes as W0 ⊥ W1 ⊥ · · · ⊥ Wd, where W j is an eigenspace of

the half dual polar graph for the eigenvalue q2 j+1
[N−2 j

2

]
q − q2 j−1

q2−1
, and all d + 1 eigenvalues are distinct. This

ordering of the spaces W j is Q -polynomial.

If Γ ′ is the half dual polar graph in Q +(2N − 1,q), then the eigenvalue of Γ ′
i for the subspace W j

is the same as the eigenvalue of the 2i-distance graph Γ2i of the original dual polar graph Γ for both
the subspace V j and V N− j . Hence, the ratio 1 − k/λ from Theorem 8 remains the same, and we find
that an EKR set of generators of the same system has size at most (q + 1) · · · (q2n + 1), and this bound
can only be reached if the characteristic vector is in W0 ⊥ W1.

It is our aim to show that an EKR set of generators of one system in the hyperbolic quadric
Q +(2N − 1,q), for even N � 6, consists of all generators of that system through one point, and that
for N = 4, there is only one extra construction.

A consequence of Theorem 2 from [4] and Proposition 2 from [15] yields the following.

Theorem 18. Let Γ be a distance-regular graph with diameter d on a set Ω . Suppose RΩ has an orthogonal
decomposition V 0 ⊥ · · · ⊥ Vd into strata which are Q -polynomially ordered. For each subset S of Ω with
χS ∈ V 0 ⊥ V 1 , the maximum distance between elements of S is at least d − 1, and if it is d − 1, then the
i-distance relations, with i ∈ {0, . . . ,d − 1}, induce an association scheme with one class less, when restricted
to the subset S. The parameters of this scheme are independent of the subset S.

This allows us to obtain a result regarding convexity of EKR sets of generators in the half dual
polar graph, just as in [15].
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Corollary 19. Let S be a set of (q + 1) · · · (q2n + 1) generators of one system in Q +(4n + 3,q) pairwise not
disjoint.

(1) The i-distance relations of the half dual polar graph with 0 � i � n induce an association scheme on S
with the same parameters as the scheme induced by the half dual polar graph of Q +(4n + 1,q).

(2) Suppose that πa and πb are two elements of S at distance i in the associated half dual polar graph. If π is
a neighbor of πa in the half dual polar graph and at distance i − 1 from πb, then π must be in S as well.

Proof. We know that the assumptions imply that χS ∈ W0 ⊥ W1, with the same notation as in The-
orem 17. Theorem 18 yields that the i-distance relations induce an association scheme on S .

Now let S ′ be the set of all generators of the same system through a fixed point. This set satisfies
the same assumptions. We know that the association schemes induced on S and on S ′ have the same
parameters, and the latter is isomorphic to that on generators of one system in the hyperbolic quadric
Q +(4n + 1,q).

Hence if two generators πa and πb in S are at distance i, the number of generators in S at distance
i − 1 from πa and at distance one from πb is given by: ci = [2i

2

]
q (see Theorem 17).

Moreover,
[2i

2

]
q is also the number of generators in the full half dual polar graph, at distance i − 1

from πa , and distance one from πb . Hence every such generator in the half dual polar graph must
belong to S . �

The proof of the following lemma is similar to the proof of Theorem 1 in [15].

Lemma 20. Let S be a set of (q + 1) · · · (q2n + 1) generators of one system of Q +(4n + 3,q) pairwise in-
tersecting. If π1 and π2 are elements of S that meet in just a line 	, all the elements of S cannot be disjoint
from 	.

Proof. Let ⊥ denote the polarity associated to the polar space. Suppose π1 and π2 are elements of
S meeting in just the line 	. Suppose π ∈ S intersects π1 in a subspace μ of codimension 2i in π1,
skew to 	. Let m be any line in π , skew to 	⊥ ∩ π . Consider the generator π ′ = 〈m,m⊥ ∩ π1〉. This
generator meets π1 in a subspace of codimension two, skew to 	, and is at distance i − 1 with respect
to the half dual polar graph from π . Hence π ′ is in S as well, because of Corollary 19, so π ′ and π2
must also meet non-trivially and the triple (π1,π2,π

′) would contradict Lemma 4. �
We now come to the main result concerning hyperbolic quadrics.

Theorem 21. Let S be a set of Latins in Q +(4n + 3,q) pairwise intersecting and n � 2 of size (q + 1) · · ·
(q2n + 1), then S is the set of Latins through a fixed point.

Proof. Let π be in S . We know from Corollary 19 that the number of elements of S meeting π in
exactly a line is the same as the number of generators in Q +(4n + 1,q) that meet a fixed generator
in exactly a point, so it is

[2n+1
1

]
qqn(2n−1) (Theorem 17). On the other hand, Theorem 13 yields that

there are exactly qn(2n−1) generators of Q +(4n + 3,q), intersecting π in just a fixed line. Hence the
set of lines A that are intersections of π with some element of S has size at least

[2n+1
1

]
q , and we

know from Lemma 20 that no two of them can be disjoint. As n � 2, we can now apply Theorem 2
to see that A is precisely the set of

[2n+1
1

]
q lines through some fixed point p in π .

Now suppose π ′ is an element of S not through p. This means that μ = π ∩ π ′ is a subspace
of codimension at least two in π and not through p. Let 	 be a line in A skew to μ. Now 	 is the
intersection of two elements of S , while π ′ is disjoint from 	, contradicting Lemma 20. �

The hyperbolic quadric Q +(7,q) must be treated separately. Let P0 be the set of (q + 1)(q2 + 1)×
(q3 +1) points in Q +(7,q), P1 the set of (q +1)(q2 +1)(q3 +1) Latins, P2 the set of (q +1)(q2 +1)×
(q3 + 1) Greeks, and L the set of lines of Q +(7,q). We can define an incidence relation between two
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elements belonging to any couple of sets: a Greek and a Latin are incident if they intersect in a plane,
and in all the other cases it is just symmetrized inclusion. There is always a triality (see for instance
Section 2.4 in [17]): an incidence preserving map τ of order three that maps P0 to P1, P1 to P2,
P2 to P0, and L to L.

Theorem 22. If S is a set of Latin generators of Q +(7,q) pairwise intersecting and |S| = (q + 1)(q2 + 1), then
S consists of all the Latins through one point, or of all the Latins meeting a fixed Greek in a plane.

Proof. Let S be a set of pairwise intersecting Latins, and let τ be any triality. Then Sτ−1
is a set

of mutually collinear points. It is well known that in every polar space the largest set of pairwise
collinear points is the set of points in a generator (see for instance Lemma 9.2 in [8]). Hence, there is
a generator π containing all the (q + 1)(q2 + 1) points of Sτ−1

.
If π is a Latin, then S itself consists of all Latins incident with the Greek πτ , or hence of all Latins

meeting πτ in a plane. If π is a Greek, then S itself consists of all Latins through the point πτ . �
6. The case Q (4n + 2,q) for all q, and W (4n + 1,q) for even q

We will now treat the problem in the parabolic quadrics of odd rank. The bound from Theorem 9
is still reached by the point-pencil construction, but the properties of the characteristic vector are a
bit weaker. We will make use of its embedding in the hyperbolic quadric. We have seen in Section 5
that Q +(7,q) is a special case, and therefore Q (6,q) will also be exceptional. If q is even, parabolic
and symplectic spaces with the same parameters are isomorphic (see for instance Chapter 11 in [16]),
and hence we will also be able to obtain the classification in those spaces.

Theorem 23. Let S be an EKR set of generators in Q (4n + 2,q), with n � 1 and |S| = (q + 1) · · · (q2n + 1),
then one of the following cases must occur:

• S is the set of all generators through a fixed point,
• S is the set of all generators of one system of an embedded Q +(4n + 1,q),
• n = 1 and S consists of one fixed generator and all generators meeting it in a line.

Proof. Consider the embedding of Q (4n+2,q) in Q +(4n+3,q) as a non-singular hyperplane section.
Every generator of Q (4n + 2,q) is contained in a unique generator of a fixed system of Q +(4n + 3,q),
so let S̄ be the set of Latin generators in Q +(4n + 3,q) through an element of S . The elements of S̄
cannot be disjoint either and | S̄| = |S| = (q + 1) · · · (q2n + 1). Theorems 21 and 22 then yield that S̄ is
either the set of all Latins through a point p in Q +(4n + 3,q), or S̄ is the set of all Latins meeting a
fixed Greek γ in a plane with n = 1. Suppose that we are in the first case. If p is in the hyperplane H ,
then S is simply the set of all generators through p in Q (4n + 2,q). If p is not in H , then p⊥ ∩ H
meets the parabolic quadric in a non-singular hyperbolic quadric Q +(4n + 1,q). Then S is one system
of generators of that hyperbolic quadric. Finally, in the second case we see that S consists of the plane
γ ∩ H and the (q2 + q + 1)q planes of Q (6,q) meeting that plane in a line. �

We now consider Q (4n + 2,q) and W (4n + 1,q) with q even. It is well known (see for example
Corollary 2 of Lemma 22.3.1 in [11]) that the projection from a point of PG(4n + 2,q), called the
nucleus of the parabolic quadric, on any non-singular hyperplane H gives an isomorphism between the
polar spaces Q (4n + 2,q) and W (4n + 1,q). In particular, if H is a non-singular hyperplane intersect-
ing the parabolic quadric in a hyperbolic quadric Q +(4n + 1,q), then the generators of Q (4n + 2,q)

in H will correspond with those of an embedded Q +(4n + 1,q) in W (4n + 1,q).

Theorem 24. Let S be an EKR set of generators in W (4n + 1,q), with q even, n � 1 and |S| = (q + 1) · · ·
(q2n + 1). One of the following must hold:
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• S is the set of all generators through a fixed point,
• S is the set of all generators of one system of a hyperbolic quadric Q +(4n + 1,q) embedded in

W (4n + 1,q),
• n = 1 and S consists of one fixed generator and all generators meeting it in a line.

Proof. This follows immediately from Theorem 23. �
7. The case W (4n + 1,q) for odd q

In the polar space W (4n + 1,q), Theorem 9 does not yield that the characteristic vector χS of an
EKR set of generators of maximum size is in the span of the subspaces V 0 and V 1. This significantly
weakens our control over this set. We also don’t have an isomorphism between Q (4n + 2,q) and
W (4n + 1,q) if q is odd, but the parameters and the eigenvalues of the association schemes on
generators are still the same (see for instance Section 9.4 in [3]).

With respect to the disjointness relation, we can still prove a strong property.

Lemma 25. Let S be an EKR set of generators in Q (4n + 2,q) or W (4n + 1,q) of size (q + 1) · · · (q2n + 1).
Every generator π /∈ S is disjoint from exactly qn(2n+1) elements of S.

Proof. It follows from Theorem 9 that if |S| = (q + 1) · · · (q2n + 1), then χS ∈ V 0 ⊥ V 1 ⊥ V N , with V j

as defined in Theorem 7. Here, V 1 ⊥ V N is an eigenspace for the eigenvalue λ = −qn(2n+1) of the
disjointness relation. We can now use Lemma 10 with respect to the disjointness relation. Let k
denote the valency of the disjointness relation. We obtain that each generator not in S is disjoint
from exactly |S|

|Ω| (k − λ) = |Ω|
|Ω|(1−k/λ)

(k − λ) = −λ = qn(2n+1) elements of S . �
For any generator π and any subset S of generators in W (4n + 1,q), we let (vπ,S )i denote the

number of generators in S meeting π in a subspace of codimension i. Note that (vπ,S)0 is 1 if π ∈ S .
We now use algebraic techniques to obtain information on these vectors vπ,S .

We first consider the two known constructions of EKR sets of maximum size S in W (4n + 1,q)

(q even) or Q (4n + 2,q), together with some element π ∈ S:

• Point-pencil construction: vπ,S = v1 with (v1)i = [2n
i

]
qqi(i+1)/2 (this follows from Theorem 7).

For instance, in W (9,q) or Q (10,q):

v1 =
(

1,

[
4

1

]
q
q,

[
4

2

]
q
q3,

[
4

3

]
q
q6,

[
4

4

]
q
q10,0

)
.

• All Latins of an embedded Q +(4n + 1,q): vπ,S = v2 with (v2)i = [2n+1
i

]
qqi(i−1)/2 if i is even, 0 if

i is odd (this follows from Theorem 7).
For instance, in W (9,q) (q even) or Q (10,q):

v2 =
(

1,0,

[
5

2

]
q
q,0,

[
5

4

]
q
q6,0

)
.

Theorem 26. Let S be an EKR set of generators in Q (4n + 2,q) or W (4n + 1,q) of size |S| = (q + 1) · · ·
(q2n + 1). Then for every π ∈ S, there is a parameter τ such that vπ,S = τ v1 + (1 − τ )v2 .

Proof. We know that if |S| reaches the bound from Theorem 9, then χS ∈ V 0 ⊥ V 1 ⊥ V N , with N =
2n + 1 in this case. Let Ω be the full set of generators, and let P be the matrix of eigenvalues of
the association scheme. Let E j denote the orthogonal projection onto the space of eigenvectors V j .
Lemma 2.5.1(iii) from [3] implies that (vπ,S P−1) j = (E jχS)π , where the latter denotes the entry
of the vector E jχS , corresponding to the generator π . We note that E0 is just projection onto the
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all-one vector, so the first entry (vπ,S P−1)0 = (E0χS )π = (
|S|
|Ω|χΩ)π = |S|/|Ω|. On the other hand,

E0 + · · · + EN is the identity matrix, which means that the sum of all entries of vπ,S P−1 is given by
((E0 +· · ·+ EN )χS)π = (χS )π , which is 1 as π ∈ S . Finally, as we know that E jχS = 0 unless j = 0,1,

or j = N (= 2n + 1), we have that (vπ,S P−1) j = 0 if j is not 0, 1 or 2n + 1. Hence, we know that
vπ,S is given by (|S|/|Ω|, t,0, . . . ,0,1 − t − |S|/|Ω|)P for some real number t .

As the parameters and the eigenvalues for generators in W (4n + 1,q) and Q (4n + 2,q) are the
same, the vectors v1 and v2 that were given are both of that form. This means that (v1 − v2)P−1 is of
the form (0,a,0, . . . ,0,−a) for some a �= 0, and that (vπ,S − v2)P−1 is of the form (0,b,0, . . . ,0,−b).
Hence (vπ,S − v2)P−1 is a scalar multiple of (v1 − v2)P−1. This means vπ,S − v2 can be written as
τ (v1 − v2) for some τ ∈ R. �
Theorem 27. Let S be an EKR set of generators in W (4n + 1,q) of size (q + 1) · · · (q2n + 1), with n � 1. Let π
be any element of S with nucleus πs .

The number of elements of S meeting π in a subspace of codimension i, is given by

q2n−s − 1

q2n − 1

[
2n

i

]
q
qi(i+1)/2

if i is odd, and by

[
2n

i

]
q
qi(i+1)/2 + q2n−s(qs − 1)

q2n − 1

[
2n

i − 1

]
q
qi(i−1)/2

if i is even.
For every point of πs , there are exactly qn(2n+1)−s elements of S meeting π in just that point.

Proof. We already know from Lemma 6 that if an element of S meets π in exactly one point p, then
p ∈ πs , and that (vπ,S)1, the number of elements of S meeting π in a dual line, is exactly

[2n−s
1

]
qq.

Theorem 26 also yields that vπ,S can be written as τ v1 + (1 − τ )v2 for some parameter τ . In par-

ticular, (vπ,S )1 gives us the following equation: τ
[2n

1

]
qq + (1 − τ )0 = [2n−s

1

]
qq, or hence: τ = q2n−s−1

q2n−1
.

For an odd i in general, this means that (vπ,S)i = q2n−s−1
q2n−1

[2n
i

]
qqi(i+1)/2 since the corresponding entry

of v2 is zero. If i is even, then (vπ,S )i = τ
[2n

i

]
qqi(i+1)/2 + (1 − τ )

[2n+1
i

]
qqi(i−1)/2. Using the identity[2n+1

i

]
q = [2n

i

]
qqi + [ 2n

i−1

]
q

, the latter can also be written as:
[2n

i

]
qqi(i+1)/2 + q2n−s(qs−1)

q2n−1

[ 2n
i−1

]
q
qi(i−1)/2. In

particular, we find that (vπ,S)2n , the number of elements of S meeting π in just a point, is exactly[s+1
1

]
qqn(2n+1)−s .

For any point p in πs , let f (p) denote the number of elements of S meeting π in just p. Consider
any hyperplane πs−1 of πs . We want to obtain

∑
p∈πs−1

f (p). Consider any generator π ′ meeting π in
a dual line but meeting πs in just πs−1. As π ′ is not in S , Lemma 25 implies that π ′ is disjoint from
exactly qn(2n+1) elements of S , all necessarily meeting π in just a point in πs\πs−1. Conversely, any
generator of S that meets π in just a point of πs\πs−1 must be disjoint from π ′ because of Lemma 4.
Hence

∑
p∈πs−1

f (p), the number of elements of S that meet π in just a point of πs−1, is given by[s+1
1

]
qqn(2n+1)−s − qn(2n+1) = [s

1

]
qqn(2n+1)−s . Now let H denote the set of all hyperplanes in πs , and

consider any point p0 in πs . We obtain:

∑
h∈H,p0 /∈h

(∑
p∈h

f (p)

)
= qs−1

( ∑
p∈πs\{p0}

f (p)

)

⇓
qs

([
s

1

]
q
qn(2n+1)−s

)
= qs−1

( ∑
p∈π \{p }

f (p)

)
.

s 0
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Hence

f (p0) =
∑
p∈πs

f (p) −
∑

p∈πs\{p0}
f (p)

=
[

s + 1

1

]
q
qn(2n+1)−s −

[
s

1

]
q
qn(2n+1)−s+1

= qn(2n+1)−s. �
We will characterize the EKR sets of generators in W (4n + 1,q) by excluding values for the di-

mension of the nucleus of an element of S . For that purpose, we will also need parameters with
respect to dual lines instead of generators. Therefore, we require more properties of the strata of the
association scheme induced by the dual polar graph. Our techniques will be similar to those used for
other association schemes in [5] and [7].

Consider a general polar space of rank N with parameters (q,qe). We define the incidence matrix
C(N,N−1) as follows. The columns are indexed by the generators and the rows by the dual lines. The
entry (C(N,N−1))i j is 1 if the corresponding dual line and generator are incident, and 0 otherwise.

We already know from Theorem 7 that the eigenvalues of the dual polar graph are given by
qe

[N− j
1

]
q − [ j

1

]
q , with 0 � j � N . We denote each corresponding eigenspace by V j . In particular, −[N

1

]
q

is an eigenvalue, obtained when j = N . The following lemma characterizes the eigenvectors of this
last eigenvalue.

Lemma 28. The eigenspace V N of the eigenvalue −[N
1

]
q of the dual polar graph is the kernel of the incidence

matrix C(N,N−1) .

Proof. Let A denote the adjacency matrix of the dual polar graph. We consider the product
(C(N,N−1))

t C(N,N−1) , which has the same kernel as C(N,N−1) . As every generator contains
[N

1

]
q dual

lines, while two distinct generators contain either a unique common dual line (if they are adjacent in
the dual polar graph) or none (if they are not adjacent), we can write: (C(N,N−1))

t C(N,N−1) = [N
1

]
qI+ A.

This means that

V N = ker

(
A −

(
−

[
N

1

]
q

)
I

)
= ker

(
(C(N,N−1))

t C(N,N−1)

) = ker(C(N,N−1)). �

We now generalize our incidence matrix. For each i ∈ {0, . . . , N − 1}, we let C i
(N,N−1) denote the

(0,1)-matrix, the columns of which are indexed by the generators of the polar space, and the rows
by the dual lines. An entry is 1 if the corresponding generator and dual line meet in a subspace of
codimension i in the dual line, and zero otherwise. In particular: C0

(N,N−1) = C(N,N−1) . Note that the

matrices C i
(N,N−1) add up to the all-one matrix.

Lemma 29. Consider a polar space of rank N and an eigenspace V j of the dual polar graph. There exist scalars
λi

j such that C i
(N,N−1)v = λi

j C(N,N−1)v, ∀v ∈ V j . In particular: C i
(N,N−1)v = 0, ∀v ∈ V N .

Proof. We again let A denote the adjacency matrix of the dual polar graph. For any i ∈ {0, . . . , N − 2},
consider the product C i

(N,N−1) A. Consider a generator π and a dual line πN−1. There can only be
neighbors of π meeting πN−1 in a subspace of codimension i, if π and πN−1 meet in a subspace of
codimension i − 1, i, i + 1. We denote the number of such neighbors in these cases by xi , yi and zi ,
respectively (we let x0 be zero), and these numbers only depend on i and not on π or πN−1. For
every i ∈ {0, . . . , (N −1)−1}, we have zi �= 0, and we can write C i

(N,N−1)
A = xi C

i−1
(N,N−1)

+ yi C i
(N,N−1)

+
zi C

i+1
(N,N−1) , with C−1

(N,N−1) defined as zero.
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If v ∈ V j , then v is an eigenvector of A for some eigenvalue λ of the dual polar graph, and hence:

C i+1
(N,N−1)v = (

C i
(N,N−1)(λv) − xi C

i−1
(N,N−1)v − yi C

i
(N,N−1)v

)
/zi .

Induction on i now allows us to prove that there are scalars λi
j such that C i

(N,N−1)
v = λi

j C(N,N−1)v ,

∀v ∈ V j for every i ∈ {0, . . . , N − 1}. If j = N , then it follows from Lemma 28 that C i
(N,N−1)v = 0. �

The scalars λi
j from Lemma 29 will play a role that is somewhat similar to that of eigenvalues.

Now let S be a set of generators in a polar space, and let πN−1 be any dual line in the polar space.
We define the vector vπN−1,S as follows: (vπN−1,S )i = |{π ∈ S|dim(π ∩πN−1) = (N −1)− i}|. Note that
the entries of vπN−1,S add up to |S|.

Theorem 30. Let S be a set of generators in a polar space of rank N, and let λi
j be scalars as provided by

Lemma 29. Suppose χS ∈ 〈V j | j ∈ J 〉 with J ⊆ {0, . . . , N}. Then for every dual line πN−1 , the vector vπN−1,S

can be written as a linear combination of the vectors of scalars (λ0
j , . . . , λ

N−1
j ), with j ∈ J\{N}.

Proof. We first note that (vπN−1,S)i can be expressed algebraically as (χ{πN−1})t C i
(N,N−1)χS . Now

suppose χS has the following orthogonal decomposition into eigenvectors of the dual polar graph:
χS = ∑

j∈ J v j with v j ∈ V j . Lemma 29 yields that we can write for every i ∈ {0, . . . , N − 1}:

C i
(N,N−1)χS =

∑
j∈ J

C i
(N,N−1)v j =

∑
j∈ J\{N}

λi
jC(N,N−1)v j =

∑
j∈ J\{N}

λi
j w j,

with w j = C0
(N,N−1)v j = C(N,N−1)v j . This allows us to write:

(vπN−1,S)i = (χ{πN−1})t
( ∑

j∈ J\{N}
λi

j w j

)
=

∑
j∈ J\{N}

λi
j

(
(χ{πN−1})t w j

)
. �

Theorem 31. Let S be an EKR set of generators of size (q + 1) · · · (q2n + 1) in W (4n + 1,q). For each secant
dual line πN−1 , the entry (vπN−1,S)i is given by

[2n−1
i

]
q(q + 1)qi(i+3)/2 .

Proof. We know from Theorem 9 that χS ∈ V 0 ⊥ V 1 ⊥ V N , with N = 2n + 1. Applying Lemma 30, this
means that for any dual line πN−1 the vector vπN−1,S can be written as a linear combination of two
certain vectors of scalars (λ0

0, . . . , λ
2n
0 ) and (λ0

1, . . . , λ
2n
1 ). Instead of explicitly calculating these scalars,

we consider two particular vectors spanned by these two vectors. Let S0 be the set of all generators
through a fixed point p0. This is certainly an EKR set of generators of the maximum size. Let v1
denote the vector vπN−1,S0 for some dual line through p0, and let v2 denote that vector for some
dual line not through p0 and not spanning a generator with p0 either. In the first case, the dual line
is secant, and in the second case it is external, so (v1)0 = q + 1 and (v2)0 = 0. Hence the vectors v1
and v2 are certainly different. So for any EKR set of generators S of the maximum size, and for any
dual line πN−1 we can write: vπN−1,S = τ v1 + τ ′v2 for some parameters τ and τ ′ . We know that the
entries of vπN−1,S , v1 and v2 must all add up to |S|, and hence τ ′ = 1 − τ . If the dual line πN−1 is
assumed to be secant, then (vπN−1,S )0 = q + 1, and hence τ = 1 and so vπN−1,S = v1.

Now we explicitly calculate (v1)i . Considering the residual geometry of p0, which is isomorphic to
W (4n − 1,q), we can obtain this using Theorem 13. �

We will also need the following lemma on projective geometries.

Lemma 32. (See [3], Lemma 9.3.2(ii).) If W is a subspace of dimension m in V (n,q), then the number of
subspaces of dimension n − m meeting W trivially is qm(n−m) .
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The following result is a first step towards our characterization of EKR sets of maximum size of
generators in W (4n + 1,q), q odd. We prove that if S is an EKR set of maximum size and π ∈ S , then
not all the neighbors of π are in S , except in the smallest case W (5,q). In other words, if πs is the
nucleus of π , then s �= −1, unless n = 1.

Lemma 33. Let S be an EKR set of generators of size (q + 1) · · · (q2n + 1) in W (4n + 1,q), with n � 2. There
is no element π ∈ S with a trivial nucleus.

Proof. Let π ∈ S and let πs be the nucleus of π . Suppose that s = −1. Theorem 27 yields that no ele-
ment of S meets π in just a point, exactly qn(2n−1)

[2n+1
1

]
q meet π in a line, and exactly q3

[2n
2

]
q −q2n+1

meet π in a subspace of codimension two. We know from Theorem 13 that there are qn(2n−1) gener-
ators meeting π in a fixed line, and hence the set of lines A in π appearing as such an intersection
has size at least

[2n+1
1

]
q . Now consider any subspace ρ with codimension 2 in π . There are exactly q3

generators meeting π in just ρ . This implies that B , the set of all subspaces with codimension two in
π arising from the intersection with an element of S , has cardinality at least

[2n
2

]
q − q2n−2. Lemma 4

also yields that every element of A meets every element of B .
As there are only

[2n
1

]
q lines through a point in PG(2n,q), no point can be on all lines in A. If a

point p is not on a line 	 ∈ A, then it follows from Lemma 32 that there are precisely
[2n

2

]
q − q4n−4

subspaces with codimension two in π through p that meet 	, which is less than |B| as n � 2. Hence
we can conclude that no point on π is on all elements of B . Since all elements of A must meet every
element of B , there can be at most

[2n−1
1

]
q elements of A through each point of π .

Now let μ be any hyperplane of π . Let X denote the subset of elements of B contained in μ. We
know from Theorem 31 that exactly

[2n−1
1

]
q(q + 1)q2 elements of S meet μ in a hyperplane of μ.

These elements of S either meet π in some element of X , or meet π in some hyperplane, different
from μ. Hence, we have:[

2n − 1

1

]
q
(q + 1)q2 � |X |q3 +

([
2n + 1

1

]
q
− 1

)
q,

yielding: |X | � [2n−2
1

]
q .

Next, consider two distinct lines 	1 and 	2 in A and a hyperplane μ of π , meeting these lines in
the points p1 and p2 respectively. We know from the above that μ contains at least

[2n−2
1

]
q elements

of B . These elements must hence contain the points p1 and p2, and hence they are precisely the[2n−2
1

]
q hyperplanes of μ through the line 〈p1, p2〉. Let ρ be a fixed hyperplane of μ not through

the line 〈p1, p2〉. As ρ /∈ B , there is certainly a generator π ′ with ρ = π ∩ π ′ and π ′ /∈ S . Lemma 25
implies that there are exactly qn(2n+1) elements of S that are disjoint from π ′ . These elements must
meet π in a line, disjoint from ρ . Hence we obtain at least qn(2n+1)/qn(2n−1) = q2n lines of A in π
that meet μ in just a point. As these lines must meet all elements of B , and hence certainly all
hyperplanes of μ through 〈p1, p2〉, they must meet μ in a point of that line, not on ρ . But through
each of those q points on 〈p1, p2〉, there are at most

[2n−1
1

]
q elements of A. This yields q2n � q

[2n−1
1

]
q ,

which is clearly a contradiction. �
Even though W (4n + 1,q) and Q (4n + 2,q) are isomorphic if and only if q is even, the parameters

of the corresponding association scheme are the same, regardless of the parity of q. However, we want
to prove that the construction using an embedded Q +(4n + 1,q) in Q (4n + 2,q), which appeared in
Theorem 23 has no analog for W (4n +1,q) if q is odd. We will need the following fundamental result
on the associated classical generalized quadrangle W (3,q) (see 1.3.6, 3.2.1 and 3.3.1 in [13]).

Theorem 34. If three lines are pairwise skew in W (3,q), then the number of lines of W (3,q) meeting all three
is 0 or 2 if q is odd, and 1 or q + 1 if q is even.

This can be used to prove the following lemma.
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Lemma 35. Suppose S is an EKR set of generators in W (4n + 1,q) of size |S| = (q + 1) · · · (q2n + 1), with
n � 1 and q odd. Then there are at least two elements of S intersecting in a space of codimension one.

Proof. Suppose that the elements of S never intersect in a subspace of codimension one. Lemma 6
yields that in this case each element of S is its own nucleus. Hence Theorem 27 implies that for each
π ∈ S , the vector vπ,S is v2. In particular, the elements of S cannot meet in a subspace with odd
codimension. Let π be any element in S . We know that exactly (v2)2 = [2n+1

2

]
qq elements of S meet

π in exactly a subspace of codimension two. As there are only
[2n+1

2

]
q subspaces with codimension

two in π , there must certainly be a subspace μ of codimension two in π , such that at least q � 3
elements of S meet π in just μ. Let π1 and π2 be two such elements. Note that they cannot meet in
more than just μ, because their intersection cannot be a dual line as they are both in S . Hence the
three generators π,π1 and π2 correspond with three mutually skew lines 	, 	1 and 	2, respectively,
in the residual geometry W (3,q) of μ.

Now let S0 denote the subset of generators in S , meeting π in just a point, not in μ. Such a
generator must meet both π1 and π2 in a subspace of even codimension and skew to μ, thus in just
a point not in μ. For every π0 ∈ S0, the generator 〈μ,μ⊥ ∩ π0〉 through μ corresponds with a line
meeting 	, 	1 and 	2 in W (3,q). As q is odd, there are at most two such lines, by Theorem 34. Hence,
there are at most two possibilities for the generator 〈μ,μ⊥ ∩ π0〉. As π0 is skew to μ, it must meet
〈μ,μ⊥ ∩ π0〉 in a line. There are precisely q4n−2 lines in a PG(2n,q), skew to a given subspace with
codimension two (Lemma 32). Finally, we consider the generators of S0 that can go through that line.
Since the elements of S pairwise meet in a subspace with even codimension, all these generators must
meet in at least a plane, and hence in the residue of that line, which is isomorphic to W (4n−3,q), we
obtain a set of generators, all meeting in at least a point. This implies that we can apply the upper
bound from Theorem 9 for EKR sets of generators in W (4n − 3,q), and see that there are at most∏2n−2

i=1 (qi + 1) elements of S0 through each such line. Hence, we see that |S0| � 2q4n−2 ∏2n−2
i=1 (qi + 1).

Let us now explicitly calculate |S0|. Theorem 27 yields that through each point of π , not in μ,
there are precisely qn(2n+1)−2n elements of S that meet π in just that point. Hence, |S0| = (

[2n+1
1

]
q −[2n−1

1

]
q)q

2n2−n = (q2n + q2n−1)q2n2−n , and thus we obtain the inequality: (q2n + q2n−1)q2n2−n �
2q4n−2 ∏2n−2

i=1 (qi + 1), which is equivalent to q+1
2 q2n2−3n+1 �

∏2n−2
i=1 (qi + 1). As 2 � q+1

2 , this con-
tradicts Lemma 12(1). �

We now prove a result on the nuclei of two neighbors of an EKR set of generators in the dual
polar graph.

Lemma 36. Let S be an EKR set of generators in W (4n + 1,q) of size (q + 1) · · · (q2n + 1), with n � 1. If π1
and π2 are neighbors and both are elements of S with a non-trivial nucleus, then they have the same nucleus.

Proof. Let π1 and π2 have nuclei πs and πt with projective dimensions s � 0 and t � 0, respectively.
It follows from the definition of nuclei that πs and πt are both in π1 ∩π2. If πs is not contained in πt ,
then |πs\πt | � qs . We know from Theorem 27 that for every p ∈ πs\πt there are qn(2n+1)−s elements
of S meeting π1 in just p, and by Lemma 6 these elements cannot meet π2 in just p. As π1 ∩ π2
is a hyperplane in π2, we see that these elements meet π2 in exactly a line. We also know from

Theorem 27 that there are exactly q2n−t−1
q−1 qn(2n−1) elements of S meeting π2 in a line, and hence:

qsqn(2n+1)−s � q2n−t − 1

q − 1
qn(2n−1),

which yields: q2n � q2n−t−1
q−1 , and that is a contradiction as t � 0. Hence πs ⊆ πt , and in a completely

similar way we can show that πt ⊆ πs . �
Theorem 37. Let S be an EKR set of generators in W (4n + 1,q), q odd, of size (q + 1) · · · (q2n + 1). Suppose
that there is a π ∈ S with a point p := π0 as nucleus. Then S is the set of generators through p.
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Proof. By Theorem 27, there are qn(2n+1) elements of S meeting π exactly in p. Suppose that there
exists a generator π ′ through p not in S , then by Lemma 25, there are qn(2n+1) elements of S disjoint
from π ′ that hence cannot be through p. So there are qn(2n+1) elements in S not through p and
qn(2n+1) through p, hence |S| � 2qn(2n+1) > (q + 1) · · · (q2n + 1) for q � 3 by Lemma 12, which is a
contradiction. �
Lemma 38. Let S be an EKR set of generators in W (4n + 1,q), q odd, of size (q + 1) · · · (q2n + 1), with n � 1.
If π ∈ S has nucleus πs with projective dimension s, then s ∈ {−1,0,1,2n}, and if s = 1, then for every dual
line μ with πs ⊆ μ ⊂ π , an element of S meets π in just a point if and only if it meets μ in just a point.

Proof. Suppose s < 2n. Then πs �= π , and consider any dual line μ with πs ⊆ μ ⊂ π . Lemma 6 implies
that μ is secant. We know from Theorem 27 that

[s+1
1

]
qqn(2n+1)−s elements of S meet π in exactly a

point of πs , and hence must meet μ in exactly a point as well. Theorem 31 also yields that exactly
(q + 1)q(2n−1)(n+1) elements of S meet μ in just a point. Hence we obtain:

qs+1 − 1

q − 1
qn(2n+1)−s � (q + 1)q(2n−1)(n+1),

which is equivalent with s � 1. If s = 1, then the two sizes are equal, and hence generators in S
meeting μ in just a point must be precisely those meeting π in just a point. �

We can now finally complete the classification of EKR sets of generators in W (4n + 1,q) with q
odd.

Theorem 39. Let S be an EKR set of generators in W (4n + 1,q) of size (q + 1) · · · (q2n + 1), with q odd and
n � 2. Then S is the set of all generators through some point.

Proof. Let π ∈ S and let πs be the nucleus of π . By Lemmas 33 and 38, s ∈ {0,1,2n}. If s = 0, then by
Theorem 37, S consists of all the generators through a point. Hence, from now on we can assume that
s ∈ {1,2n} for every π ∈ S . First suppose some π ∈ S has nucleus πs with s = 1. Now consider any
dual line μ with πs ⊆ μ ⊂ π . Theorem 27 yields that there is certainly an element π ′ ∈ S meeting
π in just a point of πs . Consider the generator π ′′ = 〈μ,μ⊥ ∩ π ′〉, which meets π ′ in a line. As π ′′
is through the secant dual line μ, it is also in S . Since by Lemma 33 π ′′ has a non-trivial nucleus,
Lemma 36 yields that π ′′ also has πs as nucleus. But this contradicts Lemma 38, as we now have the
generator π ′ ∈ S meeting μ in just a point, while it meets π ′′ ∈ S in a line.

Hence the dimension of the nucleus is 2n for every element of S , which contradicts Lemma 35 as
q is odd. �

Just as for Q (6,q), there is an extra construction for EKR sets of generators of the maximum size
for W (5,q), and hence this case must be treated separately.

Theorem 40. Suppose S is an EKR set of (q + 1)(q2 + 1) planes in W (5,q), q odd. Then the elements of S are
either all generators through a fixed point, or S consists of the plane π and all the planes meeting it in a line.

Proof. By Lemma 35, there are at least two generators π and π1 intersecting in a subspace of codi-
mension one, hence the nucleus πs of π is at most a line. Lemma 6 yields that if an element of S
meets π in a point p, then p ∈ πs , and that the elements of S meeting π in a line, are precisely those
meeting π in a line through πs . Obviously, s ∈ {−1,0,1}. If s = −1, then all q(q2 + q + 1) = |S| − 1
planes meeting π in a line, are in S , and hence S consists of these planes and π itself. If s = 0, then
πs is a point contained in all elements of S , and hence we are done again. Finally, suppose s = 1.
Let a and b be distinct points on the line πs . Theorem 27 yields that through both points, there are
precisely q2 elements of S , meeting π in just that point. Suppose πa,πb ∈ S with πa ∩ π = {a} and
πb ∩ π = {b}. As πa and πb cannot be disjoint, by Lemma 4 they must meet in precisely one point c,
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necessarily outside of π . The points a,b and c span a plane π ′ in S by Lemma 6, as πs = 〈a,b〉 ⊆ π ′ .
Since π ′ ∩π = 〈a,b〉, π ′ ∩πa = 〈a, c〉 and π ′ ∩πb = 〈b, c〉, π ′ has trivial nucleus and hence S consists
of π ′ and all the planes meeting π ′ in a line. �
8. The case H(4n + 1,q2)

In H(4n + 1,q2), the set of generators Ω is of size (q + 1)(q3 + 1) · · · (q4n+1 + 1). The number
of generators through one point is |Ω|/(q4n+1 + 1), but the eigenvalue bound from Theorem 9 is
|Ω|/(q2n+1 + 1) in this case, which is much larger.

In H(5,q2), there are (q + 1)(q3 + 1)(q5 + 1) generators, and (q + 1)(q3 + 1) generators through
one point. The upper bound arising from eigenvalue techniques in this case is (q + 1)(q5 + 1). The
following example shows that the point-pencil construction is in this case indeed not of maximum
size. Let π be a plane in H(5,q2). Let S consist of π , together with all planes meeting π in a line.
Now |S| = q(q4 + q2 + 1) + 1, and in particular: (q + 1)(q3 + 1) < |S| < (q + 1)(q5 + 1).

It is possible that there is no simple answer for H(4n + 1,q2) in general. However, we can already
exclude the possibility of reaching the upper bound from Theorem 9.

Delsarte developed a very general theory of regular semilattices in [6], which gives a special mean-
ing to the eigenspaces of the dual polar graph. We now give a short proof for a very specific case.

Theorem 41. Let Ω be the set of generators of a polar space of rank N with parameters (q,qe), and consider
the orthogonal decomposition of RΩ into eigenspaces of the dual polar graph:

RΩ = V 0 ⊥ V 1 ⊥ · · · ⊥ V N ,

with the same ordering of the eigenspaces V j as in Theorem 7. If the characteristic vector of a set of generators

S satisfies χS ∈ V 0 ⊥ V N , then every dual line is in exactly |S|
|Ω| (q

e + 1) elements of S.

Proof. We know from Lemma 28 that V N is the kernel of the incidence matrix C(N,N−1) . If ΩN−1

denotes the full set of dual lines, and χS decomposes as |S|
|Ω|χΩ + v N with v N ∈ V N , then:

C(N,N−1)χS = C(N,N−1)

( |S|
|Ω|χΩ + v N

)
= |S|

|Ω|
(
qe + 1

)
χΩN−1 .

This means that every dual line is in exactly |S|
|Ω| (q

e + 1) elements of S . �
Theorem 42. Let Ω be the set of generators in H(2N − 1,q2) with N � 3 odd. Let S be a set of generators, all
meeting in at least a point. Then |S| < |Ω|/(qN + 1).

Proof. We already know from Theorem 9 that |S| � |Ω|/(qN + 1), with equality if and only if χS ∈
V 0 ⊥ V N . Suppose equality holds. In that case, every dual line would be incident with exactly q+1

qN +1
elements of S , because of Theorem 41. As N � 3, this yields a contradiction as this number is not an
integer. �

Nevertheless, we can determine the maximum size of an EKR set of planes in H(5,q2). We first
state a general theorem on generalized quadrangles (see for instance 1.2.4 in [13]).

Theorem 43. Let a,b and c be three mutually non-collinear points in a generalized quadrangle with parame-
ters (s, s2). The number of points collinear with a,b and c is exactly s + 1.

Dualizing, this yields the following result for the generalized quadrangle H(3,q2) with parameters
(q2,q).
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Corollary 44. If 	1, 	2 and 	3 are three mutually skew lines in H(3,q2), then there are precisely q + 1 lines of
H(3,q2) meeting all of them.

Theorem 45. Let S be an EKR set of planes in H(5,q2). Then |S| � q5 + q3 + q + 1, and this bound can only
be reached if S consists of a plane π and all planes meeting π in a line.

Proof. Assume that S is a maximal EKR set of generators.
Suppose that π ∈ S meets some element of S in a line. Lemma 6 yields that the nucleus πs of π

has projective dimension s < 2.
If s = −1, then Lemma 6 yields that S contains all q(q4 + q2 + 1) + 1 planes that are equal to or

meeting π in a line, while there are no planes in S meeting π in just a point.
If s = 0, then all elements of S must be through the point πs , and hence |S| � (q + 1)(q3 + 1),

which is less than q5 + q3 + q + 1.
Now suppose s = 1. If no element of S meets π in a point, then all other elements of S meet π

in the line π1 and hence |S| � q + 1. Similarly, if all elements of S either contain π1 or meet π in
the same point p, then again |S| � (q + 1)(q3 + 1). Finally, suppose that π ′ and π ′′ are elements of S ,
meeting π in different points p′ and p′′ of the nucleus of π , respectively. Lemma 4 yields that π ′
and π ′′ meet in just a point, say p. Consider the plane 〈p′, p′′, p〉, which is in S since it is through
the nucleus of π . Its nucleus is the empty set since π , π ′ and π ′′ intersect it in three non-concurrent
lines. Lemma 6 again yields that S consists of 〈p′, p′′, p〉 and all the planes intersecting it in a line.

In the remainder of this proof, we can suppose that all elements of S meet in just a point. We
will also assume that |S| is at least the desired bound q5 + q3 + q + 1, and prove that this leads to
a contradiction. Suppose π ∈ S and let p be a point on π . In the residual geometry of p, isomorphic
to H(3,q2), the elements of S through p correspond with different mutually skew lines 	1, . . . , 	t .
Lemma 3 yields that there are (q2 + 1)(q3 + 1) points in H(3,q2) and hence t � q3 + 1. Hence there
are at least q5 + q elements of S not through p. The elements of S not through p are projected onto
lines in the residual geometry H(3,q2). In each plane of H(5,q2) through p, there are q4 lines skew
to p. Since two elements of S cannot meet in a line, at most q4 elements of S can be projected on the
same line of H(3,q2), so we have at least q + 1 lines, namely m j, j = 1, . . . ,q + 1. Since the elements
of S pairwise intersect only in one point, an element of S through p cannot be projected onto any of
the m j , so 	i �= m j , ∀i, j. As the elements of S cannot be pairwise disjoint, the lines li and m j must
intersect in the residual geometry H(3,q2). If m j ∩mk is a point, then a line 	i in H(3,q2) intersecting
both of them must pass through their intersection point. As the lines 	i are pairwise skew, t is thus 1
in this case and so through p there can be at most one element of S . If all these lines m j are pairwise
skew, then there are at most q + 1 lines meeting all of them because of Corollary 44, so there are in
this case at most q + 1 elements of S through p. Hence through every point of π there are at most
q + 1 elements of S , but |S| � q5 + q3 + q + 1 implies that through every point of π there are exactly
q + 1 elements of S and |S| = q5 + q3 + q + 1. So now we can consider a point p ∈ π ∈ S and two
other elements of π1,π2 ∈ S through p, such that π , π1 and π2 correspond with three skew lines
	, 	1 and 	2, respectively, in the residual geometry of p. In this geometry, only q + 1 points of 	,
corresponding to the plane π , are on a line meeting 	, 	1 and 	2, and hence only the points on the
corresponding q + 1 lines through p in π can be on a plane meeting the planes π,π1 and π2. This
contradicts the fact that there are q + 1 elements of S through each point in the plane π . �
9. Summary

We will now summarize our results for polar spaces of rank at least three. In Table 1, we will write
p.-p. to denote the point-pencil construction of an EKR set of generators consisting of all generators
through a fixed point. We also let Ω denote the full set of generators and for the hyperbolic space of
even rank we will focus only on one system of generators, namely the Latins. Finally, base will refer
to the construction in a polar space of rank three, consisting of one base plane and all those meeting
it in a line.
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Table 1

Polar space Maximum size Classification

Q −(2n + 1,q) (q2 + 1) · · · (qn + 1) p.-p., Theorem 15

Q (4n,q) (q + 1) · · · (q2n−1 + 1) p.-p., Theorem 15

Q (4n + 2,q), n � 2 (q + 1) · · · (q2n + 1) p.-p., Latins Q +(4n + 1,q),
Theorem 23

Q (6,q) (q + 1)(q2 + 1) p.-p., Latins Q +(5,q),
base, Theorem 23

Q +(4n + 1,q) (q + 1) · · · (q2n + 1) one system, Theorem 16

Latins Q +(4n + 3,q), n � 2 (q + 1) · · · (q2n + 1) p.-p., Theorem 21

Latins Q +(7,q) (q + 1)(q2 + 1) p.-p., meeting Greek in plane,
Theorem 22

W (4n + 1,q), n � 2, q odd (q + 1) · · · (q2n + 1) p.-p., Theorem 39

W (4n + 1,q), n � 2, q even (q + 1) · · · (q2n + 1) p.-p., Latins Q +(4n + 1,q),
Theorem 24

W (5,q), q odd (q + 1)(q2 + 1) p.-p., base, Theorem 40

W (5,q), q even (q + 1)(q2 + 1) p.-p., base, Latins Q +(5,q),
Theorem 24

W (4n + 3,q) (q + 1) · · · (q2n+1 + 1) p.-p., Theorem 15

H(2n,q2) (q3 + 1)(q5 + 1) · · · (q2n−1 + 1) p.-p., Theorem 15

H(4n + 3,q2) (q + 1)(q3 + 1) · · · (q4n+1 + 1) p.-p., Theorem 15

H(4n + 1,q2), n � 2 < |Ω|/(q2n+1 + 1) ?, Theorem 42

H(5,q2) q(q4 + q2 + 1) + 1 base, Theorem 45
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