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The pseudo-critical temperature of the confinement–deconfinement transition and the phase transition 
surface are investigated by using the complex chemical potential. We can interpret the imaginary 
chemical potential as the Aharonov–Bohm phase, then the analogy of the topological order suggests that 
the Roberge–Weiss endpoint would define the pseudo-critical temperature. The behavior of the Roberge–
Weiss endpoint at small real quark chemical potential is investigated with the perturbative expansion. 
The expected QCD phase diagram at complex chemical potential is presented.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Understanding of the phase structure of Quantum Chromody-
namics (QCD) is one of the most important and interesting sub-
jects in nuclear and elementary particle physics. The lattice QCD 
simulation is a powerful and gauge invariant method, but it has 
the sign problem at finite real chemical potential (μR), and we 
cannot obtain reliable results at large μR. Some methods are pro-
posed to circumvent the sign problem, see Ref. [1] as an example, 
but those methods are limited in the μR/T < 1 region where T
is temperature. Because of the sign problem, low energy effective 
models of QCD are extensively used to explore the QCD phase dia-
gram. Effective models, however, have strong ambiguities and thus 
quantitative predictions are impossible at present. Towards unifi-
cation of lattice QCD simulations and effective model approaches, 
a new method so-called imaginary chemical potential matching ap-
proach [2,3] is proposed recently. In this method, we use lattice 
QCD data obtained at finite imaginary chemical potential (μI) to 
constrain effective models. It is well known that the sign problem 
does not exist in the finite μI region and the region has informa-
tion on the μR region; constrained models are reliable not only at 
finite μI but also at finite μR.

In addition to the imaginary chemical potential matching ap-
proach, the concept of the imaginary chemical potential may be 
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important to define the confinement–deconfinement transition. In 
the imaginary time formalism where its time direction is com-
pactified, the imaginary chemical potential can be interpreted as 
the Aharonov–Bohm phase induced by U (1) flux insertions to the 
closed time loop. From this interpretation, we can determine the 
pseudo-critical temperature of the deconfinement transition from 
the Roberge–Weiss (RW) endpoint [4] with an analogy of the topo-
logical order [5,6] as explained later.

It is also interesting to investigate the phase structure at fi-
nite complex chemical potential, μ = μR + iμI , where μR �= 0 and 
μI �= 0. On the (T , μR) plane (μI = 0), the first order phase tran-
sition may exist, then we would have the critical point (CP) as 
the endpoint of the first order phase transition boundary. On the 
(T , μI) plane (μR = 0), the first order RW transition line exists, 
and the RW endpoint can either be of the first or of the second
order. Some lattice QCD simulations [7–9] suggest that the order 
of the RW endpoint is the first order at the physical pion mass. 
Then the RW endpoint is a triple point, with two other first order 
lines departing from the RW transition line. The first order lines 
appear around the heavy quark limit as well as around the chiral 
limit [7,9]. These lines with small quark mass may have the chiral 
transition nature and are referred to as the chiral critical lines. One 
of the chiral critical lines extending in the μI → 0 direction should 
have an endpoint (chiral critical endpoint; CCE) before reaching the 
μI = 0 as long as the μ = 0 transition is crossover. Fig. 1 summa-
rizes our current expectation of the QCD phase diagram. Now we 
can raise a question. How does CCE behave at complex chemical 
potential? Specifically, is CCE on the (T , μI) plane connected with 
CP on the (T , μR) plane at complex chemical potential, i.e. in the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Schematic figure of our current expectation of the QCD phase diagram at 
finite μR and μI , respectively. Solid lines represent the first order transition line.

(T , μR, μI) space? The topology of the phase diagram at complex 
chemical potential would tell us the relation between the decon-
finement and the chiral transition.

In this letter, first we briefly summarize properties of QCD at fi-
nite imaginary chemical potential, and propose a new definition of 
the pseudo-critical temperature of the deconfinement transition by 
the RW endpoint temperature (TRW ). Next, we investigate the be-
havior of the RW endpoint at small μR by using the perturbative 
expansion. Finally, we present two scenarios of the QCD phase di-
agram at complex chemical potential based on the behavior of the 
RW endpoint at small μR and a symmetry argument.

2. QCD with imaginary chemical potential

At finite μI , QCD has a special periodicity so-called the RW pe-
riodicity [4]. The RW periodicity can effect the first order transition 
lines (RW transition lines) and their endpoints (RW endpoints). 
Those are predicted by using the strong coupling QCD and the 
perturbative one-loop effective potential with a background gauge 
field. The RW periodicity can be seen from the relation of the 
grand-canonical partition function Z [4]:

Z(θ) = Z
(
θ + 2πk

3

)
, (1)

where a dimensionless quark imaginary chemical potential is de-
fined as θ ≡ μI/T ∈ R and k is any integer. If quarks are confined, 
physical states are classified by hadron degrees of freedom unlike 
the deconfined phase. In the confined and deconfined phases, ori-
gins of the RW periodicity are different:

Confined phase The origin is the dimensionless baryon chemical 
potential 3θ in the form of exp(±3iθ) in the partition 
function. It can be easily seen, for example, from the 
strong coupling limit of the lattice QCD with the mean-
field approximation [10,11], the chiral perturbation the-
ory with the relativistic Virial expansion [12] and that 
with the finite energy sum rule [13].

Deconfined phase The origin is the quark chemical potential and 
the gauge field in the form of exp[±i(g A4/T + θ)]. It 
generates color non-singlet contributions in the partition 
function. It can be understood from the perturbative one-
loop effective potential with the background gauge field 
[14,15], and the RW periodicity is induced by Z3 im-
ages [4]. Then, we can find the nontrivial degeneracy of 
the free energy minima.

The first order RW transition lines at θ = π(2k + 1)/3 are induced 
by Z3 images. Its endpoint which is nothing but the RW end-
point should exist. The order of the RW endpoint is still under 
debate, but some lattice QCD simulations [7–9] suggest that the 
order seems to be first order around the physical pion mass.

3. Imaginary chemical potential and Aharonov–Bohm phase

In the imaginary time formalism where the temporal direction 
is compactified, the U (1) flux can be inserted to the closed loop 
of the temporal coordinate. Then, the imaginary chemical potential 
can be regarded as the Aharonov–Bohm phase [16]. The Aharonov–
Bohm effect has been discussed in the spatial loop with the flux 
insertion. In the imaginary time formalism, the temporal coordi-
nate shares almost the same features as the spatial coordinates and 
thus we can use this interpretation. In this interpretation, we may 
use the discussion of the topological order [5]. Actual applications 
to zero temperature QCD was discussed in Ref. [6]. It should be 
noted that the Polyakov-loop (�) is usually used to discuss the de-
confinement transition. The Polyakov-loop can be obtained from a 
holonomy which is the gauge invariant integral along the temporal 
coordinate loop. The Polyakov-loop is the order parameter of the 
center symmetry breaking and it is related with the deconfinement 
transition in the infinite quark mass limit. The nontrivial degener-
acy of the free energy minima in the deconfined phase may have 
some relation to the complex phase of the Polyakov-loop. It can be 
probed by the insertion of the flux as discussed below.

In Ref. [6], the author considered the torus T 3 at zero tem-
perature, and introduced three adiabatic operations: (a) Insert the 
U (1) flux to spatial closed loops, (b) exchange i-th and i + 1-th 
quarks and (c) move a quark along loops. Commutation relations 
of the operations (b) and (c) are described by the Braid group, 
and the Aharonov–Bohm effect determines the commutation rela-
tions of those with (a). If quarks are deconfined, operations be-
come non-commutable because of the quark’s fractional charge. 
It is commutable if quarks are confined because physical states 
are described by hadron degrees of freedom with integer charges. 
Therefore, if there is only one vacuum in the deconfined phase, it 
is inconsistent with the non-commutability of the operations and 
thus vacuum degeneracy should exist.

At finite temperature, the topological order cannot be well de-
fined, because thermal states are constructed by a mixture of 
pure states with the Boltzmann factor, and we cannot operate (a), 
(b) and (c), adiabatically. Nevertheless, the RW periodicity shows 
significantly different behaviors in the confined and deconfined 
phases as already mentioned, and it is induced by the nontrivial 
appearance of the RW periodicity in the deconfined phase. This 
fact suggests that we can distinguish the confined and deconfined 
phases at μI = 0 from the non-trivial degeneracy of the effective 
potential at θ = π/3. We here consider the U (1) flux insertion of 
2π/3 to the temporal loop at zero μI . This corresponds to chang-
ing the U (1) flux from −π/3 to π/3 at θ = π/3. These two states 
are free energy minima at θ = π/3 degenerated at T > TRW, while 
they belong to the same minimum at T < TRW. Thus the gluon 
configurations in states at θ = π/3 are essentially the same as 
those at θ = 0. This degeneracy seems similar to the vacuum de-
generacy in zero T systems and the analogy can be found; the 
response of hidden local minima by the flux insertion via μI tells 
us the non-trivial degeneracy of the free energy minima. Therefore, 
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we propose that TRW is the pseudo-critical temperature of the de-
confinement transition.

Let us examine if TRW provides a deconfinement temperature 
reasonably well. It should be noted that the present definition and 
the standard definition determined by using the Polyakov-loop are 
consistent in the infinite quark mass limit where the Polyakov-
loop is the exact order-parameter of the deconfinement transition. 
Therefore, we can find the relation TD = T� = TRW where T� is 
the critical temperature determined by the susceptibility of the 
Polyakov-loop and TD is the deconfinement critical temperature. 
When the dynamical quark is taken into account, T� becomes 
the pseudo-critical temperature. The upper bound of the pseudo-
critical temperature can be determined by using the appearance 
of local minima of the effective potential as found in the per-
turbative one-loop effective potential in the Re �–Im � plane. 
We call it TZ3 . From the lattice QCD and effective model predic-
tions [17,18], we can have the relation T� ≤ TRW ≤ TZ3 . While the 
Polyakov-loop is no longer the exact order parameter and thus the 
determination of TD is not unique, TRW is uniquely determined. 
Thus, TRW which agrees with TD in the infinite quark mass limit is 
unambiguously determined in the lattice QCD and effective models 
and provides a reasonable value as TD with the dynamical quark. 
If we adopt TRW as TD, we lead to an implication that the decon-
finement transition is the topological phase transition.

4. Roberge–Weiss endpoint at complex chemical potential

We now discuss the μR-dependence of the pseudo-critical tem-
perature of the deconfinement defined by TRW. We here give a
model independent argument based on the perturbative expansion 
of the effective potential in μR as a first step to investigate the 
μR-dependence of the RW endpoint. It should be noted that non-
perturbative model approaches have several difficulties. One of the 
promising effective models is the Polyakov-loop extended Nambu–
Jona-Lasinio (PNJL) model [19]. The PNJL model has the model sign 
problem at finite μR [20]. There are some proposals to circumvent 
the model sign problem, for example the complex integral path 
contour [21–23] based on the Lefschetz thimble [24–26] and the 
complex Langevin method [27,28]. Unfortunately those approaches 
cannot be directly used at finite complex chemical potential be-
cause we cannot maintain the RW periodicity and some other 
desirable properties of QCD.

The effective potential at small μR is expanded to μ2
R order as

V(T ,μR,μI)

= V(T ,0,μI) −
(μR

T

)
(T nq(μR,μI)|μR=0)

−1

2

(μR

T

)2 d[T nq(μR,μI)]
dμR/T

∣∣∣
μR=0

+ O
(
(μR/T )3

)
(2)

where

T
dnq

dμR/T

∣∣∣
μR=0

= T
dnq

d(iμI/T )

∣∣∣
μR=0

= −iT
dnq

dθ

∣∣∣
μR=0

. (3)

Equation (3) is real, and the second term on r.h.s. of Eq. (2) should 
be pure imaginary.

We here neglect the imaginary part of the effective potential. 
This assumption corresponds to the phase quenched approxima-
tion. If the RW endpoint is of the weak first order, the nq gap 
at TRW is small and the sign problem is mild, then the phase 
quenched approximation is justified. If the RW endpoint is of the 
strong first order, the partition function at given (T , μ) is dom-
inated by one classical vacuum, then the role of the imaginary 
part, or the phase of the state, is minor. The phase quenched ap-
proximation cannot be applied to the second order RW endpoint. 
Fortunately, the RW endpoint with the realistic quark mass is pre-
dicted to be of the first order by lattice QCD simulations [7–9] and 
it would be possible to ignore the imaginary part of the effective 
potential. Effects of the imaginary part of the effective potential 
will be discussed elsewhere.

Next, we consider the confinement and deconfinement configu-
rations. We call the configuration at (TRW − ε) confinement config-
uration which is labeled as C−ε where ε is a infinitesimal positive 
value. Also, we call the configuration at (TRW + ε) deconfinement 
configuration which is labeled as C+ε .

By comparing Re V with C−ε to that with C+ε in the ε → 0
limit, we can distinguish whether TRW decreases or increases if 
we can estimate the third term of Eq. (2). For example in the lat-
tice QCD and effective model calculations [29,2], we can see that 
Eq. (3) is negative below TRW and it becomes moderate above TRW. 
The μ2

R correction term makes Re V with C−ε higher than that 
with C+ε because the μ2

R correction term is then positive with 
C+ε . This means that the first-order TRW decreases with increasing 
μR at least in the small μR region. This behavior is consistent with 
the decreasing behavior of the pseudo-critical temperature of de-
confinement transition defined by using usual determinations; for 
example, see Refs. [19,30,31].

5. QCD phase diagram at complex chemical potential

By taking into account our perturbative result and the sym-
metry argument, we can sketch expected QCD phase diagrams at 
finite complex chemical potential. Phase diagrams expected from 
our present discussions are summarized in Fig. 2. Because of the 
RW periodicity, the phase structure should be periodic along the θ
axis.

The RW transition line on the (T , θ) plane (μR = 0) may 
be topologically connected with the first order phase transition 
boundary on the (T , μR) plane (θ = 0). Two of the first order tran-
sition lines starting from the RW endpoint have chiral transition 
nature and are referred to as the chiral transition lines [7]. Then 
it is not unreasonable to expect that the endpoint of the chiral 
critical line on the (T , θ) plane is connected with the QCD criti-
cal point on the (T , μR) plane. In this case, the first order phase 
boundary on the (T , μR) plane forms a chiral transition surface in 
the (T , μR, θ) space, and connects the (T , μR) plane and the (T , θ)

plane. The RW transition line extends in the finite μR region and 
forms an RW transition surface in the (T , μR, θ) space. The RW 
endpoint may reach T = 0 as shown in the top panel of Fig. 2 or 
it may deviate from the chiral transition surface at some tempera-
ture. It is deeply related with a strength of the correlation between 
the chiral transition surface and the RW transition surface.

Another possibility is that the first order transition lines on the 
(T , θ) plane are topologically separated from the first order phase 
boundary on the (T , μR) plane, as shown in the bottom panel of 
Fig. 2. TRW first decreases at small μR, but does not reach the 
chiral transition surface. In this case, the deconfinement transition 
represented by the RW endpoint on the (T , θ) plane has less rele-
vance to the first order phase boundary, which would be the chiral 
transition, on the (T , μR) plane. Therefore, we can call this possi-
bility uncorrelated case and the former possibility correlated case.

The QCD phase diagram at finite complex chemical potential 
is related with the following subjects. (I) In Refs. [32,33], the au-
thors use experimental data to construct the canonical partition 
function. Then, TRW at μR = 0 is used to clarify realized temper-
atures in experiments through the Lee–Yang zero analysis [34,35]. 
In the analysis, TRW at finite μR should be related with zeros in-
side the unit circle on the complex quark fugacity plane. If so, 
there is the possibility that we can strictly determine realized tem-
peratures in experiments if we can systematically understand the 
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Fig. 2. Two possible schematic QCD phase diagrams at finite complex chemical 
potential. The top (bottom) panel represents the correlated (uncorrelated) case be-
tween the chiral and RW transition surfaces.

behavior of zeros. (II) The analytic continuation in QCD from the 
imaginary to the real chemical potential is usually performed on 
the μ2 plane. In the continuation, we may miss some information 
such as an inhomogeneous condensate [36]. The analytic contin-
uation on the complex chemical potential plane may restore the 
information missing.

6. Summary

We have proposed that the Roberge–Weiss endpoint provides 
a reasonable deconfinement temperature. The imaginary chemical 
potential can be interpreted as the Aharonov–Bohm phase induced 
by U (1) flux insertions and then the analogy of the topological or-
der can be used. In the deconfined phase, we can probe the degen-
eracy of the free energy by inserting the U (1) flux, and these states 
belong to different minima. On the other hand, in the confined 
phase, we cannot find such non-trivial structure of the free energy. 
This suggests that we can distinguish the confined and deconfined 
phases at θ = μI/T = 0 from the hidden non-trivial degeneracy 
of the effective potential. Then, TRW becomes the pseudo-critical 
temperature at μ = 0.

In this study, we have used the analogy of the topological order 
at finite T . The topological transition does not have the usual order 
parameter, but a relation with an entanglement and topological 
entropies has been discussed in the condensed matter physics; for 
example, see Ref. [37]. In QCD, such a relation is not clear, but it 
is an interesting direction to confirm the topological nature of the 
transition. The calculation of the entanglement entropy in QCD is 
possible by using the lattice QCD simulation, and pioneering works 
are found in Refs. [38–40] in the quenched case. The calculation 
with the dynamical quark will provide us information to confirm 
present discussions.

Using the perturbative expansion in terms of μR, we have in-
vestigated the behavior of TRW at small μR and then the de-
creasing behavior of TRW is obtained. Based on these results, we 
presented two scenarios of the QCD phase diagram at finite com-
plex chemical potential. First scenario which is the correlated case 
has the strong correlation between the chiral and deconfinement 
transitions. The RW endpoint at finite μR finally reaches the chi-
ral transition surface. Then, the critical point can become more 
complex than the usual expectation since two more first order 
transition lines can be connected at the critical point. The second 
scenario is the uncorrelated case. The RW endpoint is separated 
from the chiral transition surface.

Since the complex chemical potential is related with the Lee–
Yang zero analysis and the analytic continuation to the finite μR
region, understanding of the QCD phase structure at finite complex 
chemical potential may have impact on the beam energy scan pro-
gram in heavy ion collider experiments, investigation of neutron 
star structures and so on. Our results are based on perturbative 
calculations and thus the non-perturbative checks should be done.
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