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SUMMARY

Microglia are the resident CNS immune cells and
active surveyors of the extracellular environment.
While past work has focused on the role of these
cells during disease, recent imaging studies reveal
dynamic interactions between microglia and
synaptic elements in the healthy brain. Despite these
intriguing observations, the precise function of mi-
croglia at remodeling synapses and the mechanisms
that underlie microglia-synapse interactions remain
elusive. In the current study, we demonstrate a role
for microglia in activity-dependent synaptic pruning
in the postnatal retinogeniculate system. We show
that microglia engulf presynaptic inputs during
peak retinogeniculate pruning and that engulfment
is dependent upon neural activity and the micro-
glia-specific phagocytic signaling pathway, comple-
ment receptor 3(CR3)/C3. Furthermore, disrupting
microglia-specific CR3/C3 signaling resulted in sus-
tained deficits in synaptic connectivity. These results
define a role for microglia during postnatal develop-
ment and identify underlying mechanisms by which
microglia engulf and remodel developing synapses.

INTRODUCTION

Early in development neurons make far more synaptic connec-

tions than are maintained in the mature brain. Synaptic pruning

is an activity-dependent developmental program in which a large

number of synapses that form in early development are elimi-

nated while a subset of synapses are maintained and strength-

ened (Hua and Smith, 2004; Katz and Shatz, 1996; Sanes and

Lichtman, 1999). While it is clear that neuronal activity plays

a role, the precise cellular andmolecular mechanisms underlying

this developmental process remain to be elucidated.

Microglia are the resident CNS immune cells which have long

been recognized as rapid responders to injury and disease, play-
ing a role in a broad range of processes such as tissue inflamma-

tion and clearance of cellular debris (Hanisch and Kettenmann,

2007; Kreutzberg, 1996; Ransohoff and Perry, 2009). In contrast

to disease pathology, the function of microglia in the normal,

healthy brain is far less understood. However, recent studies

suggest that microglia may play a role in synaptic remodeling

and plasticity in the healthy brain (Davalos et al., 2005; Nimmer-

jahn et al., 2005; Paolicelli et al., 2011; Schafer et al., 2012; Trem-

blay et al., 2010a; Wake et al., 2009). For example, microglia

within the juvenile visual cortex modify their association with

dendritic spines in response to changes in visual sensory expe-

rience (Tremblay et al., 2010a). A more recent study provides

evidence that disruptions in microglia function result in delayed

maturation of hippocampal synaptic circuits (Paolicelli et al.,

2011). Moreover, data from these studies suggest that microglia

may be phagocytosing dendritic spines. These intriguing studies

raise several interesting and important questions. The precise

function of microglia at synaptic sites, the molecular mecha-

nism(s) underlying microglia-mediated synaptic engulfment,

and the long term consequence(s) of disrupting microglia func-

tion on synaptic circuits remain a mystery.

A candidate mechanism by which microglia could be interact-

ing with developing synapses is the classical complement

cascade. Complement cascade components C1q and C3

localize to immature synapses and are necessary for the devel-

opmental pruning of retinogeniculate synapses (Stevens et al.,

2007; Stephan et al., 2012). While provocative, the mechanism

by which complement mediates synaptic pruning has remained

completely unknown. Complement components function in the

immune system by binding and targeting unwanted cells and

cellular debris for rapid elimination through several different

pathways. Among the many mechanisms by which complement

maymediate synaptic pruning is phagocytosis, whichmakesmi-

croglia, the resident CNS phagocyte, a candidate.

Given the questions that have now emerged regarding the role

of microglia at CNS synapses, we sought to address precisely

how microglia are interacting with developing synaptic circuits

and determine the long-term consequences of disrupting micro-

glia function on neural circuit development. In the current study,

we demonstrate that microglia engulf presynaptic retinal inputs

undergoing synaptic pruning in the postnatal brain and
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determine that this process is regulated by neuronal activity.

Furthermore, we identify signaling through a phagocytic

receptor, complement receptor 3 (CR3/CD11b-CD18/Mac-1),

expressed on the surface of microglia and its ligand, comple-

ment component C3, localized to synaptically enriched regions,

as a key molecular mechanism underlying engulfment of devel-

oping synapses. Importantly, disruption of CR3/C3 signaling

was specific to microglia in the CNS and resulted in sustained

deficits in brain wiring. Taken together, these observations

provide a role for microglia in the healthy, developing brain and

provide a cellular and molecular mechanism by which microglia

are physically interacting with synaptic elements.

RESULTS

Microglia Engulf RGC Inputs during a Period of Active
Synaptic Pruning
To investigate the functional role of microglia in developmental

synaptic remodeling, we used the mouse retinogeniculate

system, a classic model for studying activity-dependent devel-

opmental synaptic pruning (Feller, 1999; Huberman et al.,

2008; Shatz and Kirkwood, 1984). Early in development, retinal

ganglion cells (RGCs) form exuberant synaptic connections

with relay neurons throughout the dorsal lateral geniculate

nucleus (dLGN) of the thalamus. During the pruning period,

RGC synaptic inputs originating from the same eye as

well as between eyes compete for territory throughout the

dLGN (Chen and Regehr, 2000; Hooks and Chen, 2006;

Jaubert-Miazza et al., 2005; Ziburkus and Guido, 2006). Sponta-

neous retinal activity plays critical role in this refinement process;

however, the underlying cellular and molecular mechanisms

remain poorly understood. (Del Rio and Feller, 2006; Feller,

1999; Penn et al., 1998; Shatz, 1990; Torborg and Feller, 2005).

During this robust pruning period (P5 in mouse), we used high

resolution confocal imaging to assess the interactions between

microglia and synaptic inputs throughout the dLGN. Contralat-

eral and ipsilateral presynaptic inputs fromRGCswere visualized

in the dLGN by intraocular injection of anterograde tracers,

cholera toxin b subunit conjugated to Alexa 594 (CTB-594) and

Alexa 647 (CTB-647), respectively (Figure 1A). Microglia were

labeled using the CX3CR1+/GFP mouse line in which all micro-

glia express EGFP under the control of fractalkine receptor,

CX3CR1, expression (Figure 1 and see Figures S1 and S5 avail-

able online; Cardona et al., 2006; Jung et al., 2000; Saederup

et al., 2010).

At an age consistent with robust synaptic pruning (P5), micro-

glial processes were in close association with RGC presynaptic

inputs (Figure 1B and S2A). Upon closer examination, we de-

tected numerous fluorescently labeled RGC inputs within the

processes and soma of microglia (Figure 1B; Movies S1 and

S2). Internalization was further confirmed by assessing confocal

z stacks through individual microglia (Movie S2). This specific

example is a microglia sampled from a region containing similar

densities of overlapping ipsilateral (blue) and contralateral (red)

RGC inputs (Figure 1A) which are undergoing active synaptic re-

modeling to establish nonoverlapping eye-specific territories

(Figure 2A; Godement et al., 1984; Guido, 2008; Huberman

et al., 2008; Sretavan and Shatz, 1986; Ziburkus and Guido,
692 Neuron 74, 691–705, May 24, 2012 ª2012 Elsevier Inc.
2006). Consistent with simultaneous pruning of inputs from

both eyes, contralateral (red) and ipsilateral (blue) RGC inputs

were engulfed and localized within the microglia (Figure 1B;

Movies S1 and S2). In addition, consistent with widespread

pruning of RGC inputs throughout the P5 dLGN, we observed

engulfment of RGC inputs in all synaptic regions (monocular

and binocular). These data suggest that microglia engulf RGC

inputs undergoing active synaptic remodeling.

To confirm that inputs are phagocytosed by microglia, RGC

inputs from both eyes were labeled with CTB-594 and colocali-

zation with CD68, a marker of lysosomes specific to microglia,

was assessed in P5 dLGN. As suggested by previous dye-

labeling experiments, the majority of engulfed RGC inputs

were completely colocalized within lysosomal compartments

(Figures 1C–1E). There were rare instances in which engulfed

RGC inputs did not colocalize (Figures 1Ciii and 1E), and we

suspect that these inputs are either in the process of being

phagocytosed or are in phagosomal or endosomal compart-

ments prior to lysosomal degradation. To further validate that

microglia phagocytose RGC inputs, pHrodo-dextran, an antero-

grade tracer and pH-sensitive dye, was used to label RGC inputs

(Figures S1A and S1B; Deriy et al., 2009; Miksa et al., 2009).

Because pHrodo only fluoresces once it enters acidic compart-

ments of lysosomes, any pHrodo-positive fluorescence within

a microglia confirms phagocytosis of RGC inputs. Similar to

previous experiments, pHrodo-positive RGC inputs were local-

ized within microglia (Figures S1A and S1B). Furthermore,

in addition to anterograde tracing with CTB and pHrodo, RGC

input engulfment was also assessed within the P5 dLGN

using a genetic approach, double transgenic mice expressing

tdTomato under the control of Chx10, a transcription factor

expressed by RGCs (Chx10-cre/Rosa26-STOP-tdTomato)

(Figures S1C–S1F). Similar to CTB experiments, we observed

tdTomato-labeled RGC inputs within lysosomal compartments

of microglia. Importantly, these experiments exclude the possi-

bility that engulfment is due to injury secondary to ocular injec-

tions. Together, we demonstrate that microglia phagocytose

RGC inputs during a peak period of synaptic pruning in the

dLGN.

Microglia-Mediated Engulfment of RGC Inputs Is
Developmentally Regulated
To begin to address whether microglia-mediated engulfment of

RGC inputs contributes to the normal process of synaptic

pruning, we assessed the developmental regulation of microglia

phagocytic capacity. We first characterized microglia activation

state through development and observed a unique class of

microglia in the early postnatal dLGN as compared to older

ages (P30) (Figure S2). Microglia within the early postnatal

dLGN had characteristic features of more ‘‘activated’’ cells tradi-

tionally associated with disease including increased phagocytic

capacity (assessed by morphology and CD68 immunoreactivity;

Figures S2C and S2D). Interestingly, early postnatal microglia

also had processes, a morphological characteristic of ‘resting’

microglia which are resident in the healthy adult brain (Fig-

ure S2B; Lynch, 2009; Ransohoff and Perry, 2009).

To address whether engulfment of RGC inputs was develop-

mentally regulated, we developed an in vivo phagocytosis assay



Figure 1. Microglia Engulf RGC Inputs Undergoing Active Synaptic Pruning in the dLGN

(A) A representative low-magnification image of P5 dLGN. Ipsilateral inputs are labeled with CTB-647 (blue) and contralateral inputs are labeled with CTB-594

(red). Scale bar = 100 mm.

(Bi) A microglia (EGFP, green) sampled from the border region of ipsilateral (blue) and contralateral (red) projections (inset in A). (Bii) All CTB fluorescence outside

the microglial volume has been subtracted revealing RGC inputs (red and blue) that have been engulfed (arrows, enlarged in inset). Grid line increments = 5 mm.

(Ci) A representative microglia (green, EGFP) fromP5 dLGN. RGC inputs fromboth eyes are labeled with CTB-594 (red) and lysosomes are labeled with anti-CD68

(blue). (Cii) The same microglia in which all CTB fluorescence outside the microglia volume has been removed revealing lysosomes (blue) and engulfed RGC

inputs (red). (Ciii) The same cell in which only the lysosomes (blue) and RGC inputs (red) are visualized inwhichmost inputs (red) are localizedwithin CD68-positive

lysosomes (blue; white arrows). There are few instances in which CTB is not localized to lysosomes (yellow asterisks). Inset is enlarged region of (Ciii). (Civ and Cv)

The CD68 (Civ) and CTB (Cv) channels alone. Scale bar = 10 mm.

(D) Quantification of % volume of microglia occupied by CD68-positive lysosomes (white bar) and RGC inputs (black bar), n = 3 P5 mice.

(E) There are significantly more engulfed inputs localized to lysosomal compartments (white bars) versus nonlysosomal compartments (black bars). *p < 0.001 by

Student’s t test, n = 3 P5 mice.

All error bars represent SEM. See also Figure S1 and Movies S1 and S2.
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(Figure 2A). Using high-resolution confocal microscopy followed

by 3D reconstruction and surface rendering (Figure 2D), internal-

ization of ipsilateral (CTB-647; blue) and contralateral (CTB-594;

red) RGC inputs was quantified within the volume of each micro-

glia (CX3CR1+/EGFP) throughout the dLGN. To control for vari-
ation in microglia volume, the following calculation was used: %

Engulfment = Volume of internalized RGC inputs (mm3)/Volume of

microglia (mm3). Consistent with microglial involvement in normal

developmental synaptic pruning, engulfment of RGC inputs was

developmentally regulated. During a developmental period of
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Figure 2. Microglia-Mediated Engulfment of RGC Inputs Is Developmentally Regulated

(A) Schematic of retinogeniculate pruning and strategy used for assessing engulfment. Contralateral (red) and ipsilateral (blue) inputs overlap at early postnatal

ages (P5). Inputs from both eyes prune throughout the dLGN during the first postnatal week, and pruning is largely complete by P9/10. Engulfment was analyzed

throughout the dLGN.

(B) Engulfment of RGC inputs is significantly increased during peak pruning in the dLGN (P5). *p < 0.001 by one-way ANOVA, n = 3 mice/age.

(C) Engulfment in P5 dLGN occursmost significantly in synapse-enriched (contralateral and ipsilateral dLGN) versus nonsynaptic (optic tract) regions. *p < 0.01 by

Student’s t test, n = 3 P5 mice. All error bars represent SEM.

(D) Representative surface rendered microglia from P5 (fluorescent image is shown in Figure 1B), P9, and P30 mouse dLGN. Engulfment of RGC inputs occurs

during peak pruning (P5) versus older ages (P9 and P30). Enlarged insets denoted with a black dotted line. Grid line increments = 5 mm.

See also Figure S2.
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robust pruning (P5), engulfment was high (Figures 2B and 2Di).

As few as 4 days later (P9), when much of the pruning is nearly

complete, engulfment of RGC inputs was significantly reduced

(Figures 2B and Dii). Thus, microglia-mediated engulfment of

RGC inputs is temporally correlated with a period of robust

synaptic pruning within the developing dLGN. Importantly,

similar to P5 dLGN, microglia within the P9 dLGN still retained

phagocytic capacity as assessed by morphology and CD68

expression (Figures S2C and S2D). These data suggest a more

specific mechanism is driving engulfment specifically during

the peak pruning period in the P5 dLGN.

Microglia-Mediated Engulfment of RGC Inputs Is
Regulated by Neural Activity
Synaptic pruning is thought to result from competition between

neighboring axons for postsynaptic territory based on differ-

ences in patterns or levels of activity (Hua and Smith, 2004;

Katz and Shatz, 1996; Sanes and Lichtman, 1999). In the

dLGN, it is thought that RGC inputs compete for territory such

that those inputs which are less active or ‘‘weaker’’ are pruned

and lose territory as compared to those inputs that are

‘‘stronger’’ or more active, which elaborate and strengthen (Del

Rio and Feller, 2006; Dhande et al., 2011; Huberman et al.,

2008; Penn et al., 1998; Shatz, 1990; Torborg and Feller,

2005). This competition can occur between inputs from the
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same eye as well as between inputs from both eyes (Chen and

Regehr, 2000; Hooks and Chen, 2006; Jaubert-Miazza et al.,

2005; Ziburkus and Guido, 2006). To determine whether micro-

glia-mediated engulfment of RGC inputs is regulated by neural

activity, P4 CX3CR1+/EGFP mice were injected with TTX

(0.5 mM) to block RGC activity or forskolin to increase activity

(10 mM) (Cook et al., 1999; Dunn et al., 2006; Shatz and Stryker,

1988; Stellwagen and Shatz, 2002; Stellwagen et al., 1999) in the

left eye and vehicle (saline or DMSO, respectively) in the right

eye. In order to distinguish inputs from each eye, RGC inputs

were anterogradely labeled with CTB-594 (TTX or forskolin

inputs) and CTB 647 (vehicle inputs) following drug injection

(Figures 3A and 3D). At P5, mice were sacrificed and engulfment

was assessed in a region with a similar proportion of ipsilateral

and contralateral eye inputs.

When mice were injected with TTX and vehicle in the left and

right eyes, respectively, microglia phagocytosed significantly

more inputs from the less active TTX-treated eye (CTB-594,

red) as compared to the vehicle-treated eye (CTB-647, blue)

(Figures 3B and 3C). Likewise, mice injected with forskolin and

vehicle engulfed significantly more inputs from the vehicle-

treated eye (CTB-647, blue) as compared to the more active

forskolin-treated eye (CTB-594, red) (Figures 3E and 3F). Impor-

tantly, this effect occurred in the absence of any significant

increase in RGC death (Figure S3). Taken together, these data



Figure 3. Microglia-Mediated Engulfment of RGC Inputs Is Regulated by Neural Activity

(A and D) Schematic of strategies used for assessing microglia engulfment following disruption of dLGN pruning by manipulation of neuronal activity.

(B) Representative P5microglia (green) surface rendered from the border region of ipsilateral and contralateral projections in which left and right eyeswere treated

with TTX (red) and vehicle (blue), respectively. Inset is an enlarged region demonstrating the increase in engulfment of inputs from the ‘‘weaker,’’ TTX-treated eye

(red) as compared to those inputs derived from the ‘‘stronger’’ vehicle-treated eye (blue). Grid line increments = 5 mm.

(C) Significantly more TTX-treated inputs (black bar) are engulfed as compared to vehicle-treated inputs (white bar). *p < 0.04 by Student’s t test, n = 4

mice/treatment.

(E) Representative P5 microglia (green) surface rendered from the border region of ipsilateral and contralateral projections in which left and right eyes were

treated with forskolin (red) and vehicle (blue), respectively. Inset is an enlarged region demonstrating an increase in engulfment of inputs from the ‘‘weaker,’’

vehicle-treated eye (blue) as compared to those inputs derived from the ‘‘stronger’’ forskolin-treated eye (red). Grid line increments = 5 mm.

(F) Significantly more vehicle-treated inputs (white bar) are engulfed as compared to forskolin-treated inputs (black bar) within the same dLGN. *p < 0.04 by

Student’s t test, n = 5 mice/treatment.

All error bars represent SEM. See also Figure S3.
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demonstrate that microglia-mediated engulfment of RGC inputs

is regulated by activity such that microglia preferentially engulf

inputs from the ‘‘weaker’’ eye and suggest that microglia are

active participants in synaptic pruning.

Microglia Engulf Presynaptic Elements Specific to RGCs
While it is clear that microglia engulf RGC inputs in a develop-

mental and activity-dependent manner, it is unclear whether

engulfed material is axonal and/or synaptic. Consistent with

synaptic engulfment, significantly more RGC inputs were en-

gulfed within synapse enriched regions of the P5 dLGN

compared to a non-synaptic region, the optic tract (Figure 2C).

To better determine the identity of engulfed material, electron

microscopy was performed.

Microglia were identified by EM using criteria previously

described including a small, irregular shaped nucleus containing

substantial amounts of coarse chromatin and a cytoplasm rich in

free ribosomes, vacuoles, and lysosomes (Mori and Leblond,

1969; Sturrock, 1981). Consistent with our confocal data, we

observed several inclusions completely within the microglia

cytoplasm including several double membrane-bound struc-

tures which contained 40 nm vesicles, data consistent with

engulfment of presynaptic terminals (Figures 4A, 4B, and S4).
In a few instances, structures reminiscent of juxtaposed pre-

and postsynaptic structures were observed (Figure 4Aii).

To further confirm microglia-mediated phagocytosis of

synaptic elements, immunohistochemical electron microscopy

(immunoEM) for the microglia marker iba-1 was performed and

quantified in the P5 dLGN (Figure 4C; Tremblay et al., 2010b).

Consistent with EM data described above, we observed

membrane-bound structures containing 40 nm presynaptic vesi-

cles that were completely surrounded (Figure 4D) or enwrapped

(Figure 4E) by DAB-positive microglial cytoplasm. To further

support that microglia engulf material specific to presynaptic

terminals, 40 nm vesicles were enriched in presynaptic terminals

(Figures 4Bii and 4F) and very rarely visualized in cross or longi-

tudinal sections of axons (Figure 4G). Indeed, presynaptic

elements were observed within 35% of the microglia sampled

(Figure 4I). Interestingly, several intact presynaptic terminals

(Figure 4F) and all engulfed or enwrapped presynaptic inputs

(Figures 4A, 4B, 4D, and 4E) lacked mitochondria, a character-

istic feature of presynaptic terminals. Previous work has sug-

gested that sensory deprivation or pharmacological blockade

of neuronal activity (i.e., TTX) results in reduced mitochondria

in presynaptic terminals known to undergo subsequent elimina-

tion (Hevner and Wong-Riley, 1993; Tieman, 1984). Thus, we
Neuron 74, 691–705, May 24, 2012 ª2012 Elsevier Inc. 695



Figure 4. Microglia Engulf Preysnaptic Elements Undergoing Active Synaptic Pruning

(Ai and Bi) Low magnification EM of microglia. Asterisks denote the nucleus and the cytoplasm is pseudocolored green. Scale bar = 1 mm. (Aii and Bii) Magnified

regions of Ai and Bi (white boxes) demonstrating membrane-bound elements engulfed by microglia. Arrows designate elements containing presynaptic

machinery (40 nm vesicles). The arrowhead in (Aii) designates engulfed material resembling juxtaposed postsynaptic elements. Scale bar = 100 nm.

(C) Low-magnification EM of a microglia immunolabeled for iba-1 in P5 dLGN (DAB-positive cell). Red and blue boxes indicate enlarged regions in (D) and (E),

respectively. Scale bar = 2 mm.

(D) RGC input (A) localized within the iba-1-positive microglia (M). Within the engulfed input, neurofilaments (arrows, enlarged in Di and Dii) and 40 nm vesicles

(asterisks, enlarged in Dii) are indicative of presynaptic machinery. Scale bar = 500 nm.

(E) RGC input (A) enwrapped by a microglial process (M; arrowheads denote microglial process). 40 nm vesicles are also visible (asterisks, enlarged region in Ei).

Another presynaptic element (a) containing 40 nm vesicles is surrounded by microglia cytoplasm (enlarged region in Eii). Scale bars = 100 nm.

(F) An intact excitatory synapse in P5 dLGN in which the presynaptic terminal (asterisk) contains 40 nm vesicles. Scale bar = 500 nm.

(G) Cross (asterisks) or longitudinal sections (pseudocolor) through axons are relatively void of vesicles. Scale bars = 500 nm.

(H) A membrane-bound structure (arrowhead) completely within a microglial lysosome. Scale bar = 500 nm.

(I) The frequency at which engulfed material was observed in microglia from P5 dLGN, n = 20 cells.

Error bars represent SEM. See also Figure S4.
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suspect that these terminals deficient in mitochondria may be

those destined for elimination.

In addition to presynaptic element engulfment, 63% of the

sampled cells contained structurally unidentifiable membrane-

bound inclusions within microglial lysosomal compartments

(Figure 4H). We suspect that this membranous cellular material

is synaptic material rapidly degraded in lysosomal compart-

ments, thereby rendering it undistinguishable by ultrastructure.

Unlike presynaptic elements, engulfedmaterial resembling post-

synaptic elements was very rarely observed (Figure 4Aii).

However, rapid degradation of structural elements may preclude

visualization of the postsynaptic density. Importantly, there were

rare instances in which no engulfedmaterial was observedwithin

microglia (Figure 4I; no inclusions, 10% of sampled cells).

To directly address whether microglia are engulfing RGC

presynaptic terminals, immunohistochemistry in P5 dLGN for
696 Neuron 74, 691–705, May 24, 2012 ª2012 Elsevier Inc.
presynaptic machinery specific to RGCs (i.e., VGlut2) followed

by high resolution imagingwas performed. 3D structural illumina-

tionmicroscopy (3D-SIM), a technique enabling 2X the resolution

of light microscopy (Gustafsson, 2000), was used to assess the

P5 dLGN of CX3CR1+/EGFP mice immunolabeled for VGlut2.

3D-SIM data revealed VGlut2 immunoreactivity within the

EGFP-positive cytoplasm of microglial cells (Figures 5A–5D).

Consistent with previous confocal and ultrastructural data

(Figures 1, 2, 3, and 4), these data suggest that microglia are

engulfing RGC presynaptic terminals.

To further confirm that microglia were engulfing RGC presyn-

aptic terminals, double immunoEM in P5 dLGN for iba-1 (DAB)

and a presynaptic marker specific to RGC terminals, VGlut2

(immunogold; Figures 5E–5G) was performed. Consistent with

3D-SIM data previously described, we observed immunogold

labeling for VGlut2within themicroglia cytoplasmand lysosomes



Figure 5. Microglia Engulf Presynaptic Terminals Specific to RGCs

(A–D) 3D-SIM in P5 CX3CR1+/EGFP dLGN in which microglia are labeled with EGFP (green) and RGC presynaptic terminals are immunolabeled with anti-VGlut2

(red). (A) Maximum intensity projection (MIP) of microglia and VGlut2 immunostaining in P5 dLGN. (B) MIP in which all VGlut2 fluorescence (red) that is not within

themicroglia (green) has been subtracted. Yellow arrow designates examples of engulfed VGlut2-positive elements, enlarged in inset. (C and D) Orthogonal views

(C) and surface rendering (D) of region in (B) (yellow arrow and inset). (A–D) Scale bar = 5 mm. (D) Grid line increments = 2 mm.

(E–G) Double immunoEM in P5 dLGN for iba-1 (DAB) and VGlut2 (immunogold). (E) RGC presynaptic terminals are enriched with VGlut2 immunoreactivity

(immunogold, yellow arrows). (F and G) Similar to RGC terminals (E), microglial cytoplasm (DAB), and lysosomes contain VGlut2 immunogold labeling (yellow

arrows). Asterisk in (F) denotes a VGlut2-positive presynaptic terminal within the same field of view as the microglia. Scale bars = 100nm.

(H) Cumulative probability demonstrates that there is increased probability of VGlut2 localization to a RGC terminal (black solid line) or microglia (gray solid line)

versus random occurrence throughout the neuropil (gray dotted line). For each structure, n = 10.
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(Figures 5F, and 5G). Because immunogold was overexposed in

order to gain contrast against the DAB reactivity, vesicle

membranes surrounding the VGlut2 labeling were not observed

within intact presynaptic terminals (Figure 5E) or microglia

(Figures 5F and 5G). In addition, cumulative probability calcula-

tions demonstrated an increased probability of VGlut2 localized

to an RGC terminal or microglia as compared to random immu-

noreactivity throughout the neuropil (Figure 5H). Similar to results

from confocal microscopy experiments (Figures 1, 2, and 3),

these ultrastructural data reveal thatmicroglia engulf presynaptic

terminals specific to RGCs.

Deletion of CR3/C3-Dependent Phagocytic Signaling
Decreases the Capacity of Microglia to Engulf RGC
Inputs
What molecular mechanism(s) underlies microglia-mediated

engulfment of synaptic inputs? In the peripheral immune system,

phagocytic cells can interact with several different immune-

related signaling pathways to mediate clearance of cellular

material. Included among these pathways are proteins

belonging to the classical complement cascade, which bind

surface receptors expressed by phagocytic cells. Given previous

work demonstrating that complement component C3 is enriched

at synapses and is necessary for pruning of retinogeniculate

synapses (Stevens et al., 2007), we hypothesized that C3
ligand-receptor signaling may be one molecular mechanism by

which microglia interact with and engulf RGC synaptic inputs.

Consistent with this hypothesis, CR3, a high-affinity receptor

for activated C3 (Akiyama and McGeer, 1990; Perry et al.,

1985), was specifically upregulated in microglia in the P5 dLGN

and downregulated at later developmental time points (Fig-

ure 6A). Importantly, other cell types known to express the

surface receptor CR3 and/or have phagocytic capacity (i.e., infil-

trating monocytes, macrophages, etc.) were completely absent

from the P5 dLGN and surrounding brain tissue (Figure S5;

Akiyama and McGeer, 1990; Perry et al., 1985). As a result, in

the context of the P5 brain, genetic manipulation of CR3 is

specific to microglial cells. Similar to CR3 and consistent with

our previous work, immunohistochemistry for CR3 ligand, C3,

was enriched in synaptic regions of P5 dLGN and downregulated

by P9, an age when pruning is largely complete (Figure 6B;

Stevens et al., 2007). These data demonstrate that CR3 and its

ligand, C3, are expressed at an appropriate age and location

to mediate RGC input engulfment.

Using the in vivo phagocytosis assay previously described

(Figure 2), engulfmentwas assessed in P5mice lacking functional

CR3 (CR3 KO) due to a genetic deletion of the alpha subunit,

CD11b (Figure S5B; Coxon et al., 1996) or mice deficient in CR3

ligand, C3 (C3 KO) (Figure S5A). Microglia sampled from P5

CR3 or C3 KO mice had a statistically significant decrease in
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Figure 6. CR3/C3-Dependent Signaling Regulates Engulfment of Synaptic Inputs by Microglia

(A) Immunohistochemistry for the alpha subunit of CR3 (CD11b) reveals that microglia express high levels of CR3/CD11b (left column) in the P5 dLGN (top panels)

versus older ages (P20, bottom panels). Total microglia are visualized with GFP (CX3CR1+/EGFP, right column). Insets are magnified regions (red asterisks).

Scale bar = 100 mm.

(B) Immunohistochemistry in the developing dLGN for C3 (red). A single plane confocal image reveals that C3 levels are increased in the P5 dLGN versus older

ages (P9, P60). Scale bar = 10 mm.

(C and E) Representative surface rendered microglia (green) from P5 dLGN of WT (left) or KO (right) littermates in which RGC inputs were labeled with CTB-594

(red, contralateral) and CTB-647 (blue, ipsilateral). Insets are enlarged regions demonstrating reduced RGC input engulfment (red and blue) in CR3 (C) and C3 (E)

KO mice. Grid line increments = 5 mm.

(D and F) P5 CR3 KO (D) and C3 KO (F) mice (black bars) engulf significantly fewer RGC inputs as compared toWT littermates (white bars). All data are normalized

to WT control values.

(D) *p < 0.04 by Student’s t test, n = 3 mice/genotype. (E) *p < 0.01 Student’s t test, n = 4 mice/genotype. All error bars represent SEM. See also Figure S5.
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capacity to engulf RGC inputs as compared to WT littermate

controls (Figures6C–6F). Taken together, thesedatademonstrate

that phagocytic signaling through CR3 and its ligand C3 is one

molecular mechanism by which microglia engulf RGC inputs.

Disruption of CR3 Signaling in Microglia Results in
Sustained Deficits in Structural Remodeling of RGC
Inputs
During the first postnatal week, overlapping inputs from both

eyes segregate into eye specific territories (i.e., eye-specific

segregation), resulting in the termination of ipsilateral and

contralateral inputs in distinct nonoverlapping domains in the

mature dLGN (see Figure 2A; Godement et al., 1984; Guido,

2008; Huberman et al., 2008; Jaubert-Miazza et al., 2005;

Sretavan and Shatz, 1986; Ziburkus and Guido, 2006). Consis-

tent with our hypothesis that microglia play a role in synaptic

pruning, C3 KO mice have previously been shown to have defi-

cits in eye-specific segregation (Stevens et al., 2007). To deter-

mine whether microglia aremediators of C3-dependent synaptic

refinement in the CNS, we quantified eye-specific segregation in
698 Neuron 74, 691–705, May 24, 2012 ª2012 Elsevier Inc.
CR3 KO mice. Ipsilateral and contralateral RGC inputs were

labeled by intraocular injection of CTB-594 (red) and CTB-488

(green), respectively. Animals were subsequently sacrificed

within 24 hr of the initial dye injection and overlap (yellow)

between contralateral and ipsilateral RGC projection territories

was quantified. In this experimental paradigm, an increase in

the % overlap between the ipsilateral and contralateral projec-

tions within the dLGN is indicative of a deficit in synaptic pruning

(Bjartmar et al., 2006; Huh et al., 2000; Pham et al., 2001; Ravary

et al., 2003; Stevens et al., 2007).

Consistent with the hypothesis that microglia mediate

complement-dependent synaptic pruning, a statistically signifi-

cant increase in ipsilateral and contralateral input overlap was

observed in P10 andP30CR3KOs as compared toWT littermate

controls (Figures 7A–7C). This increase in overlap was attributed

to a significantly broader ipsilateral projection territory (Figure 7D)

and a small, but not significant, increase in the contralateral

projection territory (Figure 7E). Furthermore, at higher magnifica-

tion we detected aberrant ipsilateral and contralateral RGC

inputs within the inappropriate monocular region (contralateral



Figure 7. CR3 KO Mice Have Sustained Deficits in Eye-Specific Segregation

(A) Representative image of a P30 WT (left) demonstrates minimal overlap (yellow) between ipsilateral (red) and contralateral (green) RGC inputs. Indicative of

a synaptic pruning deficit, CR3 KO mice (right) had increased overlap (yellow) of ipsilateral (red) and contralateral (green) RGC inputs. Scale bar = 100 mm.

(B and C) P10 (B) and P30 (C) CR3 KO mice had statistically significant, threshold-independent deficits in retinogeniculate pruning.

(D) The percentage of ipsilateral territory is significantly increased in P30 CR3 KO mice as compared to WT littermate controls.

(E) Although trending toward an increase, there is no statistically significant difference in percentage of contralateral territory.

(F and G) dLGN from P30 CR3 WT (F) or KO (G) mice, dotted line boxes in lower magnification image (left panels) correspond to ipsilateral region magnified in

middle panels (yellow i–ii) or contralateral region magnified in far right panels (white i–ii). Bottom panels in (F) and (G) (ii) are contralateral (CTB-488, green, left

panel) channel or ipislateral (CTB-594, red, right panel) alone. (G) There were increased aberrant contralateral projections (middle panel; i, green, and ii) within the

ipsilateral territory in P30 CR3 KO mice as compared to WT littermates (F, middle panel). Similarly, there were aberrant ipsilateral projections (right panel; i, red,

and ii) within contralateral regions of the dLGN in CR3 KO mice as compared to WT littermates (F, right panel). Left panels, scale bar = 100 mm. Middle and right

panels, scale bar = 10 mm.

(B and C) *p < 0.0001 by Student’s t test, n = 6 (P10) or 4 (P30) mice/genotype. (D) *p < 0.03 by Student’s t test, n = 4mice/genotype. All error bars represent SEM.

See also Figure S6.

Neuron

Microglia Prune Developing CNS Synapses
and ipsilateral, respectively) in mature CR3 KO dLGN (P30;

Figures 7F and 7G). In addition to genetic manipulation of CR3,

microglia involvement in eye-specific segregation was further

validated by manipulating microglia function pharmacologically

using minocycline, an established inhibitor of microglial ‘‘activa-

tion’’ (Buller et al., 2009; Figures S6A–S6E). Similar to CR3 KO

data, minocycline (P4–P8; 75 mg/kg) treatment during the peak

of the pruning period resulted in reduced microglial phagocytic

function (i.e., reduced RGC input engulfment) at P5 and a statis-

tically significant deficit in eye-specific segregation at P10
(Figures S6C–S6E). Importantly, prior to any analyses we

confirmed that any phenotype in KO or drug-treated mice was

not due to differences in total RGC number within the retina

and/or density of microglia within the dLGN (Figure S6F–S6K).

Taken together, disruption of microglia function by pharmaco-

logical (minocycline) or more specific genetic strategies (CR3 or

C3 KOs) results in sustained deficits in eye-specific segregation

within the dLGN. Furthermore, given that microglia are the only

CNS cell that express CR3 in the postnatal dLGN, these data

suggest that microglia are mediators of synaptic remodeling in
Neuron 74, 691–705, May 24, 2012 ª2012 Elsevier Inc. 699



Figure 8. CR3 KO Mice Have a Sustained Increase in Synapse

Density

(A) Single plane array tomography images for VGlut2 (green) to label RGC

terminals and GluR1 (purple) to label postsynaptic excitatory sites in P32–P35

dLGN of CR3 KO (right) andWT littermate controls (left). Yellow circles indicate

synapses defined by VGlut2 and GluR1 immunoreactivity. Scale bar = 2 mm.

(B–D) Quantification of retinogeniculate synapse (B, VGlut2/GluR1-positive),

postsynaptic (C, GluR1), and presynaptic/RGC terminal (D, VGlut2) density

indicates that there is a statistically significant increase in retinogeniculate

synapse density and total RGC terminal density in CR3 KOs as compared to

WT littermates. *p < 0.03 Man-Whitney U test, n = 3 mice/genotype.

Error bars represent SEM. See also Figure S7.
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the retinogeniculate system and represent a key cellular mecha-

nism underlying complement-dependent synaptic pruning

(Stevens et al., 2007).

Disruption in CR3/C3-Dependent Signaling in Microglia
Results in Sustained Deficits in Synaptic Connectivity
If CR3/C3-dependent signaling in microglia is a mechanism

underlying developmental synaptic pruning, then a sustained

increase in synapse density would be expected in the absence

of these molecules. To test this possibility, retinogeniculate

synapse density was quantified in adult CR3 KOs (P32–P35)

using array tomography (AT), a powerful tool for high resolution

imaging and quantification of synaptic density in vivo (Greer

et al., 2010; Margolis et al., 2010; Micheva and Smith, 2007;

Ross et al., 2010). RGC presynaptic terminals within the dLGN

were labeled with an antibody directed against VGlut2 and post-

synaptic excitatory sites were labeled with anti-GluR1. As sug-

gested by the eye-specific segregation assay, there was a statis-

tically significant increase (1.3-fold increase) in RGC synapse

density (i.e., juxtaposed GluR1 and VGlut2 puncta) in adult CR3

KOs as compared toWT littermates (Figures 8A and 8B). Consis-
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tent with our previously published work (Stevens et al., 2007),

adult C3 KO mice had an identical 1.3-fold increase in VGlut2-

containing synapses as compared to WT littermate controls

(Figure S7). Interestingly, there was also a significant increase

in the density of total (both synapse associated and nonassoci-

ated) VGlut2-positive puncta in CR3 KOs (1.8-fold increase) as

compared to WT littermates (Figure 8D). We hypothesize that

these excess VGlut2-positive puncta represent residual imma-

ture synapses as well as retracted or unopposed immature

presynaptic terminals that were not eliminated by phagocytic

microglia. Taken together, thesedata implicateCR3/C3 signaling

as a mechanism regulating synaptic connectivity.

Because microglia are the only cell type within the P5 dLGN

and surrounding brain tissue to express CR3 (Figures 6 and

S5; Akiyama and McGeer, 1990), our data directly implicate

microglia as mediators of anatomical pruning and identify CR3/

C3-dependent signaling as an underlying molecular mechanism.

DISCUSSION

In this study, we demonstrate that microglia are mediators of

synaptic pruning in the normal, developing brain and identify

neural activity and CR3/C3-dependent signaling as underlying

mechanisms. Specifically, we demonstrate that (1) microglia in

the postnatal dLGN engulf RGC presynaptic terminals during

active synaptic remodeling. (2) Engulfment of RGC inputs is

regulated by neuronal activity. (3) Engulfment of RGC inputs is

regulated by CR3/C3-dependent phagocytic signaling specific

to microglia. (4) Genetic (CR3 and C3 KO) or pharmacological

perturbations that disrupt microglia function result in deficits in

structural remodeling of synapses. (5) Defects in synaptic

circuitry are sustained into adulthood in CR3 and C3 KO mice.

We propose a model in which neural activity and complement

work cooperatively to mediate engulfment of RGC inputs,

a process that may underlie synaptic pruning in the developing

CNS (Figure S7).

Microglia Engulf RGC Presynaptic Inputs during Peak
Synaptic Pruning
One question arising is whether engulfment of RGC inputs by

microglia is an active process. Particularly during CNS disease,

microglia are known scavengers that phagocytose cellular

debris (Hanisch and Kettenmann, 2007; Napoli and Neumann,

2009; Ransohoff and Perry, 2009). Furthermore, glia are known

to engulf axonal material during large-scale developmental

pruning of axons in Drosophila and synaptic pruning at the

mammalian neuromuscular junction (Bishop et al., 2004;

Freeman, 2006; Rochefort et al., 2002). While our results do

not rule out the possibility that axonal material may also be en-

gulfed, our data suggest that microglia play an active role in

the removal of transient, intact presynaptic elements. Indeed,

in comparison to large-scale developmental axonal pruning,

there is no evidence that local CNS synaptic pruning, such as

in the case of the retinogeniculate system, involves classic

axonal or synaptic degeneration (Dhande et al., 2011; Hahm

et al., 1999; Snider et al., 1999; Sretavan and Shatz, 1984). Earlier

EMwork in the developing mammalian dLGN demonstrated that

RGCs transiently synapse within the inappropriate region of the
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dLGN (Campbell and Shatz, 1992; Campbell et al., 1984). These

transient synapses contained presynaptic machinery including

a high density of vesicles, but were subsequently eliminated by

an undetermined mechanism. Given our high resolution light

microscopy and ultrastructure data, we suggest that microglia

are actively pruning these transient synaptic connections via

a phagocytic mechanism (Figure S7).

We provide several lines of evidence implicating microglia in

the local pruning of transient, intact retinogeniculate synapses

in the absence of axon debris or degeneration. First, in experi-

ments involving anterograde tracing of RGCs (engulfment and

eye-segregation assays), intraocular injections of dye occur

less than 24 hr prior to tissue harvesting and fixation. If neurons

or axons were degenerating, we would not expect effective dye

uptake and tracing of the entire RGC projection. Furthermore,

previous work has demonstrated that RGC normal programmed

cell death is essentially complete by P4/P5 (Farah and Easter,

2005). Taken together, any CTB labeling observed within the

dLGN is, more likely, originating from a healthy RGC cell body

and axon. Second, previous work using dye tracing or fluores-

cent protein to label small subsets of RGC afferents in the

dLGN demonstrate that RGC axons and arbors within the

dLGN undergoing active pruning remain intact and unfrag-

mented (Dhande et al., 2011; Hahm et al., 1999; Snider et al.,

1999; Sretavan and Shatz, 1984). Consistent with these data,

our EM experiments demonstrated that engulfed material as

well as surrounding dLGN neuropil did not appear to have classic

signs of axonal or synaptic degeneration such as multilamellar

bodies, electron-dense cytoplasm, lack of synaptic vesicles

within presynaptic terminals, etc. (Hoopfer et al., 2006; Perry

and O’Connor, 2010). Lastly, we observed sustained increases

in the number of intact, structural synapses by eye specific

segregation and array tomography analyses in mice with disrup-

ted microglia function (C3 KO, CR3 KO, andminocycline-treated

mice). If synapses degenerated prior to engulfment, we would

not expect to observe increased numbers of healthy, intact

synapses in KO mice. Taken together, our data suggest that

engulfed presynaptic elements were healthy, intact, and specif-

ically engulfed by microglia.

Engulfment of RGC Inputs by Microglia Is an
Activity-Dependent Process
Previous work has demonstrated that microglia have the

capacity to interact with synaptic elements in response to neuro-

transmitter release and/or sensory experience (Biber et al., 2007;

Fontainhas et al., 2011; Nimmerjahn et al., 2005; Ransohoff and

Perry, 2009; Tremblay et al., 2010a; Wake et al., 2009). Further-

more, microglia can contribute to synaptic plasticity in the

adult CNS and, more recently, in the context of the normal devel-

oping hippocampus (Paolicelli et al., 2011; Pascual et al., 2012;

Roumier et al., 2008). Our data provide insight into mechanisms

by which microglia may interact with synapses and contribute to

activity-dependent synaptic plasticity. When competition

between inputs from the two eyes was enhanced by pharmaco-

logical manipulation (i.e., TTX or forskolin), we found that micro-

glia preferentially engulfed inputs from the eye in which neuronal

activity was decreased or ‘‘weaker.’’ Although it is not yet known

whether or how microglia target specific ‘‘weaker’’ synapses,
these data are consistent with previous work demonstrating

that such a competition results in decreased territory of the

‘‘weaker’’ inputs and increased territory of ‘‘stronger’’ inputs

within the dLGN (Del Rio and Feller, 2006; Huberman et al.,

2008; McLaughlin et al., 2003; Penn et al., 1998; Shatz, 1990;

Shatz and Stryker, 1988; Stellwagen and Shatz, 2002; Stellwa-

gen et al., 1999; Torborg and Feller, 2005).

In the retina, spontaneous, correlated neuronal activity from

both eyes (i.e., retinal waves) drives the elimination of synapses

and segregation of inputs into eye-specific territories in the

dLGN (Del Rio and Feller, 2006; Feller, 1999; Huberman et al.,

2008; McLaughlin et al., 2003; Penn et al., 1998; Stellwagen and

Shatz, 2002; Torborg andFeller, 2005). Interestingly, complement

and complement receptor-deficient mice have similar pruning

deficits to mice in which this correlated firing has been disrupted

(e.g., cAMP-analog injection, b2nAChR�/� mice, etc.) (Stevens

et al., 2007), suggesting the intriguingpossibility that complement

cascade activation and function is regulated by neural activity.

Neural activity could also directly regulate microglia function

(i.e., activation, recruitment, phagocytic capacity) through

complement-independent mechanisms. Alternatively, neural

activity may drive the elimination of synapses by other mecha-

nisms which ultimately lead to complement activation and/or mi-

croglia-mediated engulfment. Future studies will aim to address

how neural activity, complement, and microglia may interact to

contribute to developmental synaptic pruning (Figure S7).

CR3/C3-Dependent Signaling: A molecular Pathway
Underlying Microglia-Mediated Synaptic Pruning
Synaptic pruning likely involves several mechanisms that coop-

eratively interact to establish precise synaptic circuits. We

suggest that microglia may be a common link and identify

CR3/C3 signaling as one pathway underlying microglia-synapse

interactions and microglia-dependent pruning in the developing

CNS. One of the major questions raised by these findings is

precisely how secreted complement proteins mediate the selec-

tive elimination of synapses by microglia. In the immune system,

C3 is cleaved into anactivated form, iC3b,which covalently binds

to the surfaceof cells or debris and targets them for elimination by

macrophages via specific phagocytic receptor signaling (e.g.,

CR3) (Lambris and Tsokos, 1986; van Lookeren Campagne

et al., 2007). Similar to the immune system, we propose that acti-

vated C3 (iC3b/C3b) could selectively ‘‘tag’’ weak synapses

(Figure S7). Consistent with C3 ‘‘tagging’’ subsets of RGC termi-

nals, previous confocal analysis revealed colocalization of C3

with pre and postsynaptic markers in the developing dLGN

(Stevens et al., 2007). Furthermore, mice deficient in CR3, C3,

and C1q, the initiating protein of the classical complement

cascade, exhibit strikingly similar defects in developmental

synaptic pruning (Figures 7, 8, and S7). Alternatively, other

complement-dependent and/or -independent mechanisms

may be involved. For example, C3 could bind all synapses and

only those synapses that are ‘‘stronger’’ ormore active are selec-

tively protected by membrane-bound complement regulatory

molecules (Kim and Song, 2006; Song, 2006). In contrast, selec-

tive, activity-dependent elimination of synapses could be driven

by a complement-independent mechanism which subsequently

results in complement binding and/or microglia-mediated
Neuron 74, 691–705, May 24, 2012 ª2012 Elsevier Inc. 701
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engulfment. For example, MHC class I molecules, another class

of immune molecules demonstrated to play a critical role in reti-

nogeniculate pruning, havebeen shown tobeactivity dependent,

localized to synapses, and colocalized with C1q leaving the

possibility that MHC class I molecules may play an upstream

role in microglia-mediated pruning of synapses (Corriveau

et al., 1998; Datwani et al., 2009; Goddard et al., 2007; Huh

et al., 2000).

While our data demonstrate that CR3/C3 signaling specific to

microglia is involved in the pruning of developing circuits and

suggest that engulfment is the underlying mechanism, CR3

and C3 may be acting through other pathways independent of

phagocytosis or may be downstream of other signaling path-

ways to mediate pruning. In addition, engulfment deficits in

CR3 and C3 KO mice were reduced to approximately 50% of

WT littermate control values, suggesting that other complement

receptor-dependent (e.g., CR4, CRig, etc.) and independent

phagocytic mechanisms may also be involved. Future studies

will aim to address whether and how specific synapses are elim-

inated by complement and other microglia-dependent mecha-

nisms and how neural activity plays a role in this process.

Complement-DependentEngulfment of Synaptic Inputs:
A More Global Mechanism Underlying Remodeling of
Neural Circuits in the Healthy and Diseased CNS?
Our data raise the question as to whether complement and/or

microglia-dependent engulfment of synaptic inputs represents

a more global mechanism underlying CNS neural circuit plas-

ticity. While in at least one other developing system local axonal

retraction and synapse elimination appear to occur independent

of microglia (Cheng et al., 2010), recent work describes a role for

microglia at developing hippocampal synapses (Paolicelli et al.,

2011). In addition, in vivo imaging studies in the cortex revealed

that microglia dynamics and interactions with neuronal compart-

ments change in response to neural activity and experience

(Davalos et al., 2005; Nimmerjahn et al., 2005; Tremblay et al.,

2010a;Wake et al., 2009).While these studies describemicroglia

dynamics at synapses, a precise function and molecular mech-

anism(s) underlying microglia-synapse interactions in these

brain regions was unknown. Our study provides mechanistic

insight into the dynamic between microglia and developing

synapses and provides complement-dependent signaling as

a potential mechanism in other brain regions. Consistent with

this idea, deficits in complement component C1q result in an

increase in the number of presynaptic boutons and exuberant

excitatory connectivity in the cortex (Chu et al., 2010). Future

studies will aim to test the role of complement in microglia-

synapse interactions in other CNS regions known to undergo

activity-dependent synaptic remodeling.

In addition to relevance in global remodeling of circuits in the

healthy brain, our findings have important implications for under-

standing mechanisms underlying synapse elimination in the

diseased brain. Consistent with this idea, abnormal microglia

function and complement cascade activation have been associ-

ated with neurodegeneration of the CNS (Alexander et al., 2008;

Beggs and Salter, 2010; Rosen and Stevens, 2010; Schafer and

Stevens, 2010; Stephan et al., 2012). Indeed, in a mouse model

of glaucoma, a neurodegenerative disease associated with RGC
702 Neuron 74, 691–705, May 24, 2012 ª2012 Elsevier Inc.
loss and gliosis, C1q and C3 are highly upregulated and depos-

ited on retinal synapses and C1q deficiency or microglial ‘‘inac-

tivation’’ with minocycline provide significant neuroprotection

(Howell et al., 2011; Steele et al., 2006; Stevens et al., 2007). In

addition to diseases associated with neurodegeneration, recent

data from genome-wide association studies and analyses of

postmortem human brain tissue have suggested that microglia

and/or the complement cascade may also be involved in the

development and pathogenesis of neurodevelopmental and

psychiatric disorders (e.g., autism, obsessive compulsive

disorder, schizophrenia, etc.) (Chen et al., 2010; Håvik et al.,

2011; Monji et al., 2009; Pardo et al., 2005; Vargas et al.,

2005). Thus, an intriguing possibility remains that microglia

and/or complement dysfunction may be directly involved in

diseases associated with synapse loss, dysfunction, and/or

development.

Together, our data offer insight into mechanisms underlying

activity-dependent synaptic pruning in the developing CNS,

provide a role for microglia in the healthy brain, and provide

important mechanistic insight into microglia-synapse interac-

tions in the healthy and diseased CNS.

EXPERIMENTAL PROCEDURES

Animals

All experiments were reviewed and overseen by the institutional animal use

and care committee in accordance with all NIH guidelines for the humane

treatment of animals. See Supplemental Experimental Procedures for details.

Engulfment Analysis

Mice, except tdTomato-expressingmice (CHX10-cre::tdTomato), received intra-

ocular injections of anterograde tracers at P4. All mice were sacrificed at P5 and

brains were 4% PFA fixed overnight (4�C). Only those brains with sufficient dye

fills were analyzed (see Supplemental Experimental Procedures for details).

Intraocular Injection of TTX or Forskolin

P4 CX3CR1::EGFP heterozygotes were anesthetized with isoflurane and given

an intraocular injection of drug (0.5 mM TTX or 10mM forskolin) and vehicle

(saline or DMSO) into the left and right eyes, respectively. Injection volume

was approximately 200 nl. Four to five hours after first injection, mice received

a second intraocular injection of CTB 594 and 647 into the left and right eyes,

respectively. Mice were sacrificed at P5 for analysis.

Electron Microscopy

EM was performed in collaboration with J. Lichtman laboratory. Tissue was

prepared and imaged as previously described with minor modifications

(Hayworth et al., 2006). For immunoEM, dLGN from postnatal mice were

prepared and immunostained with rabbit anti-Iba-1 (Wako) as previously

described (Tremblay et al., 2010b). See Supplemental Experimental Proce-

dures for details.

Eye Segregation Analysis

Mice received intraocular injection of cholera toxin-b subunit (CTB) and were

sacrificed the following day. Tissue was processed and analyzed as previously

described (Jaubert-Miazza et al., 2005; Stevens et al., 2007). All analyses were

performed blind with littermate controls.

Array Tomography

Array tomography was performed as previously described with minor

modifications (Greer et al., 2010; Margolis et al., 2010; Micheva and Smith,

2007; Ross et al., 2010; Stevens et al., 2007). See Supplemental Experimental

Procedures for details.
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