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Air traffic has an increasing influence on climate; therefore identifying mitigation options
to reduce the climate impact of aviation becomes more and more important. Aviation influ-
ences climate through several climate agents, which show different dependencies on the
magnitude and location of emission and the spatial and temporal impacts. Even counter-
acting effects can occur. Therefore, it is important to analyse all effects with high accuracy
to identify mitigation potentials. However, the uncertainties in calculating the climate
impact of aviation are partly large (up to a factor of about 2). In this study, we present a
methodology, based on a Monte Carlo simulation of an updated non-linear climate-
chemistry response model AirClim, to integrate above mentioned uncertainties in the cli-
mate assessment of mitigation options. Since mitigation options often represent small
changes in emissions, we concentrate on a more generalised approach and use exemplarily
different normalised global air traffic inventories to test the methodology. These invento-
ries are identical in total emissions but differ in the spatial emission distribution. We show
that using the Monte Carlo simulation and analysing relative differences between scenarios
lead to a reliable assessment of mitigation potentials. In a use case we show that the pre-
sented methodology can be used to analyse even small differences between scenarios with
mean flight altitude variations.
� 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Climate change and its consequences are more and more of public concern, especially since the last report of the Inter-
governmental Panel on Climate Change (IPCC, 2013). It is extremely likely that more than half of the observed increase in
global average surface temperature from 1951 to 2010 was caused by the anthropogenic increase in greenhouse gas concen-
trations and other anthropogenic forcings (IPCC, 2013).

The climate impact of current air traffic contributes 4.9% with a range of 2–14% to global warming in terms of radiative
forcing (Lee et al., 2009) and air traffic is expected to grow further by about 5% per year (ICAO, 2013). Thus, it is more and
more important to reduce the climate impact of aviation. For mitigation measures, it is not sufficient to analyse CO2 emis-
sions only, as non-CO2 effects play a crucial role (IPCC, 1999; Lee et al., 2009). The most important non-CO2 effects are water
vapour emission (IPCC, 1999), formation of line-shaped contrails (Schumann, 1996) and contrail cirrus (Burkhardt and
Kärcher, 2011), as well as NOx emissions (NOx = NO + NO2) which lead to changes in ozone and methane concentrations
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(e.g. Grooß et al., 1998). These non-CO2 effects are particularly important for the climate impact of air traffic as their impact
depends on the location of the emission. This refers to contrail formation and chemistry effects, such as the formation of
ozone (Schumann, 2000; Grewe et al., 2002a; Grewe and Stenke, 2008; Rädel and Shine, 2008; Köhler et al., 2008;
Frömming et al., 2012; Köhler et al., 2013; Williams et al., 2014), and the radiative response to a local perturbation (Lacis
et al., 1990; Stuber et al., 2005). Dahlmann et al. (2011), for example, show that the ozone production efficiency of air traffic
NOx emissions is twice as large as that of surface emissions, e.g. by road traffic. In addition, the climate impact from air
traffic-induced ozone change is larger than that of an ozone change at the Earth’s surface, because the radiative impact of
a greenhouse gas increases with increasing temperature difference between the surface and the atmospheric layer into
which it is emitted (Lacis et al., 1990). The formation of contrails also depends strongly on the location of the emission, since
persistent contrails only form in ice supersaturated regions, which occur mainly near the tropopause (Sausen et al., 1998).
The impact of contrails depends on the altitude and latitude of the emission location, as the altitude of the tropopause and
the available water for deposition depends on the latitude (Newinger and Burkhardt, 2012). Due to the dependency of the
climate impact on altitude and latitude of different emissions, there is no general linear relationship between fuel consump-
tion and climate impact. Therefore, mitigation options can lead to counteracting effects. On the one hand, a general reduction
in flight altitude, for example, leads to a reduced climate impact from ozone, water vapour, and contrail formation
(Frömming et al., 2012). On the other hand, a reduction in flight altitude leads to increased fuel consumption and thus to
an increased climate impact from CO2 (Frömming et al., 2012). Hence, it is important to simultaneously include all relevant
climate agents when assessing the climate impact of mitigation scenarios.

The analysis of the climate impact of aviation, from the emission to changes in atmospheric concentrations, changes in
radiation and temperatures, and consequently the decision which mitigation option has the highest reduction potential is
complicated because of large uncertainties in the calculation of the atmospheric changes due to aviation emissions (Lee
et al., 2009). A large part of the uncertainties arises from a spread of model results due to different calculation methods
(e.g. different chemistry or cloud schemes). To ensure a reliable assessment of mitigation options, it is necessary to base
it on statistically significant results, and therefore it is important to include uncertainty considerations.

The objective of this paper is to introduce a methodology that enables a reliable assessment of mitigation potentials for
different emission scenarios despite large uncertainties in the overall climate impact of aviation. We introduce the method-
ology and present the principle mechanism with an example, which shows that although considerable uncertainties in the
overall climate impact from air traffic exist, a reliable assessment of mitigation options can be achieved. Finally, a use case is
presented, which assesses general flight altitude changes.
2. Method

2.1. AirClim – an efficient assessment tool

The climate impact of air traffic emissions is usually calculated in detail by using a complex three dimensional climate
chemistry model, which considers all relevant atmospheric processes (e.g. Grewe et al., 2002b; Köhler et al., 2008; Hoor
et al., 2009). As these simulations are computationally very expensive, it is not possible to use them for uncertainty assess-
ments within Monte Carlo simulations, where the uncertainty is analysed by a large number of random experiments.
Instead, we use the climate response model AirClim (Grewe and Stenke, 2008) in this study. AirClim combines precalculated
atmospheric impact data with air traffic emission data to calculate e.g. aviation climate impact for a multitude of emission
inventories. For the precalculated data, idealised emission regions with normalised emission strength are defined. For each of
the idealised emission regions, a climate-chemistry simulation is performed, employing normalised emissions of nitrogen
oxides and water vapour to obtain the chemical response, i.e. the simultaneous effect of nitrogen oxides and water vapour.
Chemical perturbations and radiative forcing of ozone (O3), methane (CH4), water vapour (H2O), and contrails are calculated
with a state-of-the-art climate-chemistry model (E39/CA, e.g. Stenke et al. (2008)). For contrail cirrus we have used
ECHAM4-CCMod (Burkhardt and Kärcher, 2009). The results of these detailed simulations constitute the precalculated atmo-
spheric input data for AirClim. AirClim combines the precalculated, altitude and latitude dependent perturbations with emis-
sion data in order to calculate composition changes, radiative forcing and near surface temperature changes caused by these
emissions. Near surface temperature change is presumed to be a reasonable indicator for climate change (Grewe and Stenke,
2008). AirClim is applicable to evaluate numerous air traffic scenarios, including different routings and technological options.

The benefit of this methodology is that the time expensive precalculations only have to be done once, and can then later
be used for any AirClim simulation. A detailed description and validation is given in Grewe and Stenke (2008). Here we apply
an extended AirClim version with a higher resolution, especially at mid latitudes and cruise altitudes (Fichter, 2009), and
additional consideration of the climate impact of long-lived ozone reduction Opm

3

� �
and contrail cirrus (Contrail induces

cloudiness, CiC) (Appendix; Dahlmann, 2012; Grewe and Dahlmann, 2012).

2.2. Uncertainty assessment with Monte Carlo simulation

In calculating the climate impact of aviation large uncertainties exist. To ensure that the chosen mitigation option will
lead to a reduction in climate impact, we consider these uncertainties in a meaningful way. In AirClim we assume
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uncertainties in the following parameters to be responsible (uncertainty parameters): RF and climate sensitivity parameter
(k) for CO2, O3, O

pm
3 , CH4, H2O, CiC, as well as the lifetimes (s) for H2O, O3, O

pm
3 and CH4. AirClim initially used these uncer-

tainty parameters to calculate a minimum and maximum temperature change for an individual climate agent to account for
uncertainties (Grewe and Stenke, 2008). However, it is not possible to obtain the absolute minimum/maximum temperature
change by simply summing minimum/maximum temperature changes caused by the different climate agents, as, for exam-
ple, the climate impacts of ozone and methane are working in opposite directions. It should be noted that the uncertainties in
these parameters are not statistical uncertainties, which arise from atmospheric or interannual variability, but rather uncer-
tainties that arise from different modelling approaches, i.e. from our limited understanding of certain processes. Therefore
the uncertainties are statistically not independent. For example an underestimation of CiC would lead to a lower impact in all
scenarios. Due to the statistical dependence a Gaussian error propagation also is not applicable. Hence, we use a Monte Carlo
(MC) simulation to obtain the uncertainty of the resulting climate impact (Fig. 1).

For the MC simulation we use the minimum and maximum of the uncertainty range of each parameter as well as a prob-
ability distribution according to literature (see Section 2.3.1 and Table 1). For the MC simulation we use 10 000 repetitions of
the AirClim simulation (Fig. 1, green box) with a randomly picked value for the uncertainty parameter according to the
assumed uncertainty distribution (Fig. 1, red box) and calculate RF, DT or other common climate metrics (CM). Thus, a broad
range of possible parameter settings is calculated, leading to a sufficient uncertainty approximation according to the law of
large numbers, which states, that for a large number of repetitions, the relative frequency approximates the probability of a
random experiment.

Although AirClim needs only some seconds to calculate the climate impact of several scenarios on a standard desktop
computer, the above described MC simulation takes a calculation time of more than one day, due to the 10 000 repetitions
of the AirClim simulation. For some future applications the longer computing time might be a bottleneck. To overcome this
problem we introduce a new method, in which the MC repetitions are calculated inside of AirClim (internal MC simulation).
By default, AirClim provides the temperature change for a minimum and a maximum case of each uncertainty parameter (s,
RF, k) and each individual climate agent. Hence, for each climate agent 27 different temperature changes are calculated (=33;
3 uncertainty parameters and 3 cases: min/mean/max). For the internal version of the MC simulation, we assume that the
distribution of uncertainties is related linearly to the distribution of the resulting temperature change. Thus it is possible to
use the spread between the minimum and maximum of the uncertainty parameter to obtain the spread in the resulting tem-
perature change. If we use an uncertainty distribution with unlimited borders like normal distribution, we choose a sigma in
that way that less than 0.1% of the random numbers lie outside the assumed uncertainty range (minimum and maximum
value of the uncertainty range). We choose a new random number if the value lies outside of the assumed uncertainty range.
For each instance of the MC simulation we first choose a random number (as(i) = [0, 1]) for the lifetime of tropospheric and
stratospheric perturbations and interpolate for each climate agent between the temperature change with minimum and
maximum lifetime (s): DTðRF�; k�Þ ¼ asDTðsmin;RF�; k�Þ þ ð1� asÞDTðsmax;RF�; k�Þ, where � stands for the min/mean/max
Fig. 1. Sketch of the methodology.



Table 1
Median and upper and lower limit of the uncertainty range for radiative forcing (RF) and climate sensitivity parameter (k) for each climate agent (CO2, H2O, O3,
Opm

3 , CH4, CiC), and error probability distribution.

CO2 H2O O3 Opm
3 CH4 CiC

RF Grewea Distribution Normal
Sigma 0.015 0.15 0.09 0.03 0.03 0.15
Minimum 0.95 0.5 0.7 0.9 0.9 0.5
Median 1.0 1.0 1.0 1.0 1.0 1.0
Maximum 1.05 1.5 1.3 1.1 1.1 1.5

RF Leeb Distribution Normal Lognormal
Sigma 0.135 1.20 0.68 1.09 1.09 0.47
Minimum 0.55 0.14 0.32 0.17 0.17 0.46
Median 1.00 1.00 1.00 1.00 1.00 1.00
Maximum 1.45 7.25 3.13 6.10 6.10 2.17

kc Distribution Normal
Sigma 0.012 0.075 0.080 0.080 0.028 0.012
Minimum 0.69 0.58 0.70 0.70 0.77 0.39
Median 0.73 0.83 1.00 1.00 0.86 0.43
Maximum 0.77 1.08 1.30 1.30 0.95 0.47

a Grewe and Stenke (2008).
b Lee et al. (2009).
c Ponater et al. (2006), Joshi et al. (2003), and IPCC (2007).
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value of the uncertainty parameters. The same is done afterwards for the uncertainty of radiative forcing (aRF) and the cli-
mate sensitivity parameter (ak). This results in one temperature change per climate agent for each instance of the MC sim-
ulation. We limit the use of the internal MC simulation to normally distributed uncertainties as it is difficult for the user to
find the right distribution parameters as well as the right minima and maxima for skewed uncertainty distributions. There-
fore we show in this work generally the results for the external MC simulation. The internal MC simulation is used for a com-
parison of both types of MC simulations (internal and external, see Fig. 7) to show that the above assumption is valid (i.e. a
linear relationship between the distribution of an uncertainty parameter and the distribution of the resulting climate
impact) as well as for the use case (Section 3.3).

For quantifying the mitigation potential the crucial information is whether scenario A or B has a lower climate impact,
whereas the absolute difference is less important. Therefore, we calculate (for both versions of the MC simulation) the rel-
ative difference (uBðiÞ) between the climate metric of scenario B (CMBðiÞ) and a reference scenario A (CMAðiÞ) for each
instance i of the MC simulation:
uBðiÞ ¼
CMBðiÞ � CMAðiÞ

CMAðiÞ : ð1Þ
The reference scenario can either be one of the calculated scenarios (for example the scenario representing present-day
aircraft or routing) or the mean of all calculated scenarios, depending on the question to be answered (Grewe and Dahlmann,
2015). The median and the 2.5, 25, 75 and 97.5 percentiles of the relative differences are calculated in order to quantify the
uncertainty range.

To analyse the reasons for the differences between individual scenarios we split the total uBðiÞ into components of indi-
vidual climate agents: uBðiÞ ¼

P
specu

spec
B ðiÞ with
uspec
B ðiÞ ¼ CMspec

B ðiÞ � CMspec
A ðiÞ

CMAðiÞ ; ð2Þ
where CMspec
B is the climate impact of scenario B caused by climate agent spec. The benefit of calculating uspec

B ðiÞ relative to
CMAðiÞ is receiving the individual contribution of each climate agent to the difference between the scenarios as additional
information.

2.3. Model setup

To show the applicability of the above described uncertainty assessment we use four different emission inventories rep-
resenting global air traffic emissions in different years. For comparing the climate impact of different scenarios we use the
average temperature response (ATR) with a time horizon of 100 years:
ATR100 ¼ 1
100

Z 100

0
DTðtÞdt ð3Þ
as CM. To analyse the climate impact over more than 100 years we use emission data from Lee et al. (2009) for the historical
evolution of air traffic. For future air traffic emissions we assume IPCC scenario Fa1, which is a reference scenario developed
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by ICAO (International Civil Aviation Organisation) Forecasting and Economic Support Group (FESG) with midrange eco-
nomic growth from IPCC (1992) and technology for both improved fuel efficiency and NOx reduction (IPCC, 1999). For back-
ground concentrations of CO2 and CH4, which influence the climate impact of CO2 and CH4 emissions, we assume IPCC
scenario A1B, which is based on the assumption of an economically oriented world with balanced use of fossil and renewable
energies (Nakicenovic et al., 2000).
2.3.1. Uncertainties
For the lifetimes of tropospheric and stratospheric perturbations we assume a normal distribution for the uncertainty

range of 20% and 40%, respectively (Grewe, 2007; Stevenson et al., 2006). For uncertainties of radiative forcing we use
two different approximations according to Grewe and Stenke (2008) and Lee et al. (2009). Both parameter ranges are pro-
vided in Table 1. We use both assumptions and analyse the influence of the chosen uncertainty range on the resulting cli-
mate impact. It has to be noted that the uncertainty ranges given by Lee et al. (2009) are an upper limit as they include the
impacts of lifetime, radiative forcing, and differences between emission inventories, while Grewe and Stenke (2008) only
account for the uncertainties in radiative forcing. Nevertheless the uncertainties are not known and provide only a rough
estimate. The uncertainty parameters are all assumed to be uncorrelated, except for the uncertainty of ozone and methane
radiative forcings, which are highly correlated as they are both coupled with the NOx–O3–OH–CH4 cycle. Studies show that
for aviation, models with large ozone radiative forcing also provide large (negative) methane radiative forcing (Hoor et al.,
2009; Lee et al., 2010). To account for this correlation we use in the MC simulation the same random number aRF for O3 and
CH4. Thus we assure a large ozone radiative forcing occurring with large negative methane RF. Hence, we do not fix the rela-
tion between RF(O3) and RF(CH4) as the relation varies due to the different uncertainty ranges.
2.3.2. Aviation emission inventories
Since mitigation options often represent small changes in emissions, we concentrate on a more generalised approach and

use exemplarily four different global air traffic inventories which are normalised with regard to the total fuel consumption
(AERO2k, QUANTIFY, TRADEOFF and NASA). AERO2k provides an aviation emission data set for the year 2002 for civil and
military flights (Eyers et al., 2004) with a vertical resolution of 1000 ft (about 305 m). QUANTIFY emissions are based on
global flight movement statistics from the Official Airline Guide (OAG) together with data of non-scheduled air traffic from
the AERO2k flight database (www.pa.op.dlr.de/quantify). Total fuel consumption for the QUANTIFY dataset is scaled to the
global sales data from the International Energy Agency (IEA). The vertical resolution of this emission inventory is 2000 ft
(610 m). For TRADEOFF, a 1991/92 movement base year was projected to the year 2000, corrected by ICAO statistics, and
converted into emissions, fuel burn and travelled distances (e.g. Gauss et al., 2006). The vertical resolution of this emission
set is 2000 ft (610 m). NASA used flight movement statistics from the OAG and airline fleet databases for the year 1992 with
the assumption of idealised flight routing (Baughcum et al., 1996). The vertical resolution of this data set is 1 km. As flown
distances are not provided in the NASA inventory we assume the geographical distribution of flown distances according to
the geographical distribution of fuel consumption, scaled to the QUANTIFY distances-fuel-ratio.

As the emission inventories differ in the calculation method as well as in the base year, they have diverse total emissions
(Table 2). Thus, the climate impact of the emission inventories would be different. As we want to explore the applicability of
our method for small, especially regional, differences, we use normalised emission sets by scaling the fuel consumption as
well as NOx emissions and flown distances of all scenarios to the QUANTIFY values. The remaining differences between the
emission inventories are due to different distributions of the emissions with respect to latitude and altitude. Fig. 2a shows
the latitudinal distributions of the emissions in percent per degree. These distributions are very similar for all inventories. All
of them have high emissions between 20�N and 60�N, with a maximum at about 40�N. The altitude distribution of the emis-
sions in percent per kft altitude (Fig. 2b) shows more variability. In the AERO2k inventory emissions are higher between 800
and 300 hPa in comparison to the other emission sets. Therefore, the maximum emission at main flight levels (200–300 hPa)
is smaller in AERO2k. TRADEOFF and QUANTIFY show similar altitude profiles with relatively low emissions below 300 hPa,
but a strong maximum at main flight levels at about 230 hPa. NASA provides similar emissions as TRADEOFF and QUANTIFY
below 300 hPa, but a smaller maximum at 230 hPa. In contrast to the other emission sets, NASA provides more emissions
above 200 hPa (up to 130 hPa) because the base year (1992) included supersonic air traffic (Concorde).
Table 2
Overview of the used emission inventories before normalisation. For our calculations we scale all emissions and flown distances to QUANTIFY values (see
Scaled).

Base year Fuel [Tg] NOx [TgN] Distances [109 km] Vert. Resolution [m]

AERO2k 2002 176 0.68 33.2 305
QUANTIFY 2000 214 0.85 30.5 610
TRADEOFF 2000 169 0.59 25.1 610
NASA 1992 139 0.44 19.8a 1000
Scaled – 214 0.85 30.5 –

a Flown distances are not given in the NASA dataset, but calculated by using NASA fuel distribution scaled by QUANTIFY distance-fuel-ratio.

http://www.pa.op.dlr.de/quantify
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3. Results

3.1. Identification of changes in climate impact from different technologies

In this section we use the external MC to show the applicability of the method to identify changes in climate impact of
different emission distributions. First, we analyse the ATR100 for the four different emission inventories, following called sce-
narios, with the uncertainty assumptions of Grewe and Stenke (2008) (Table 1). Due to the large uncertainty ranges, the
resulting ATR100 distribution show a large spread (Fig. 3). The ATR100 caused by the AERO2k emission inventory, for example



Fig. 4. Temperature change (mK) caused by the TRADEOFF and QUANTIFY emission inventories with different RF values for ozone (green: maximum RF,
blue: mean RF, red: minimum RF). The arrows indicate ranges for the uncertainty in the air traffic climate impact caused by changes in ozone RF (large
arrow) and the difference between climate impact from two emission inventories (small arrow). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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varies between about 50 and 80 mK. Due to this large spread the ATR100 caused by the different scenarios do not differ sig-
nificantly on a 95% confidence level except for AERO2k and NASA. However, this approach ignores that the uncertainties
which are assessed here are not statistical uncertainties, which arise from atmospheric or interannual variability, but rather
uncertainties that arise from different modelling approaches, representing atmospheric uncertainties. Hence, we analyse
pairwise relative differences of the ATR100 of two scenarios for individual sets of uncertainty parameters, which is demon-
strated in Fig. 4. The figure shows the temporal evolution of two scenarios for three different assumptions (instances) for the
strength of ozone radiative forcing. The large arrow indicates the uncertainty range for the total climate impact of aviation
due to uncertainties of ozone radiative forcing. The small arrow indicates the difference in the climate impact from two
emission inventories. While the uncertainty in absolute temperature change is large, the relative difference for each of
the assumptions is quite similar (about 9–14%).

In Fig. 5 the percentiles of the distribution of relative differences (u, Eq. (1)) of an individual scenario to the mean of all
scenarios are provided (grey bars). Despite the large uncertainty in the total ATR100 calculation and the normalised emis-
sions, at least three of the scenarios can be distinguished on a 95% confidence level with this kind of assessment. Only
the climate impacts of TRADEOFF and QUANTIFY emission inventories cannot be distinguished on a 95% confidential inter-
val. Thus, the climate impact caused by the NASA inventory is 20% higher than the average of all scenarios, while the climate
impact caused by the AERO2k inventory is 15% smaller.
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To analyse the reason for the differences between the scenarios we split the relative differences into contributions of the
different climate agents (uspec , Eq. (2), Fig. 5). The 20% higher climate impact from the NASA emission inventory is mainly
caused by the impact of O3, CiC, and H2O, which cause a difference of about 10%, 7%, and 2%, respectively. The impacts of
CH4 and Opm

3 have only minor contributions to the total differences. NASA provides emissions up to higher altitudes than
the other emission inventories (Fig. 2b). This leads to the higher impact of ozone, contrail cirrus, and water vapour compared
to the other emission scenarios, as the climate impact of ozone, contrail cirrus and water vapour increases strongly with
increasing altitude. There is no difference in the climate impact of CO2 between the different emission inventories, as they
are normalised to the same fuel consumption and the climate impact of CO2 does not depend on the emission location. The
AERO2k inventory shows the lowest climate impact (�15%), mainly due to lower impacts of contrail cirrus (�8%) and ozone
(�5%). The other climate agents contribute around or less than �1% to the difference. The lower climate impact of AERO2k
from ozone and contrail cirrus is caused by low emissions at higher altitudes and increased emissions at lower altitudes,
where the climate impacts of ozone, water vapour, and contrails are generally small because of small lifetimes of water
vapour and ozone precursors as well as too warm temperatures for contrail formation. The climate impact of the TRADEOFF
inventory is only about 2% smaller than the mean of all scenarios, as the smaller impacts of ozone and water vapour are
partly compensated by the higher climate impact of the contrails. Compared to NASA, TRADEOFF provides emissions in lower
altitudes, leading to a lower impact of ozone and water vapour. The higher climate impact of CiCc is caused by higher emis-
sions at the main flight level (about 230 hPa), which causes a larger ontrail-cirrus coverage. The relative differences of the
other climate agents are positive, but less than 1%. The climate impact of QUANTIFY emissions is almost the same as for TRA-
DEOFF (�3%) but with different contribution from the individual climate agents. QUANTIFY shows higher climate impact of
ozone and water vapour due to emissions up to higher altitudes compared to TRADEOFF, compensated by lower climate
impact of contrail cirrus due to a smaller emission maximum at the main flight level (230 hPa).

The results presented above were calculated using the uncertainty assumptions of Grewe and Stenke (2008). To analyse
to which extent the results depend on the choice of uncertainty ranges, we performed a second MC simulation with uncer-
tainty assumptions from Lee et al. (2009) and compare the results of both assumptions in Fig. 6. The medians of the relative
differences of an individual scenario to the mean of all scenarios for both uncertainty assumptions differ by less than 0.5
percentage points for each of the emissions scenarios. As the uncertainty ranges given in Lee et al. (2009) are larger than
in Grewe and Stenke (2008), the uncertainties in the resulting temperature changes are also larger. Note that the RF uncer-
tainty ranges given by Lee et al. (2009) provide an upper limit estimate (see above). The uncertainty range for NASA, for
example, is four times larger when using the Lee et al. (2009) assumption than it is when using the Grewe and Stenke
(2008) assumption. Due to the larger uncertainty, TRADEOFF can no longer be distinguished significantly on a 95% confi-
dence level from the mean of all scenarios. Nevertheless, the conclusion that the NASA inventory leads to about 20% larger
and the AERO2k dataset to about 14% lower climate impact than the mean of all scenarios remains unchanged.

3.2. A fast identification method for time-consuming use cases

To analyse the applicability of the internal MC version, we performed an additional internal MC simulation with the
uncertainty assumptions according to Grewe and Stenke (2008). The comparison of the internal and the external model
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results is displayed in Fig. 7. Although there are minor differences, both model versions provide qualitatively the same
results. The uncertainties of the internal model version are smaller for the TRADEOFF and QUANTIFY inventories, but larger
for NASA and AERO2k. These differences are mainly caused by the uncertainties in s (lifetime of tropospheric and strato-
spheric perturbations), as this has a nonlinear effect on temperature change. If we neglect uncertainties in s, both model ver-
sions provide almost identical results (not shown).
3.3. TRADEOFF – a use case

As a use case we analyse the mitigation gain of shifting air traffic by 2000 ft up or 2000, 4000 or 6000 ft down, respec-
tively (about 610, 1220 and 1830 m) as it was done in the TRADEOFF project (e.g. Frömming et al., 2012). For these mitiga-
tion scenarios aircraft increase or decrease their mean flight altitude if they are able to perform these flight profiles. Changes
in fuel consumption as well as NOx emission due to changed flight altitude are taken into account (see Table 3).

The relative changes of the mitigation scenarios to the base case in terms of ATR100 using the internal MC simulation are
shown in Fig. 8. For an increase of mean flight altitude by 2000 ft fuel consumption decreases by 0.6% leading to a decrease in
climate impact due to CO2 by 0.2%. However, the total climate impact increases by about 8.5% as the emissions take place in
more climate sensitive regions (see Fig. A.2). The increase in climate impact is mainly due to O3 and CiC (+5.0% and +2.3%,
respectively). In contrast, a reduction of mean flight altitude increases the fuel consumption and thus the impact of CO2. Nev-
ertheless the total climate impact decreases with mean flight altitude as the decrease of O3 and CiC dominates the increase of
CO2. A reduction in flight altitude by 6000 ft reduces the overall climate impact by 23%. Despite the large uncertainties the
mitigation scenarios with changes flight altitudes provide significantly higher or lower climate impact compared with the
base case.

The results provided here are not directly comparable to those from Frömming et al. (2012) as different models and met-
rics are used. In AirClim we use ATR100 while Frömming et al. (2012) uses RF and DT in 2100. In addition we account for CiC
while Frömming et al. (2012) only account for linear contrails which are about nine times smaller as CiC (Burkhardt and
Table 3
Annual mean fuel consumption and emissions for TRADEOFF base scenario and flight altitude changes.

Fuel consumption Tg/a NOx emissions Tg(N)/a Flown Distances 109 km/a

+2000 ft 151 0.61 25.4
Base 152a 0.60 25.4
�2000 ft 156 0.62 25.4
�4000 ft 160 0.63 25.4
�6000 ft 161 0.63 25.4

a Different from Table 2 as no military emissions are included.
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Kärcher, 2011). If we only consider the impact of linear contrails, total climate impact in terms of DT in 2100 would be
reduced by about 12% for the scenario with 4000 ft lower flight altitudes (not shown), which is in agreement with 17% in
Frömming et al. (2012).

4. Conclusion

In this paper we presented a methodology to analyse the climate impact (i.e. the average temperature response over
100 years) of different air traffic scenarios and the influence of different uncertainty estimates. As the uncertainties in assess-
ing the climate impact of aviation are large, the calculated temperature change shows a wide spread. We calculated the rel-
ative difference of climate impacts between different emission scenarios for many possible combinations of uncertainty
parameters. We found significant differences between most of the scenarios, although the emission inventories were very
similar. This shows that it is often possible to determine significant differences between the climate impacts of differing
emission data sets. Thus it is possible to obtain a reliable assessment, although considerable uncertainties in the overall cli-
mate impact exist. In addition this study shows that the knowledge of the exact emission region is particularly important to
accurately determine the climate impact of air traffic.

The application of AirClim within a Monte Carlo simulation shows that a variety of mitigation options can be assessed and
analysed with respect to significant differences in climate impact. Due to its numerical efficiency, the method can be used for
air traffic optimisation studies. For instance, an analysis and optimisation of the climate mitigation gain by changing the
operation point (speed and cruise altitude) of present-day aircraft is presented in Koch (2013).
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Appendix A. AirClim 2.0: Model description

A.1. Overview

AirClim is a response model, i.e. it uses the relation between emissions of CO2, NOx and H2O and their impacts on atmo-
spheric composition with respect to carbon dioxide, ozone, methane, water vapour, and contrails. The AirClimmodel version
1.0 is documented in Grewe and Stenke (2008). That version was developed for supersonic air traffic and included effects
from emissions of CO2, H2O, NOx and flight distance on the radiative forcing and the global mean near surface temperature
changes via the climate agents CO2, H2O, O3 (stratospheric and tropospheric), CH4 and line-shaped contrails. The model was
updated in Dahlmann (2012) based on model simulations from Fichter (2009) and Burkhardt and Kärcher (2009). The
updated version makes use of an enhanced vertical and horizontal resolution (including subsonic air traffic) and includes
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contrail-cirrus, and primary mode ozone (Opm
3 ), i.e., the effect of changes in methane on ozone. A complex process model is

used to produce a large set of relations between an emission at a particular location and its effect on climate (emission–effect
relations). For chemical changes and the associated RF Appendices (A.2) and (A.3) the simulations were performed with the
climate-chemistry model E39/CA and were analysed in Fichter (2009). For contrail-cirrus (CiC, A.4), the base model is
ECHAM4-CCMod (Burkhardt and Kärcher, 2009, 2011).
A.2. Resolution AirClim 2.0 for subsonic air traffic

The resolution of AirClim is given by the number of pre-calculated emission–effect relations. 85 simulations were per-
formed. One base case simulation with E39/CA, which includes state-of-the art emissions for all categories, such as industry,
biomass burning, and air traffic, and 84 simulations with a constant flux of NOx and H2O (same value as in Grewe and Stenke
(2008)) is added in one of the latitude/altitude regions (=red boxes in Fig. A.1, 7 latitude bands and 12 altitude ranges). The
difference of each of the 84 simulations to the base case simulation is the increase in concentration of atmospheric species
due to this additional emission (see Appendix A.3). Hence for the chemistry effects the resolution of AirClim varies between
15� latitude and 30� latitude, with a higher resolution in northern mid latitudes, where most air traffic occurs. The vertical
resolution varies also and has a resolution of roughly 1 km. Cruise altitudes for most subsonic aircraft are usually located
between 300 hPa and 200 hPa.
A.3. Chemistry

The response of a local emission to the global and annual mean water vapour, ozone, methane and contrail induced cirrus
radiative forcing is shown in Fig. A.2 given as global mean RF per unit emission or flown distance. The figures are consistent
with Grewe and Stenke (2008), but have a much higher internal vertical and horizontal resolution.

Changes in the methane concentration affect the HOx (OH + HO2) partitioning, e.g. a lower methane concentration reduces
the reaction rate of CH4 + OH? CH3 + H2O and a subsequent production of HO2, which reduces the reaction rate of the rate
limiting reaction of tropospheric ozone production NO + HO2 ? NO2 + OH. Hence a decrease in methane due to air traffic
emissions feeds back to the ozone concentration (less ozone production). This effect is much smaller than the initial ozone
production and the lifetime of this ozone change is bounded to the methane perturbation. This ozone change is called pri-
mary mode ozone (Opm

3 ). Simulations with E39/CA show a factor between the RF of methane and Opm
3 of 0.29. Hence, this

effect is included in AirClim via RFðOpm
3 Þ ¼ 0:29 � RFðCH4Þ.
Fig. A.1. Positions of the emission regions of the idealised emission scenarios (red boxes). In the background, exemplarily annual flight distance densities
from global aviation are shown in km/s/kg (air). The tropopause is shown in blue. From Fichter (2009). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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A.4. Contrail-Cirrus

A multi-annual simulation using the AERO2k inventory with ECHAM4-CCMod (Burkhardt and Kärcher, 2009, 2011) was
analysed to deduce a relation between flown distances and the RF of CiC. A three step approach was found to have reasonable
correlation (Dahlmann, 2012).

1. Flown distance + Schmidt-Appleman Criterion? Contrail-flight distance density
2. Contrail-flight distance density + Ice Supersaturation? Contrail coverage
3. Contrail coverage? RF(CiC)
Fig. A.2. Global and annual mean radiative forcing of H2O, O3, CH4 and CiC as a function of emission location.
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To obtain CiC radiative forcing, as a first step, the weighted sum of the flown distance in a grid box is calculated. The local
weight is the probability that the Schmidt-Appleman Criterion (SAC) is fulfilled (pSAC), which is derived from the climate
model ECHAM4-CCMod (Burkhardt et al., 2008). The contrail-flight distance density (CFDD) is then
Fig. A.4
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Here, i, j, k are the grid indices for longitude, latitude and level. For the second step additional climate model simulations
were performed with year 2002 air traffic and fivefold year 2002 air traffic to obtain a larger parameter space. The fractional
area of ice super saturation (ISS) as well as the contrail cirrus coverage with an optical depth larger than 0.02 in the short-
wave (cccov) for every horizontal grid (i, j) was calculated by the climate model. For ISS as well as cccov we assume max-
imum random overlap between 200 and 250 hPa. The resulting response function between contrail-flight distance density,
ice super saturation and contrail coverage derived by fitting climate model data, is then:
Fig. A.6
comple
cccovði; jÞ ¼ 0:128 � ISSði; jÞ � arctan 97:7 � CFDDði; jÞ
ISSði; jÞ

� �
: ðA:2Þ
The results are shown in Fig. A.3 for two different ranges of ice super saturation.
The last step is again based on a correlation derived from the contrail-cirrus simulations:
RF ¼ 14:9 W m�2 � cccov: ðA:3Þ

Here cccov is the global mean coverage derived from all horizontal grid boxes (cccovði; jÞ). The correlation is shown in
Fig. A.4.

A.5. Validation

A.5.1. Comparison response model – complex model
Fichter (2009) analysed the difference between AirClim results and results from the complex model E39/CA for the

TRADEOFF scenarios where flight altitudes were shifted by 2000 ft up or 2000, 4000 and 6000 ft down, respectively.
Fig. A.5 shows the differences of the base case to the respective perturbation case for all species for the complex model (left)
and the response model (right). Fig. A.5a shows, that the zonal mean perturbation of H2O concentration agrees well between
AirClim and E39/CA and the difference in the global mean RF is less than 3%. The zonal mean O3 perturbation from AirClim
shows a larger spread toward the southern hemisphere in comparison to E39/CA (Fig. A.5b). The ozone as well as the
methane RF is 33 and 31% higher in AirClim compared to E39/CA. Reasons for the differences could be the lower spatial
resolution in AirClim or nonlinearities.

The global mean contrail cirrus RF for global air traffic in 2002 (AERO2k) calculated with a complex climate model
(ECHAM4-CCMod) is 37.5 mWm�2 (Burkhardt and Kärcher, 2011). AirClim calculates identical global contrail cirrus
. Change in RF of different species for a change of flight altitudes by 2000 ft up or down as calculated in the REACT4C project by means of several
x models in comparison with AirClim results.
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coverage of 0.23% for the same emissions, but a 9% lower RF (34.2 mWm�2). One reason for this difference could be the fact,
that AirClim account for latitude dependency of contrail cirrus coverage but not for the latitude dependency of the RF per
cccov. To analyse how well AirClim reproduces saturation effects occurring for CiC, three additional simulations with scaled
air traffic (factor of 0.5, 2 and 5) were performed. AirClim shows quite similar saturation effects as ECHAM4-CCMod with
differences less than 8% between the two models. However, this CiC calculation is only tested for emission distributions sim-
ilar to present-day air traffic. If future air traffic is shifted, for example, to the tropics this calculation may lead to errors as the
CiC RF is not only dependent on contrail cirrus coverage, but also on optical depth which varies with altitude and latitude.
A.5.2. Comparison of AirClim and other climate models
The comparison of AirClim with other climate models shows good agreement. The change in global mean RF for several

species for a change of flight altitudes by 2000 ft up or down for different complex climate chemistry models compared to
AirClim is shown in Fig. A.6 (REACT4C, Søvde et al. (2014), Matthes et al. (2015), Lim et al. (2015)). Qualitatively both model
types provide the same results, only for methane they differ in sign. However the methane RF is small and has only a minor
influence on the total climate impact.
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