Enumerating Permutation Polynomials over Finite Fields by Degree

Sergei Konyagin ${ }^{1}$
Department of Mechanics and Mathematics, Moscow State University, Vorobjovy Gory, 119899 Moscow, Russia
E-mail: kon@mech.math.msu.su,konyagin@ok.ru
and
Francesco Pappalardi
Dipartimento Di Matematica, Università degli Studi Roma Tre, Largo S. L. Murialdo, 1, 1-00146 Rome, Italy
E-mail: pappa@mat.uniroma3.it
Communicated by Wan Daging

Received June 27, 2001; published online June 14, 2002

> We prove an asymptotic formula for the number of permutations for which the associated permutation polynomial has degree smaller than $q-2$. © 2002 Elsevier Science (USA)

Let \mathbb{F}_{q} be a finite field with $q=p^{f}>2$ elements and let $\sigma \in S\left(\mathbb{F}_{q}\right)$ be a permutation of the elements of \mathbb{F}_{q}. The permutation polynomial f_{σ} of σ is

$$
f_{\sigma}(x)=\sum_{c \in \mathbb{F}_{q}} \sigma(c)\left(1-(x-c)^{q-1}\right) \in \mathbb{F}_{q}[x] .
$$

f_{σ} has the property that $f_{\sigma}(a)=\sigma(a)$ for every $a \in \mathbb{F}_{q}$ and this explains its name.

For an account of the basic properties of permutation polynomials we refer to the book of Lidl and Niederreiter [5].
${ }^{1}$ To whom correspondence should be addressed.

1071-5797/02 \$35.00
(C) 2002 Elsevier Science (USA)

All rights reserved.

From the definition, it follows that for every σ

$$
\partial\left(f_{\sigma}\right) \leq q-2
$$

A variety of problems and questions regarding permutation polynomials have been posed by Lidl and Mullen [3,4]. Among these there is problem of determining the number N_{d} of permutation polynomials of fixed degree d. In $[6,9]$ Malvenuto and the second author address the problem of counting the permutations that move a fixed number of elements of \mathbb{F}_{q} and whose permutation polynomials have "low" degree.

Here, we consider all permutations and we want to prove the following:
Theorem 1. Let

$$
N=\#\left\{\sigma \in S\left(\mathbb{F}_{q}\right) \mid \partial\left(f_{\sigma}\right)<q-2\right\}
$$

Then,

$$
|N-(q-1)!| \leq \sqrt{2 e / \pi} q^{q / 2}
$$

This confirms the common belief that almost all permutation polynomials have degree $q-2$.

The first few values of N are listed below:

q	2	3	4	5	7	8	9	11
N	0	0	12	20	630	5368	42120	3634950
$(q-1)!$	1	2	6	24	720	5040	40320	3628800

Proof. The proof uses exponential sums and a similar argument as the one in [2].

By extracting the coefficient of x^{q-2} in $f_{\sigma}(x)$, we obtain that the degree of $f_{\sigma}(x)$ is strictly smaller than $q-2$ if and only if

$$
\sum_{c \in \mathbb{F}_{q}} c \sigma(c)=0
$$

For a fixed subset S of \mathbb{F}_{q}, we introduce the auxiliary set of functions

$$
N_{S}=\left\{f \mid f: \mathbb{F}_{q} \rightarrow S, \text { and } \sum_{c \in S} c f(c)=0\right\}
$$

and set $n_{S}=\# N_{S}$. By inclusion exclusion, it is easy to check that

$$
\begin{equation*}
N=\sum_{S \subseteq \mathbb{F}_{q}}(-1)^{q-|S|} n_{S} \tag{1}
\end{equation*}
$$

Now if $e_{p}(u)=e^{2 \pi i u / p}$, consider the identity

$$
n_{S}=\frac{1}{q} \sum_{a \in \mathbb{F}_{q}}\left(\sum_{f: \mathbb{F}_{q} \rightarrow S} e_{p}\left(\sum_{c \in \mathbb{F}_{q}} \operatorname{Tr}(a c f(c))\right)\right)
$$

which follows from the standard property

$$
\frac{1}{q} \sum_{a \in \mathbb{F}_{q}} e_{p}(\operatorname{Tr}(a x))= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { if } x \neq 0\end{cases}
$$

By exchanging the sum with the product, we obtain

$$
n_{S}=\frac{1}{q} \sum_{a \in \mathbb{F}_{q}}\left(\prod_{c \in \mathbb{F}_{q}} \sum_{t \in S} e_{p}(\operatorname{Tr}(a c t))\right)
$$

By isolating the term with $a=0$ in the external sum and noticing that the internal product does not depend on a (for $a \neq 0$), we get

$$
n_{S}=\frac{|S|^{q}}{q}+\frac{1}{q} \sum_{a \in \mathbb{F}_{q}^{*}}\left(\prod_{b \in \mathbb{F}_{q}} \sum_{t \in S} e_{p}(\operatorname{Tr}(b t))\right)
$$

Finally,

$$
\begin{equation*}
n_{S}=\frac{|S|^{q}}{q}+\frac{q-1}{q} \prod_{b \in \mathbb{F}_{q}} \sum_{t \in S} e_{p}(\operatorname{Tr}(b t)) . \tag{2}
\end{equation*}
$$

Now let us insert Eq. (2) in Eq. (1) and obtain

$$
N-\sum_{S \subseteq \mathbb{F}_{q}} \frac{(-1)^{q-|S|}}{q}|S|^{q}=\frac{q-1}{q} \sum_{S \subseteq \mathbb{F}_{q}}(-1)^{q-|S|} \prod_{b \in \mathbb{F}_{q}} \sum_{t \in S} e_{p}(\operatorname{Tr}(b t))
$$

Note that inclusion-exclusion gives

$$
\sum_{S \subseteq \mathbb{F}_{q}} \frac{(-1)^{q-|S|}}{q}|S|^{q}=(q-1)!
$$

Therefore,

$$
N-(q-1)!=\frac{q-1}{q} \sum_{S \subseteq \mathbb{F}_{q}}(-1)^{q-|S|}|S| \prod_{b \in \mathbb{F}_{q}^{*}} \sum_{t \in S} e_{p}(\operatorname{Tr}(b t)) .
$$

Using the fact that for $b \in \mathbb{F}_{q}^{*}$

$$
\sum_{t \in S} e_{p}(\operatorname{Tr}(b t))=-\sum_{t \notin S} e_{p}(\operatorname{Tr}(b t))
$$

and grouping together the term relative to S and the term relative to $\mathbb{F}_{q} \backslash S$, we get

$$
\begin{equation*}
|N-(q-1)!| \leq \frac{q-1}{2 q} \sum_{S \subseteq \mathbb{F}_{q}}|q-2| S| | \prod_{b \in \mathbb{F}_{q}^{*}}\left|\sum_{t \in S} e_{p}(\operatorname{Tr}(b t))\right| \tag{3}
\end{equation*}
$$

Now let us also observe that

$$
\sum_{b \in \mathbb{F}_{q}}\left|\sum_{t \in S} e_{p}(\operatorname{Tr}(b t))\right|^{2}=q|S|
$$

so that

$$
\sum_{b \in \mathbb{F}_{q}^{*}}\left|\sum_{t \in S} e_{p}(\operatorname{Tr}(b t))\right|^{2}=(q-|S|)|S| .
$$

From the fact that the geometric mean is always bounded by the arithmetic mean (i.e. $\left(\prod_{i=1}^{k}\left|a_{i}\right|^{2}\right)^{1 / k} \leq \frac{1}{k} \sum_{i=1}^{k}\left|a_{i}\right|^{2}$), we have that

$$
\begin{align*}
\prod_{b \in \mathbb{F}_{q}^{*}}\left|\sum_{t \in S} e_{p}(\operatorname{Tr}(b t))\right| & \leq\left(\frac{1}{q-1} \sum_{b \in \mathbb{F}_{q}^{*}}\left|\sum_{t \in S} e_{p}(\operatorname{Tr}(b t))\right|^{2}\right)^{(q-1) / 2} \\
& =\left(\frac{(q-|S|)|S|}{q-1}\right)^{(q-1) / 2} \tag{4}
\end{align*}
$$

Furthermore, using (3) and (4) we obtain

$$
\begin{equation*}
|N-(q-1)!| \leq \frac{q-1}{2 q(q-1)^{(q-1) / 2}} \sum_{S \subseteq F_{q}}|q-2| S| |((q-|S|)|S|)^{(q-1) / 2} \tag{5}
\end{equation*}
$$

We want to estimate the above sum. Consider the inequality

$$
\begin{equation*}
((q-|S|)|S|)^{(q-1) / 2} \leq\left(\frac{q}{2}\right)^{q-1} \tag{6}
\end{equation*}
$$

and the identity

$$
\begin{equation*}
\sum_{S \subseteq \mathbb{F}_{q}}|q-2| S| |=2 q\binom{q-1}{[q / 2]} \tag{7}
\end{equation*}
$$

which holds since

$$
\begin{aligned}
2 \sum_{\substack{S \subseteq \mathbb{F}_{q},|S| \leq q / 2}}(q-2|S|) & =2\left[\sum_{j=0}^{[q / 2]}\binom{q}{j}(q-j)-\sum_{j=1}^{[q / 2]}\binom{q}{j}(j)\right] \\
& =2 q\left[\sum_{j=0}^{[q / 2]}\binom{q-1}{j}-\sum_{j=1}^{[q / 2]}\binom{q-1}{j-1}\right]=2 q\binom{q-1}{[q / 2]} .
\end{aligned}
$$

From the standard inequality

$$
\binom{2 n}{n} \leq \sqrt{\frac{2}{\pi}} \frac{2^{2 n}}{\sqrt{2 n+1 / 2}}
$$

which can be found for example in [1], we deduce

$$
\begin{equation*}
\binom{q-1}{[q / 2]} \leq \sqrt{\frac{2}{\pi}} \frac{2^{q-1}}{\sqrt{q-1 / 2}} \tag{8}
\end{equation*}
$$

Therefore, (5), (6), (7) and (8) imply

$$
|N-(q-1)!| \leq\left(\frac{q-1}{\sqrt{q-1 / 2} \sqrt{q}}\right) \sqrt{\frac{2}{\pi}}\left(\frac{q}{q-1}\right)^{(q-1) / 2} q^{q / 2}
$$

and in view of the inequalities

$$
\frac{q-1}{\sqrt{q-1 / 2} \sqrt{q}}<1, \quad\left(\frac{q}{q-1}\right)^{(q-1) / 2}<\sqrt{e}
$$

we finally obtain

$$
|N-(q-1)!| \leq \sqrt{\frac{2 e}{\pi}} q^{q / 2}
$$

and this completes the proof.

CONCLUSION

Computations suggest that a more careful estimate of the sum in (5) would yield to a constant $\sqrt{e / 2 \pi}$ instead of $\sqrt{2 e / \pi}$ as coefficient in $q^{q / 2}$ in the statement of Theorem 1. However, we feel that such a minor improvement does not justify the extra work.

The ideas in the proof of Theorem 1 can be used to deal with the analogous problem of enumerating the permutation polynomials that have the i th coefficient equal to 0 and also to the problem of enumerating the permutation polynomials with degree less than $q-k$ (for fixed k). However, the exponential sums that need to be considered are significantly more complicated.

ACKNOWLEDGMENTS

The first author was supported by Grants 02-01-00248 and 00-15-96109 from the Russian Foundation for Basic Research. The second author was partially supported by G.N.S.A.G.A. from Istituto Nazionale di Alta Matematica.

The authors thank Igor Shparlinski for suggesting a substantial improvement with respect to the original result.

Note added in proof. Recently the asymptotic estimate in Theorem 1 for a prime q (with slightly weaker remainder term) has been proved in the paper "The number of permutation polynomials of a given degree" by Pinaki Das (to appear in this journal). The author uses algebraic arguments rather than exponential sums.

REFERENCES

1. E. Grosswald, Algebraic Inequalities for π, Solution to a problem proposed by R. E. Shafer, Amer. Math. Monthly 84 (1977), 63.
2. S. Konyagin, A note on the least prime in an arithmetic progression, East J. Approx. 1 (1995), 403-418.
3. R. Lidl and G. L. Mullin, When does a polynomial over a finite field permute the elements of the field? Amer. Math. Monthly 95 (1988), 243-246.
4. R. Lidl and G. L. Mullin, When does a polynomial over a finite field permute the elements of the field? II Amer. Math. Monthly 100 (1993), 71-74.
5. R. Lidl and H. Niederreiter, "Finite Fields," Encyclopedia of Mathematics and its Applications, Vol. 20, Addison-Wesley, Reading, MA, 1983.
6. C. Malvenuto and F. Pappalardi, Enumerating permutation polynomials I: Permutations with non-maximal degree, submitted.
7. C. Malvenuto and F. Pappalardi, Enumerating permutation polynomials II: k-cycles with minimal degree, in preparation.
