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Little is known about the range or controls on the molybdenum isotopic composition of low-medium temperature hydrothermal 
ore-forming systems. We present molybdenum isotope data from 12 hydrothermal syndepositional silicalite and carbonaceous 
slate samples from the Dajiangping pyrite deposit in western Guangdong Province, South China. The δ 97/95Mo values from Ore-
body III range from −0.02‰ to 0.29‰, with an average of 0.18‰. In contrast, the composition values from Orebody IV display a 
larger variation from −0.70‰ to 0.62‰. However, the five samples from the main ore bed all show strong negative values. This 
indicates that the significant variation in molybdenum isotopic composition supports different hydrothermal ore-forming metal-
logenesis and a metallogenic environment between the two orebodies. Orebody III is likely to have been deposited from subma-
rine exhalative hydrothermal fluids under a relatively strong reducing environment and Orebody IV may have also been influ-
enced by hydrothermal superimposition in a more oxidized disequilibrium condition. In addition, the δ 97/95Mo values of Orebody 
IV are clearly negative, together with the values increasing stratigraphically upward in the ore beds, suggesting that the metal-
logenic environment of Orebody IV is different from the open oceanic systems. There might be dynamic fractionation in this re-
stricted environment. Therefore, the molybdenum isotope can be used as an effective tracer for the ore-forming fluid and metal-
logenic environment.  
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The use of non-traditional stable isotopes (e.g. Mo, Fe, Cu,  
Zn, Se, Cr) has developed rapidly during recent years with  
Multiple Collector Inductively Coupled Plasma Mass Spec- 
trometry (MC-ICP-MS) being increasingly used for their  
identification. In particular, molybdenum (Mo) isotopes  
have shown specific advantages in understanding redox  
conditions involved in modern sea, lake and other regional  
or local depositional environments, the geochemical evolu- 
tion of paleo-oceanography and paleoclimatic changes  
[1–10]. Mo is the most abundant transition metal in the 
oceans with a concentration of ~105 nmol/kg [11]. In mod- 
                      

*Corresponding author (email: kaihu@nju.edu.cn) 

ern oceans, Mo shows relatively conservative geochemical 
behavior with a residence time of 800 ka [12,13]. Hence, 
the geochemical behavior of Mo has global implications. 
Mo is a typical redox-sensitive element possessing IV, V, 
VI and other oxidation states. The isotopic fractionation of 
Mo depends strongly on its redox reactions. In oxygenated  
oceans, Mo exists mainly as the tetrahedral molybdate ion  
( 2

4MoO − ) [3]. Mo fractionation depends predominantly on  
Fe-Mn oxide absorption [3,14,15], and is restrained by the  
density of H2S under anoxic or euxinic environments [16]. 
Hence, Mo and Mo isotopes can be used as a proxy to trace 
ocean systems in theory. However, few applications have  
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been undertaken on its use in relatively complex mineral 
deposit geochemistry, especially the data and control of the 
molybdenum isotopic composition in hydrothermal ore-    
forming systems. In general, several Mo isotopic data in 
high-temperature hydrothermal systems have been reported 
[1,17,18], with little of low-medium hydrothermal ore-    
forming systems. Therefore, studies on Mo isotopes and the 
Mo fractionation mechanism can provide useful information 
to understand the formation of hydrothermal deposits. 

The formation of the deposits is controlled by multiple 
factors, including the ore-forming fluid temperature, con-
centration, redox conditions (Eh), pH and reaction rate of 
wall rock. The redox conditions of the metallogenic envi-
ronment change and/or the interaction between the ore-    
forming fluid and wall rock causing the redox state variation 
that lead to changes in compound solubility are important 
mechanisms in metal precipitation. Hence, the study on the 
ore-forming fluid and redox conditions of a metallogenic 
environment may have important significance. The well-    
known Dajiangping super pyrite deposit located in western 
Guangdong Province of South China consists mainly of the 
massive Orebody IV and the banded Orebody III. Previous 
studies indicated that Orebody IV and III have different 
geochemical characteristics [19–26]. For example, the Eu 
value of Orebody IV is positive and its δ 34S sulfide values 
range from 12.60‰ to 21.07‰, while Orebody III has a 
negative Eu value and its sulfide δ 34S values vary from 
−25.55‰ to −15.52‰. Moreover, Orebody III contains 
more organic matter and radioactive lead. Hence these un-
ambiguous differences may indicate that both of the 
ore-forming fluids and metallogenic environment between 
the two orebodies vary pronouncedly. In this paper, we use 
the Mo isotope as a novel tracer in the ore-forming fluid and  

metallogenic environment to provide new useful evidence 
for ore genesis. 

1  Geological setting and deposit description 

The Dajiangping pyrite deposit is located in the Yunfu  
metamorphic block mass, in western Guangdong Province  
of South China. Outcrop Sinian-Cambrian strata occur  
widely. The ore district has a deposit of a series of marine  
facies flysh and flyschoid with fine detrital stone formation.  
The basal stratum of the mining area consists of high-grade  
metamorphose garnet, amphibolite, gneiss and granulitite,  
and upward the basal stratum are epimetamorphic quartzite,  
schist interstratified phyllonite and partial limestone or horn- 
stone. With respect to the ore-bearing strata, it is composed  
mainly of metamorphosed carbonaceous slate, carbonaceous  
siltstone, siliceous rock and siliceous limestone alternated  
with a banded pyrite layer. The silicalite is well-developed  
and is present as layers, a thin layer or a penecontemporan-  
eous siliceous band, which occur inside or above the  
symbiosis pyrite orebody [23]. The top of the ore bed  
consists of siltstone, phyllite interlaminated limestone and  
tuff (Figure 1). A feature common to this pyrite deposit is  
that it is distributed in layer, tabular, lenticular styles, with  
consistent occurrence of the wall rocks and a gradual  
contact. In addition, banded ore beds and rhythmic layers  
can be observed, reflecting syn-depositional characteristics.  
There are five ore bodies with the main orebodies being the  
banded Orebody III and massive Orebody IV. The  
maximum thickness of Orebody IV is approximately 160 m.  
The primary ore minerals are pyrite, together with relatively  
minor amounts of pyrrhotite, galena and sphalerite. 

 

 

Figure 1  Schematic section of the Dajiangping pyrite deposit. 1, Clastic rock; 2, crystalline limestone, schist and quartzite; 3, Orebody III; 4, Orebody IV; 
5, quartite, schist and phyllite; 6, carbonaceous slate and siltstone, silicalite and tuff; 7, fault; 8, prospecting line. 
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2  Sampling and analytical techniques 

According to previous studies, the siliceous rocks and  
orebody deposit syngenetically with hydrothermal water  
[19–21,23,26]. It is considered that the orebody has been  
subjected to anaphase hydrothermal alteration, mostly  
single colloidal minerals, and the pyrite was gelatinous  
containing impurities that could not be easily separated. We  
selected 12 typical samples, mostly syndepositional sili- 
ceous rocks, including two carbonaceous slate samples. All 
these samples are altered by ore-forming fluid, whose 
nature can hence be studied by analyses on the samples. In 
addition, some samples (e.g. Djp3-20 and Djp4-10) are ore 
whole-rock samples. An improved anion/cation exchange 
resin two-column procedure was used for Mo separation 
and purification. The detailed process has been described by 
Zhang et al. [27]. The Mo isotope ratios were measured 
using an Isoprobe MC-ICP-MS at CRPG in France. The 
“Sample-standard bracketing” method was employed to 
correct the mass bios in instrumental measurement and 
chemical separation. Two methods were used for data 
quality control. When dissolving the analyzed samples, each 
solution was collected before and after the subsequent 
chemical separation respectively for trace-element analyses. 
The overall recovery ratios and matrix removal effect were 
thus assessed. Under our current assessment, the recovered 
Mo yield was 97.49%±0.27% and the matrix (such as major 
ions or molecules with heavy elements Fe, Mn, Zr, Ru) 
removal rate was close to 100%, which indicated that it 
could be exclusive for the quality fractionation in the 
Chemical pre-treatment process as well as matrix effect in 
the process of mass spectrometry. Next, two internal Mo 
standards (SG-2 and S-3) were added in the chemical 
pre-treatment process and several parallel samples were also 
disposed of simultaneously by chemical treatment to monitor 
the circuit. Related data are listed in Table 1. Results are 
reliable and satisfied with the quality control criteria. 

Table 1  Mo isotopic standard sample and repeated sample measured 
resultsa) (‰) 

Sample 
Reference value 

(δ 97/95Mo) 
Measured value 

(δ 97/95Mo) 
SG-3 −1.11±0.19 −1.11±0.08 
SG-2 0.96±0.26 1.08±0.12 

Djp4-16  −0.36±0.10 
Djp4-16 (repeated)  −0.41±0.24 

a) The reference values of SG-2 and SG-3 are quoted from Wen et al. 
[28]. 

 
Because there are few universally acknowledged Mo 

isotopic international standards, a latest calibrating NIST 
SRM 3134 solution recommend by Wen et al. [28] was used 
as an internal reference standard. Meanwhile, Wen et al. 
suggested that the current international internal isotope 

laboratory using various criteria, such as JMC, Merck, 
NIST SRM 3134, with its Mo isotopic composition is con-      
sistent within errors [28]. Therefore, the measured data in 
this paper can be compared with other reported data. The 
results here and literature data are expressed in the form of 
δ 97/95Mo based on standard NIST SRM 3134. For the 
presentation of results, δ-notation is utilized, as defined by 
the relationship: 

δ 97/95Mo(‰)=[(97Mo/95Mo)Sample/(
97Mo/95Mo)NIST−1] 

×1000‰. 

The S isotope ratios were measured using the Flash-EA 
MAT-253 mass spectrometer at the Resource and Environ-
mental Engineering Center of East China Institute of Tech-
nology in Nanchang. The detailed processes are as follows: 
grind the mineral samples to 200 mesh, weigh out a 20–100 
μg sample and oxidize with SO2 at 1020°C. The technical 
accuracy of δ 34S was less than 0.2‰. 

Trace element analyses were performed on a Finnigan 
MAT Element HR-ICP-MS at the State Key Laboratory for 
Mineral Deposits Research, Nanjing University. The accu-
racy was better than 0.5×10−9, with a relative standard 
deviation less than 5. 

3  Results and discussion 

Analytical results are listed in Table 2. The δ 97/95Mo values  
vary from −0.70‰ to 0.62‰ per mil relative to the NIST  
SRM 134 Mo standard. The δ 97/95Mo values of Orebody III  
range from −0.02‰ to 0.29‰, with an average of 0.18‰   
(n = 3) with narrow variation. In contrast, the δ 97/95Mo val- 
ues of Orebody IV show a different distribution trend com- 
pared with Orebody III. Particularly, the five samples from  
the main ore bed with strong negative values and the mini- 
mum value reaching −0.70‰. The δ 97/95Mo values still  
present obvious positive value at the upper part of the main  
ore bed with the maximum value of 0.62‰. The δ 97/95Mo  
value of the surrounding rock sample (BP-3) collected from  
the fault belt between the two orebodies is 0.36‰, between  
the δ 97/95Mo values of Orebody III and IV. It is consistent  
with the other geochemical indications, such as organic  
matter content, Pb isotope and He-Ar isotope [20–22,24],  
that the geochemical features of the fault belt lie between  
Orebody III and IV. Among the samples DJP3-12 and  
DJP3-20, DJP4-10 and CK4-05, δ 97/95Mo values of the car- 
bonaceous slate are slightly higher than the homoeomerous  
chert in a relatively narrow range. The higher values of the  
carbonaceous slate, with partly silicified limestone or lime- 
stone as primary rocks, may be related to more synchronous  
heavy Mo isotopic seawater that are added into this layer  
during the formation period. Therefore, it indicates that the  
δ 97/95Mo values in the carbonaceous slate and chert are  
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Table 2  Analytical results of Mo and S isotope compositions in the Dajiangping pyrite deposit 

Samples Sampling location Depth (m) Lithologic characters δ 97/95Mo (‰) Mo (μg/g) δ 34S (‰) 

BP-3 fault (transition belt) 145 argillaceous silicalite 0.36±0.08 2.64 −17.51 
CK36-08 main ore bed of Orebody III 105 argillaceous silicalite −0.02±0.19 5.49 −10.95 
Djp3-12 main ore bed of Orebody III 130 carbonaceous slate 0.29±0.17 6.28 −12.01 
Djp3-20 main ore bed of Orebody III 140 ore bearing silicalite 0.27±0.06 6.94 −13.38 
CK4-05 upper plate of Orebody IV 110 carbonaceous slate 0.62±0.02 9.01 3.24 

Djp4-10 upper plate of Orebody IV 130 ore bearing silicalite 0.60±0.09 2.01  

Djp4-16 main ore bed of Orebody IV 160 ore bearing silicalite −0.36±0.10 1.77 −11.44 
Djp4-7 main ore bed of Orebody IV 180 silicalite −0.70±0.24 1.64 −8.99 
Djp4-9 main ore bed of Orebody IV 180 silicalite −0.59±0.04 1.95 2.60 

CK4-13 main ore bed of Orebody IV 210 silicalite −0.34±0.05 2.49 −1.42 
CK4-17 main ore bed of Orebody IV 230 carbonaceous silicalite −0.09±0.06 2.05 3.09 

CK4-22 orebody IV floor 260 
carbonaceous slate with 

banded silicalite 0.04±0.16 3.14 22.69 

 
controlled mainly by the metallogenic environment with 
little relation to the lithology. With respect to S isotopes, 
remarkable difference between the two orebodies is also 
showed. The δ 34S values in Orebody III are negative in a 
relatively narrow range, indicating the influence of biogenic 
sulfur. In contrast, the δ 34S values from Orebody IV have a 
relatively broad range from −11.44‰ to 22.69‰, suggest-
ing more complex ore-forming fluids. This is similar to the 
understanding from δ 97/95Mo values. 

Figure 2 presents a comparison of Mo isotopic composi- 
tions between the current study and those in natural samples,  
including the values of the reported Archean and Protero- 
zoic black shale, modern submarine sediments and some  
hydrothermal synthesis molybdenite. Different from the  
Archean or Proterozoic black shales and modern submarine  
anoxic sediments, the Mo isotopic composition from the  

 

 
Figure 2  Distribution of molybdenum isotope of Dajiangping pyrite 
deposit compared with reported data [4,6,14,17,18,29–33]. 

Dajiangping pyrite is relatively close to that of the hydro- 
thermal molybdenite. The studies by McManus et al. [32]  
suggest that the δ 97/95Mo of modern submarine hydrother- 
mal fluids is about 0.5‰, relatively different from the val- 
ues of the orebodies. However, this difference may be as- 
cribed to the variation between the modern and geological  
samples. For example, the δ 97/95Mo values of the Archean  
or Proterozoic black shales are less than modern seawater  
(δ 97/95Mo=~1.55‰) and Arnold et al. [4] concluded that the  
δ 97/95Mo value of the seawater was approximately 0.8‰ in  
the Neoproterozoic period. Thus, the δ 97/95Mo value may be  
less than 0.5‰ in the synchronous hydrothermal fluid and  
was likely close to the δ 97/95Mo values of the igneous rocks  
(0–0.5‰), based on the “Box Model” theory of Mo iso- 
topes proposed by Anbar et al. [6]. Hence, an important  
conclusion is that the Mo isotopic composition of Orebody III  
with an average value of 0.18‰ in a narrow variation may  
reflect a homogeneous hydrothermal submarine source. In  
addition, Jiang et al. [34,35] suggested a similar perspective.  
The relatively homogeneous Mo isotopic composition of the  
Ni-Mo polymetallic sulfide bed in the Lower Cambrian  
Niutiang Formation in South China is also ascribed to subma- 
rine hydrothermal source. Furthermore, the published He-Ar  
isotopes of our previous work [25] also proved that the ore- 
forming fluid of Orebody III was from submarine hydro- 
thermal fluids. However, there is an apparent different Mo  
isotopic composition between Orebody III and IV in that the  
latter has a relatively broad range. It can be thus implied  
that the redox conditions of the ore-forming fluids from  
Orebody IV have changed or there may be great differences  
between Orebody III and IV in the metallogenic environ- 
ment. 

Various geochemical evidences have indicated that the  
metallogenic environment of Orebody IV is distinguished  
from Orebody III. First, the S isotopic composition was  
significantly different. Orebody III is homogeneous with  
light S isotope, while the S isotopic composition of Orebody  
IV is more dispersed. Second, the lead isotopic composition  
of Orebody III is in general consistent with the mining area  
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layer, indicating a similar source. In contrast, the lead iso- 
tope values of Orebody IV imply a mixing source feature  
of formation Pb and basal Pb, reflecting late hydrothe- 
rmal alteration characteristics [20,22]. Third, the last and  
likely the most important evidence is fluid inclusion data.  
According to the microthermometry performed by Pan et al.  

[21] on gaseous fluid inclusions, the homogenization tem- 
perature of Orebody III ranges in 90–110°C, consistent  
with the submarine hydrothermal temperature. However, the  
homogenization temperature of the fluid inclusions from  
Orebody IV is in the range 300–350°C, reflecting a late  
hydrothermal superimposition. Therefore, the wider range  
of the δ 97/95Mo values in Orebody IV relative to those  
of Orebody III suggests that the Mo isotopic composi- 
tions of the Orebody IV ore-forming fluids might be related  
with the different Mo isotopic fractionation mechanism in  
the late hydrothermal superimposed metamorphism or late  
ore-forming hydrothermal systems. On the other hand, this  
also illustrates that the metallogenic environment of Ore- 
body IV has undergone significant changes in the primary  
metallogenic stage.  

The migration mechanism of Mo in oxygenated or an- 
oxic water is dependent mainly the migration of Mn oxides  
and the particle reaction with the thiols 2

4(MoO S )−
−x x   

[3,5,6]. Anbar et al. [1] and Barling et al. [2] suggested that  
the Mo content has an obvious positive correlation with the  
Mo isotopes under an anoxic sedimentary environment, but  
once the redox conditions changed, these correlations no  
longer exist. As shown in Figure 3, a strong correlation  
(R2=0.88) is observed between the δ 97/95Mo values and Mo  
content of the three samples from Orebody III and one  
carbonaceous slate sample from the upper part of Ore- 
body IV. In contrast, the correlation is fairly poor with R2 =  
0.22, with respect to the samples from the lower part of  
Orebody IV (excluding the fault sample). Thus, it implies  
different sedimentary environment between the two ore- 
bodies. We tentatively inferred that the metallogenic envi- 
ronment of Orebody III is relative anoxic, while the metal- 
logenic environment of Orebody IV was more oxidized or  

 

 

Figure 3  Correlation of Mo contents and Mo isotopic compositions of 
the Dajingping pyrite deposit. 

under a suboxic metallogenic environment. The similar fea- 
ture has been observed in the study on the Mo isotopic  
compositions of black shale and Ni-Mo polymetallic sulfide  
bed in the Lower Cambrian Niutiang Formation in South  
China by Jiang et al. [34]. The Mo contents were highly  
correlated with the Mo isotopic compositions (R2=0.71).  
They proposed that this coupling might reflect a mixture of  
Mo from a seawater source (heavy Mo isotope feature) with  
the origin of the detrital shale Mo (light Mo isotope feature).  
Of course, this possibility could not be completely excluded  
here and requires further work. 

The δ 97/95Mo values of five samples from the main  
ore-bed of Orebody IV are negative, especially for sam- 
ples DJP4-7 and DJP4-9. They are even the lowest in the  
literatures of hydrothermal systems, similar to those of the  
modern ocean floor ferromanganese nodules (−0.75‰–  
−0.26‰). However, until now, the Mo isotopic fractionation  
mechanism and its migration form in suboxic environment  
has not been clear sufficiently. A preliminary assumption was  
proposed that the ligand exchange ( 2

4MoO − , 2
4MoO S −

−x x ) or  

reduction process (Mo6+ Mo→ 4+) caused the Mo isotopic  
fractionation [6,36,37]. Furthermore, organic matter also  
influence the precipitation and fractionation of Mo [38–40].  
Combined with observation by scanning electron micros- 
copy (SEM) and electron probe microanalysis (EPMA) on  
Orebody IV, we infer that the enrichment of the light  
Mo isotope may be related to the following two factors: 

(1) Microorganisms and organic matter: biological pro- 
cesses could lead to Mo isotopic fractionation. Nägler et al.  
[41] has investigated Mo isotopic fractionation using the  
nitrogen-fixing bacteria Trichodesmium sp. IMS101 in the  
Mo absorption process and found that nitrogen-fixing  
Trichodesmium tended to absorb light Mo isotopes with a  
δ 97/95Mo value of −0.3‰. They suggested that metal iso- 
topic fractionation could be related to microbial species,  
types of Mo ingressing microorganisms and the Mo func- 
tion in biological agent processes. Based on a comparison of  
the Mo isotope composition of the modern marine carbona- 
tite with carboniferous carbonatite, Andrea et al. [42] also  
thought that biotic bacteria have a great effect on Mo iso- 
topic fractionation. Fortin et al. [43] found a large number  
of filamentous bacteria and organic carbon collected from  
Philosopher hydrothermal vents surrounding the modern  
northeast Pacific. These filaments could have been mineral- 
ized filamentous bacteria and most of the bacteria minerali- 
zation and bacteria polymer peripherals were encased by  
silicon-rich iron oxide, manganese oxide and iron metasili- 
cate. As discussed above and according to the Mo isotopic  
fractionation principle, these encased ferromanganese ox- 
ides should have a strong adsorption capacity towards light  
Mo isotopes. Here, we also found much vein-type apatite  
and filling organic matter using SEM observation in Ore- 
body IV (Figure 4(a)), indicating that hydrothermal and  
biological activity were relatively strong during the Ore- 
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Figure 4  Backscattered electron images of orebody IV. (a) Apatite vein and filled organic matter; (b) replacement of titania by erromanganese phase il-
menite. 

body IV formation. Chen et al. [44] and Wang et al. [45]  
also reported a large number of well-preserved algal fossils,  
mainly filamentous algae and symbiotic with the pyrite  
layer, suggesting that before the pyrite mineralized, massive  
algae were deposited. We speculate that these algae slowly  
release oxygen during photosynthesis to cause partial mi- 
cro-oxidized environments which could oxidize its carrier  
or peripheral Fe-Mn compounds. These Fe-Mn compounds  
were oxidized and also adsorbed the light Mo isotopes at the  
same time. In other words, these algae might carry a number  
of light Mo isotopes. In addition the late inherited algae  
adsorbing the light Mo isotopes of the native algae may also  
lead to a light Mo isotopic fractionation yield, and brought  
into forming fluids in the late diagenetic stage. In addition,  
these organisms decomposed to organic matter with light  
Mo isotope retention. As organic matter decomposed in the  
late high temperature hydrothermal fluids, there is not enough  
space or capability to conserve the light Mo isotopes, which  
are released into the ore-forming fluid. It can also result in the  
negative Mo isotope values for Orebody IV. 

(2) Replacement and adsorption of Fe-Mn oxides: redox  
condition changes may cause the alternation of elemental  
valence and coordination number, in turn leading to a varia- 
tion in bond energy between atoms in the crystal lattice.  
During this alternation process isotopic fractionation can be  
generated by transition metal elements [46]. Balistrieri et al.  
[47] suggested that metal anionic groups, such as 2

4MoO − , 

4 4H GeO−  or 3 4H GeO−  adsorb light isotopes on the mineral  
surface in the adsorption process. Mathur et al. [18] found  
that the Mo isotopic fractionation of the molybdenite from  
the porphyry copper deposit had a rather smaller δ 97/95Mo  
value relative to the skarn deposit. They inferred that the  
reason lead to Mo isotopic fractionations was different min- 
eral facies adsorption in the metallogenic epoch. As Figure  
4(b) shows, there is obvious Fe-Mn oxide metasomatic  
growth along the edge of the titania in later hydrothermal  
fluids in the Orebody IV flake. Generally, under oxidative  
conditions, Fe-Mn oxides alternate with titania according to  

the following reaction: 

MnO2+TiO2 MnTiO→ 3+1/2O2 

MnTiO3 carries MnO6 anionic octahedra [48], which has  
relatively larger ion channels and space. As a result, light  
Mo isotope is easy to be adsorbed and preserved. Moreover,  
a small amount of oxygen ions releasing during the alterna- 
tion process could further oxidize the Fe-Mn compound and  
adsorb light Mo isotope. It is another possible factor result- 
ing in negative Mo isotopes in Orebody IV. 

Although two of the mechanisms described above may to  
some extent explain the light isotope enrichment character- 
istics in Orebody IV, why some orebody samples located in  
the upper part of Orebody IV show heavy isotope enrich- 
ment characteristics needs to be considered. Assuming that  
the redox conditions of the metallogenic environment re- 
main unchanged in an open system, the Mo isotope signal  
of the ore reserved should be so concordance that could not  
generate such a large Mo isotopic fractionation in the same  
orebody. In addition, the δ 97/95Mo values increase strati- 
graphically upward, excluding the possibility of isotopic  
composition changes derived from superimposition of late  
hydrothermal fluids for they have a relatively stable isotopic  
composition. Therefore, we inferred that such a large Mo  
isotopic fractionation resulted from a closed or semi-closed  
metallogenic environment. This hypothesis is supported by  
evidence from the δ 34S values of most of the sulfides (av- 
erage 16.06 ‰), which indicates a similar metallogenic en- 
vironment [20]. Under such an environment, the early pre- 
cipitates prefer to capture light isotope and the residual flu- 
ids enrich with heavy isotopes because of Fe-Mn oxide ad- 
sorption or biological matter effect. As the mineralization  
proceeds, the residual fluids increasingly remain more  
heavy isotopes and those precipitation samples gradually  
show the heavy isotopic characteristics compared to previ- 
ous features. During this sedimentation, there exist the ef-  
fects of dynamic fractionation. Therefore, the metallogenic  
environment of Orebody IV is different from open oceanic  
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systems, where there might be a certain degree of dynamic  
fractionation. This has wide implications for the study of  
Mo isotopic fractionation in the restricted basin fluids. 

4  Conclusions 

(1) There are different Mo isotopic composition characteris- 
tics between Orebody III and IV in the Dajiangping pyrite  
deposit. The δ 97/95Mo geological significance of Orebody  
III indicates that the ore-forming fluids are derived from  
submarine exhalative hydrothermal fluids, while Orebody  
IV may have also been influenced by hydrothermal super- 
imposition. This is consistent with other geochemical evi- 
dence. 

(2) Orebody III is likely deposited under a relatively  
open and strong biological agent reducing environment,  
while Orebody IV may be formed in a closed to semi-closed  
restricted system that was in suboxic-oxic disequilibrium  
condition. Dynamic Mo isotopic fractionation can be pre- 
sent in this restricted environment. 

(3) Mo isotopes can be used as an effective tracer to  
study ore-forming fluids and metallogenic environments. 
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