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Investigation of Noncovalent Complexes
Between �-Cyclodextrin and Polyamide Acids
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Electrospray ionization (ESI) mass spectrometry was utilized to investigate noncovalent
complexes between �-cyclodextrin (�-CD) and five novel polyamide acids containing N-
methylpyrrole and N-methylimidazole. The 1:1 binding mode was specified by examining the
binding stoichiometry from ESI mass spectra. It found that polyamide acids with �-CD have
binding affinities in the order: ImImIm�COOH � ImPyIm�COOH � ImPyPy�COOH �
PyPyPy�COOH � NO2PyPyPy�COOH. The method gives, simultaneously, the binding
constants between �-CD and polyamide acids based on a novel linear equation. (J Am Soc
Mass Spectrom 2006, 17, 9–14) © 2005 American Society for Mass Spectrometry
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Recently, polyamides containing N-methylpyrrole
(Py) and N-methylimidazole (Im) have attracted
considerable attention from synthetic and bio-

logical chemists because of their significant anticancer
activity [1, 2]. Five new polyamide acids were synthe-
sized in our laboratory with a convenient method for
solution-phase synthesis [3]. Their structures are shown
in Figure 1, where Py � N-methylpyrrole, Im � N-
methylimidazole, and � � �-alanine.

�-Cyclodextrin (�-CD or CD) is a very important
host molecule. Noncovalent complexes between drug
molecules and �-cyclodextrin are capable of improving
the stability, water solubility, and bioavailability of
some lipophilic drugs [4–10]. Therefore, �-CD and its
derivatives have been utilized in agriculture, pharma-
ceutics, drug formulation, and drug delivery.

A number of different physicochemical methods
have been used in analyzing the interactions between
small molecules and �-cyclodextrin, such as 1H NMR,
conductometric titration, spectrophotometric and flu-
orometric techniques [11–16]. However, in some in-
stances, there are uncertainties regarding the complex
stoichiometries and the lack of structural information
using these techniques [17]. Electrospray ionization
mass spectrometry (ESI-MS) is a powerful means of
studying noncovalent complexes between “host–guest”
(for example, small molecules with �-cyclodextrin) with
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high sensitivity and rapidity, at a very low level of
sample consumption [18–34].

In this research, ESI-MS was utilized to study the
noncovalent interactions of five novel polyamide acids
with �-cyclodextrin, including stoichiometry, stability
and binding affinity, and calculation of the binding
constants between �-CD and polyamide acids.

Experimental

Chemicals

�-Cyclodextrin (MW � 1134.4) was purchased from
Sigma Chemical (St. Louis, MO). Polyamide acids (P1–
P5) were prepared in our laboratory according to a
convenient method for solution-phase synthesis [3]. All
other chemicals were of analytical grade.

Mass spectrometry

ESI mass spectra and collision-induced dissociation
(CID) spectra were obtained using a Finnigan LCQ
Deca XP Plus ion-trap mass spectrometer (Ther-
moFinnigan, San Jose, CA); all experiments were per-
formed in negative mode. The mixed solution was
directly infused at a flow rate of 2 �l/min into the ion
source. ESI-MS conditions were optimized to favor the
observation of noncovalent complexes. Spray voltage
was 3.0 kV, capillary temperature held at 150 °C, and a

doubled drying gas (N2) was used to ensure efficient
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desolvation. Data were collected and analyzed with the
Xcalibur software (ThermoFinnigan), and 10 scans were
averaged for each spectrum.

Analysis of Complexation Procedure

Noncovalent interactions of polyamide acids (P1–P5)
with �-CD were examined by ESI mass spectrometry in
the presence of increasing concentrations of �-CD.
Aliquots of 0.5–25 �l �-CD (5.0 mM) were mixed with
0.5 �l of polyamide acids (5.0 mM). This solution was
diluted with methanol/H2O (20:80, vol/vol) to 50 �l at
room temperature (�-CD–guest ratios were 1:1, 2:1, 5:1,
10:1, 25:1, and 50:1) and then subjected to ESI-MS
analyses. Methanol was necessary to obtain good elec-
trospray behavior [35, 36]. All solutions had appropri-
ate concentrations (50–2500 �M) of �-CD and the same
initial concentration (50 �M) of polyamide.

Results and Discussion

Complexes Between �-Cyclodextrin and Polyamide
Acids

Complexes of �-CD with polyamide acids in the molar
ratio 1:1 were detected by negative ion mode; the ESI
mass spectra of the three complexes are shown in
Figure 2. In the case of ImImIm�COOH (P1), five ions
were observed in the ESI spectrum, i.e., ions at m/z
442.3, 566.6, 885.0, 1133.6, and 1576.5, which correspond
to [ImImIm�COO]� ([P1]�), [�-CD]2� ([CD]2�),
[2ImImIm�COO]� ([2P1]�), [�-CD]� ([CD]�), [com-
plex]� ([CD � P1]�) of ImImIm�COOH and �-CD,
respectively.

ESI mass spectra of complexes of �-CD with poly-
amide acids show that, in the case of P1 and P2, the
abundance of [CD � Pn]� ions is much greater than
that of [Pn]�, while the abundance of [CD � P5]� is
less than that of [P5]�. This result suggests that the
N-methylimidazole (Im) ring in polyamide acids is

Figure 1. Structures of polyamide acids (Pn).
more favorable for binding with �-CD than the
N-methylpyrrole (Py) ring. The N-methylimidazole
(Im) moiety has more nitrogen atoms than N-meth-
ylpyrrol (Py) and, therefore, more interactions, via
hydrogen bonding, take place between polyamide
acids containing the imidazole group and �-CD. In
addition, the existence of nitryl at the end of the
polyamides is unfavorable for binding, because it
counteracts the superior hydrophobic interactions
between �-CD and polyamides.

Figure 2. ESI mass spectra of equimolar mixtures of �-CD with
(a) ImImIm�COOH (P ), (b) ImPyPy�COOH (P ), and (c)
1 3

NO2PyPyPy�COOH (P5).
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Effects of �-CD Concentration on Relative
Intensities of the Respective Complex

Complexes of �-CD with each polyamide acid, at molar
ratios ranging from 1:1 to 50:1, were analyzed by
ESI-MS in the negative mode. As an example, the effect
on binding of �-CD: ImPyIm�COOH (P2) molar ratios
is listed in Table 1, in which relative abundances listed
were normalized to 100% for each spectrum.

Table 1 shows that the abundance of polyamide acid
decreased gradually when the molar ratio of �-CD to
polyamide acid increased from 1:1 to 50:1. Here,

�CD�Pn��%

�Pn��%��CD�Pn��%
(the relative intensity of the

complex ion ([CD � Pn]�) is expressed relative to the
sum abundance of [Pn]� and [CD � Pn]�) is intro-
duced as a parameter for analysis of the binding
property [29]. Figure 3 shows the relation between

�CD�P2��%

�P2��%��CD�P2��%
and [CD]t (initial concentration of

�-CD). At molar ratios ranging from 1:1 to 10:1, the

value of
�CD�P2��%

�P2��%��CD�P2��%
increased quickly, but the

increase is slow in the 25:1 to 50:1 M ratio range. Using

this expression,
�CD�Pn��%

�Pn��%��CD�Pn��%
, the repeatability

of the relative intensities of the complex ion is best in all
samples (Figure 4), so this parameter (hereafter abbre-
viated as Ir [29]) was used to determine binding con-
stants.

Considering Ir as a unique parameter, it is better to
find a linear relationship between complex ion intensity

Table 1. Effect of �-CD: P2 ratio on abundance

Molar
ratio [P2]� (%) [CD�P2]� (%)

�CD�P2��%

�P2��%��CD�P2��%

1:1 51 100 0.66
2:1 30 100 0.77
5:1 18 100 0.85

10:1 12 100 0.91
25:1 7 77 0.93
50:1 3 58 0.96

Figure 3. Effect of [CD] on relative intensity (I ) of the complex
t r

ion of ImPyIm�COOH (P2) with �-CD.
and [CD]t. Based on the relationship of the function in
Figure 3, the reciprocal of Ir was chosen to illustrate the
effect of �-CD concentration (the reciprocal of [CD]t),
leading to a superior linear progression in Figure 5.
Thus, a linear equation, Y � bX � c, could be obtained,
which describes the correlation of complex ion intensity
and initial �-CD concentrations.

Evaluation of Complex Binding Constants

Based on the linear progression in Figure 5, a double
reciprocal linear eq 1 [29] was introduced for the
calculation of binding constants, which is another ex-
pression of the linear equation, Y � bX � c, and
contains a Kst factor:

1

Ir

�
1

kc�Pn�tKst�CD�t

�
1

kc�Pn�t

(1)

where Ir is
�CD�Pn��%

�Pn��%��CD�Pn��%
(relative intensity of

the complex ion) and Ir � kc[CD � Pn]� (at every molar
ratio of CD:P); kc is a proportionality constant, [CD]t is
initial concentration of �-CD, which is the same as that

Figure 4. Repeatability of relative intensities (Ir) of the complex
ion between ImPyIm�COOH (P2) and �-CD (n � 3 for each point).

Figure 5. Effect of 1/[CD] on the reciprocal of the relative
t

intensity (1/Ir) of the complex of ImPyIm�COOH (P2) with �-CD.
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in Figure 5, [Pn]t is initial total concentration of poly-
amide acid and Kst is the binding constant of a 1:1
complex.

Comparing the two linear equations, Y � bX � c and
eq 1, Y, X, b, and c can be defined as follows:

Y �
1

Ir

(2)

X �
1

�CD�t

(3)

b �
1

kc�Pn�tKst

(4)

c �
1

kc�Pn�t

(5)

where b is the slope and c is the intercept of the
equation. The ratio of c to b can be expressed as follow:

c

b
�

1

kc�Pn�t

1

kc�Pn�tKst

� Kst (6)

Eq 6 can then be rewritten as:

Figure 6. Effect of 1/[CD]t on the relative intensity (1/Ir) of the
complex ion ([CD � P1]�) based on eq 1.

Table 2. Linear equations and binding constants for polyamide

Guest Linear equation

P1 (1/Ir) � 2E-05 (1/[CD]t) � 1.0596
P2 (1/Ir) � 2E-05 (1/[CD]t) � 1.0388
P3 (1/Ir) � 4E-05 (1/[CD]t) � 1.2063
P4 (1/Ir) � 4E-05 (1/[CD]t) � 1.1756
P5 (1/Ir) � 8E-05 (1/[CD]t) � 1.7644

*Value is the average of three measurements.
a
Kst values calculated by eq. (1) and (7).
bKst values calculated by eq. (8).
Kst �
c

b
(7)

Therefore, the binding constant (Kst) can easily be
calculated from the ratio of the intercept to the slope of
eq 1.

In the evaluation of the complex ([Pn � CD]�), five
linear diagrams could be obtained with excellent linear-
ity. As an example, the case of the [P1 � CD]� ion is
shown in Figure 6, and a linear equation, 1/Ir �
2E-05(1/[CD]t) � 1.0596, is obtained (where the inter-
cept c is equal to 1.0596, and the slope b is equal to 2 �
10�5). The binding constant (Kst) of [P1 � CD]� was
calculated, from the intercept and the slope of eq 1,
based on eq 7):

Kst �
c

b
�

1.0596

2E � 05
� 5.3 � 104��M�1�

In the same way, the Kst value can be obtained from
the intercept and slope of a weighted least-squares
regression fit of the data to eq 1 for each complex, as
summarized in Table 2.

To validate the results using the double reciprocal
linear equation above, a base equation (eq 8) [37] was
used to calculate the binding constants. This equation is
useful in determining the binding constant of a known
system:

�CD� � �Pn� ` �CD � Pn�

Kst �
�CD � Pn�
�CD��Pn�

�
�CD � Pn�

�Pn�
�

1

��CD�t � �CD � Pn��

(8)

where [CD � Pn], [CD], and [Pn] are the equilibrated
concentrations of the complex, �-CD and polyamide
acid, respectively. [CD] � [CD]t-[CD � Pn], [CD]t is the
initial concentration of �-CD. The binding constants
(Kst) between �-CD and the five polyamide acids were
calculated based on eq 8 [37], as listed also in Table 2.

The Kst values in Table 2 show good agreement
between the two methods. Obviously, the double recip-
rocal linear eq 1 method is better for precision and
simplicity. The r2 values are �0.93 in all cases, indicat-
ing a good correlation between the linear equations and

with �-CD*
2 Kst

a / � 104 M�1 Kst
b / � 104 M�1

9 5.3 (�0.2) 5.2 (�1.8)
7 5.2 (�0.2) 5.1 (�0.7)
9 3.0 (�0.1) 3.3 (�1.2)
3 2.9 (�0.1) 2.8 (�0.3)
3 2.2 (�0.1) 0.9 (�0.2)
acids

r

0.9
0.9
0.9
0.9
0.9
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experimental values from ESI mass spectra. The Kst

values of the complexes are in the 104 range; the values
of P1 are the maxima, while the minimum is P5. These
Kst values also support the fact that N-methylimidazole
(Im) is more beneficial for binding with �-CD than
N-methylpyrrole (Py) via hydrogen bonding, and that
nitryl is unfavorable for binding of polyamide acid and
�-CD.

Property of Complex Ions Between �-Cyclodextrin
and Polyamide Acids

Fragmentation and stability of the complex ions were
investigated by MS/MS spectra. In MS/MS spectra anal-
ysis, the fragmentations of [CD � Pn]� appeared when the
CID energy increased to �20%, which suggested that the
complex ions of �-CD and polyamide acids are stable.
Representative MS/MS spectra of the complex ions ([CD
� Pn]�) are shown in Figure 7. In the case of
ImImIm�COOH (P1), [CD � P1]

� dissociated into �-CD
and P1, and only [CD]� was observed at m/z 1133.2. In the
case of NO2PyPyPy�COOH (P5), [CD � P5

� dissociated
into [CD]� and [P5]

�, which were both observed in the
MS/MS spectrum. The complex ions of other polyamide
acids also generated [CD]� ion only in the MS/MS spectra

Figure 7. MS/MS spectra of [CD � Pn]�: (a) ImImIm�COOH
(P1) and (b) NO2PyPyPy�COOH (P5).
of [CD � P2]
�, [CD � P3]

�, and [CD � P4]
�. These results
suggested that the nitryl induced polyamide P5 to yield a
negative ion by the loss of a proton.

The use of capillary heating to dissociate the complex
could provide additional information regarding the
properties of complex ions between �-cyclodextrin and
polyamide acids in the gas-phase [38–40]. In this study,
capillary temperature was increased from 150 to 400 °C
to examine the thermo-stability of [CD � Pn]�. The
experimental results show that the complex ions re-
mained dominant in ESI mass spectra, even when the
temperature was increased to 400 °C. Consequently, the
binding of �-CD and polyamide acids ([CD � Pn]�) is
thermodynamically stable.

With respect to the 1:1 complex ion, it was noticeable
that the 2:1 or 1:2 complex ions could be observed, but
were very weak and were only observed when �-CD or
Pn was in excess. For example, when the ratio �-CD/P1

was increased to 50:1, the [2CD � P1] complex ion could
be observed (�5%) in ESI spectrum, which indicated
that 1:1 complexes were the dominant binding mode
compared with the 2:1 complexes, even at the highest
�-CD concentration (50:1 M ratio). In addition, the
intensities of 2:1 and 1:2 complex ions decreased when
capillary temperature increase and, subsequently, dis-
appeared at 300 °C. Therefore, 2:1 and 1:2 complex ions
are thermodynamically unstable.

Conclusions

The present work has demonstrated the ability of
ESI-MS to provide strong evidence for noncovalent
binding between polyamide acids and �-CD. The 1:1
binding mode was indicated initially by examining the
binding stoichiometry from ESI mass spectra. The method
simultaneously gives binding affinity in the form of bind-
ing constants, based on a novel linear equation, and
shows that polyamide acids with �-CD have binding
affinities in the order: ImImIm�COOH �
ImPyIm�COOH � ImPyPy�COOH � PyPyPy�COOH
� NO2PyPyPy�COOH. In addition, sample consump-
tion is less than 1 nmol per analysis, which makes this
method useful when only small amounts of sample are
available.
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