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Abstract 

Decision-theoretic rough set model is the probabilistic generalization of the Pawlak rough set model. In this paper, we have 
analyzed decision-theoretic rough set model (DTRSM) in the context of attribute reduction. DTRSM is based on Bayesian 
decision theory for classifying an object into a particular category. The risk associated with classifying an object is defined in 
terms of loss functions and conditional probabilities. We have used least mean squares learning algorithm to determine the 
Bayesian loss functions by taking expected overall risk as the learning function. With the loss functions ready, DTRSM can be 
applied to classification problems. We have proposed attribute reduction in DTRSM by optimizing the expected overall risk 
using particle swarm optimization algorithm. The proposed algorithm was tested on various data sets found in University of 
California, machine learning repository. The proposed algorithm has given good results for the cardinality of the reduct and 
classification accuracy during tests performed on the data sets. Experimental results obtained by the proposed algorithm have 
been found to give better reduced length of the reduct and classification accuracy in comparison to the results obtained by the 
consistency subset evaluation feature selection algorithm described in the literature.  
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1. Introduction 

Data collected from real world applications may contain irrelevant, redundant, noisy and unreliable attributes. 
Accuracy and performance of classifiers built on training such data sets will be poor. In-order to have a better classi- 
fication accuracy and an improved computation performance, quality of the data sets has to be improved. Quality of 
the data sets can be improved by identifying and removing irrelevant and redundant attributes. This process is called 
attribute reduction. Attribute reduction is a pre-process step in data analysis. Attribute reduction is the process of 
finding a minimal subset of attributes that preserves a particular criterion of the original data set. Some of the crite- 
ria of attribute reduction are attribute correlation, entropy, consistency, inter class separability and minimum concept 
description length. Various approaches to attribute reduction have been proposed in the literature. In 4, Mark A. Hall 
has proposed correlation based feature subset selection (CFS). CFS uses feature-feature correlation and feature-class 
correlation to find an optimal subset of features. In 14, Huan Liu et al. have proposed consistency subset evaluation 
feature selection (CSE) method. In CSE, the metric for feature selection is the consistency level of the class values. 
In 11, Kira et al. have proposed ReliefF feature selection method. ReliefF selects a random sample instance and 
identifies the nearest neighbor from the same and different class by considering the attribute values. 

Attribute reduction requires a search algorithm and an evaluator. The search algorithm, performs a search 
operation among all the possible attribute subsets. Commonly used search algorithms are best-first, exhaustive, 
genetic, greedy, random and rank algorithms.  The attribute evaluator will evaluate the relative significance of the 
attribute subsets. Attribute reduction methods are mainly categorized into wrappers and filters. Wrappers are target 
learning algorithm dependent. They evaluate attribute subsets based on the score metrics provided by the target 
learning algorithm. Filters are independent of the learning algorithms. They evaluate an attribute subset based on the 
attribute filter metrics. Popular filter evaluators are correlation, consistency, chi-squared, information gain, gain ratio 
and principal components. 

In this paper, we propose a filter based approach to attribute reduction. Expected overall risk in DTRSM is con- 
sidered as scoring metric for attribute subset evaluation and particle swarm optimization algorithm (PSO) is used for 
searching across all the possible attribute subsets. As DTRSM is used in many applications, we are using this model 
for attribute evaluation. In 12, Wen Li et al. have proposed an instance centric hierarchical classification framework 
for text classification based on DTRSM. In 13, Dun Liu et al. have used DTRSM to propose a profit-based three-way 
approach to investment decision making. In 25, Hong Yu et al. have proposed an autonomous knowledge-oriented 
clustering technique using DTRSM. In 26, Hong Yu et al. have proposed an approach to automatically determine the 
number of clusters using DTRSM. In 28, Bing Zhou et al. have introduced three-way decision approach in email 
spam filtering. In 29, Xianzhong Zhou et al. have proposed a three-way view of decision model based on DTRSM, 
here optimistic, pessimistic, or equable decision is made based on the cost of error. 

In 21, 24, Yiyu Yao has introduced DTRSM as a probabilistic generalization of Rough set theory (RST). DTRSM 
introduces two threshold parameters  and , where 10 . These threshold parameters probabilistically 
redefine RST approximations. In DTRSM, threshold parameters are formulated based on Bayesian decision theory 
loss functions. In this approach, classification decisions are made based on the cost and probability associated with 
the decision. The loss functions can be provided by the user or they can be determined using machine learning 
techniques. In 5, 6, 7, game theoretic rough set model (GTRSM) analyzes the problem of determining the threshold 
parameters based on game theory. GTRSM uses machine learning techniques to obtain a sequence of risk 
modifications and then finds the loss function values by optimizing one or more classification measures. GTRSM 
requires user to provide the measures of classification ability and the acceptable threshold to stop the learning 
procedure. In 8, Xiuyi Jia et al. have determined the threshold parameters by optimizing the decision cost. Here 
Xiuyi Jia et al. have assumed the search space of the threshold parameters as the set of probabilities of all objects 
instead of . In this paper, we also determine the loss functions in DTRSM using least mean squares (LMS) 
learning algorithm. 

The rest of the paper is organized as follows: section 2 introduces basic concepts of RST, section 3 describes the 
concepts of DTRSM, section 4 describes the process of determining the threshold parameters of DTRSM, section 5 
describes the process of attribute reduction using PSO in DTRSM, section 6 shows the experimental results on 
different data sets from UCI machine learning repository and section 7 concludes the paper. 
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2. Rough Set Theory 

RST was introduced by Pawlak in 1982 15, 16, 17. RST is a mathematical methodology in data analysis to deal with 
inconsistent and imperfect knowledge. In RST, real world data is represented as decision table. A decision table is 
defined in terms of attributes, objects,  indiscernibility, concepts and consistency. Let ),,,,( fVdCUS be a 
decision table, where U is the universe of objects, C

 

is the set of conditional attributes, d  is a decision attribute, 
V is the value set defined by }|{ CcVV c , where cV  is the value set of the conditional attribute c ,  

VCUf : is a mapping function, where ),( cxf i  represents a value for object Uxi on conditional attribute 
Cc in the domain cV .  

The main concept of RST is indiscernibility. Let Cix ][  be the set of indiscernible objects of an object Uxi .  
Cix ][ is also referred as the equivalence class of ix  with respect to C . Cix ][  is defined as 

)},(),(,|{][ cxfcxfCcUxx jijCi . Let C  be the partition of U  with respect to the set of conditional 
attributes. }|][{ Uxx iCiC . The set of objects those are of the same decision class are grouped into concepts. 
Let 

idX , be the concept of decision class id . 
idX is defined as }),(|{ ijjid ddxfUxX . Let D be the 

partition of U defined by the decision attribute id   as }|{ diidD VdX . A decision table can be either consistent 
or inconsistent.  

otherwisentinconsiste

XxXxifconsistent
S jdCiDjdCCi ][|,][

 
     RST can efficiently analyze inconsistent data sets by defining lower and upper approximations of concepts. Let 

)|( CidXLA and )|( CidXUA

 

be the lower and upper approximations of 
idX ,  respectively defined as follows 

.}][|]{[)|(}][|]{[)|(
][][ CCjx

idCjCjCid
CCjx

idCjCjCid XxxXUAandXxxXLA

 
Based on the definitions of lower and upper approximations, a concept DidX is defined in terms of three regions 
i.e., positive region, boundary region and negative region. Positive region of a concept is the set of objects that 
certainly belong to that concept. Boundary region of a concept is the set of objects that may or may not belong to 
that concept. Negative region of a concept is the set of objects that certainly does not belong to that concept. Let 

)|( CidXPOS , )|( CidXBND  and )|( CidXNEG  represent the positive, boundary and negative regions of  
idX  

respectively.  )|( CidXPOS , )|( CidXBND  and )|( CidXNEG are defined as follows 
).|()|()|()|()|(),|()|( CidCidCidCidCidCidCid XUAUXNEGandXLAXUAXBNDXLAXPOS

 
3. Decision-Theoretic Rough Set Model 

RST requires rigid participation specifications i.e., satisfying the constraint 
jdCi Xx ][  for deciding 

)|(][ CjdCi XLAx  and the constraint  
jdCi Xx ][  for deciding  )|(][ CjdCi XUAx . RST is extended to 

DTRSM by relaxing these strict participation rules, through introducing a pair of threshold parameters  and , 
10 20, 22, 23, 27. These threshold parameters  and , are formulated based on Bayesian decision theory 

loss functions. The loss functions can either be known from the domain knowledge or can be determined using 
machine learning techniques. 

In 21, 24,  Yiyu Yao has  introduced Bayesian decision theory in DTRSM, to determine  and  threshold 
parameters. Bayesian decision theory is a statistical approach for solving classification problems 1. In Bayesian 
decision theory, posterior probabilities are calculated using the prior probabilities and the conditional probabilities. 
Then the object is assigned to the class with maximum posterior probability, thus achieving minimum probability 
for the classification error.  If there is a penalty or cost associated with each misclassification and if this cost is 
different for different classes, then weighted posterior probabilities has to be considered for classification decisions. 

Yao et al., have related Bayesian decision theory to the problem of deciding )|(][ CjdCi XPOSx or 
)|(][ CjdCi XBNDx  or )|(][ CjdCi XNEGx  as follows. Let Pa , Ba  and Na be the actions of deciding 

whether )|(][ CjdCi XPOSx or )|(][ CjdCi XBNDx or )|(][ CjdCi XNEGx  respectively.  Let 
jdPX , 

jdBX ,  

jdNX ,
jdXP , 

jdXB and 
jdXN  be the loss functions. Let

jdPX , 
jdBX and 

jdNX be the costs incurred for taking actions  
Pa , Ba  and Na  respectively when 

jdi Xx . Let
jdXP , 

jdXB and 
jdXN be the costs incurred for taking actions Pa , 
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Ba  and Na  when 
jdi Xx , where 

jdX  is the complement of concept 
jdX . 

jdjd XUX . Let )][|( CiP xaR , 
)][|( CiB xaR  and )][|( CiN xaR be the conditional risks incurred in taking actions Pa , Ba and Na  respectively. 

Bayesian decision theory defines these conditional risks as follows  

)][|()][|()][|(

)][|()][|()][|(

)][|()][|()][|(

CijdjdXNCijdjdNXCiN

CijdjdXBCijdjdBXCiB

CijdjdXPCijdjdPXCiP

xXPxXPxaR

xXPxXPxaR

xXPxXPxaR

 where
|][|

|][|
)][|(

Ci

Cijd

Cijd x
xX

xXP .The expected overall risk R  is defined as follows 
 

)1()][|()][|()][|(
][ CCix

CiNCiBCiP xaRxaRxaRR
  

Bayesian decision theory states that the action with minimum conditional risk has to be taken among all the possible 
actions i.e.,  

)|(][,)][|()][|()][|()][|(

)|(][,)][|()][|()][|()][|(

)|(][,)][|()][|()][|()][|(

CjdCiCiBCiNCiPCiN

CjdCiCiNCiBCiPCiB

CjdCiCiNCiPCiBCiP

XPOSxthenxaRxaRandxaRxaRif

XBNDxthenxaRxaRandxaRxaRif

XPOSxthenxaRxaRandxaRxaRif

 Yao et al., have restated these decision rules under the assumption,
jdjdjd NXBXPX and 

jdjdjd XPXBXN  as,   

CCix CijdCiCjd

CCix CijdCiCjd

CCix CijdCiCjd

xXPxXNEG

xXPxXBND

xXPxXPOS

][),(

][),(

][),(

})][|(|]{[)|(

})][|(|]{[)|(

})][|(|]{[)|(

  
where 

jdPXjdBXjdXBjdXP

jdXBjdXP
and 

jdBXjdNXjdXNjdXB

jdXNjdXB

..
.  

 
The decision rules of 

jdX can be extended to D as follows 

DjdX CCix CijdCiCD

DjdX CCix CijdCiCD

DjdX CCix CijdCiCD

xXPxNEG

xXPxBND

xXPxPOS

][),(

][),(

][),(

})][|(|]{[)|(

})][|(|]{[)|(

})][|(|]{[)|(

 
 
Discriminant function is one way of representing a classifier. For each equivalence class Cix ][ , a discriminant 

function )]([ Cixg  is designed. Cix ][ is assigned to the region with maximum )]([ Cixg value. Consider the loss 
function, where there is no cost for correct classification. Let s be the cost for an incorrect classification. Let  r be 
the cost for classifying an object into a boundary region i.e., 0

jdXNjdPX , sjdNXjdXP  and  
rjdXBjdBX . Conditional risks associated with each action are given as 

))][|(1()][|( CijdsCiP xXPxaR , rCiB xaR )][|( and )][|()][|( CijdsCiN xXPxaR . Decision rules in this 
case are defined as  

 

)|(][,)][|()(

)|(][,)][|()(

)|(][,)][|()(

),(

),(

),(

CjdCi
s

r
Cijd

CjdCi
s

rs
Cijd

s

r

CjdCi
s

rs
Cijd

XNEGxthenxXPifN

XBNDxthenxXPifB

XPOSxthenxXPifP
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The corresponding threshold parameter values are  

s

rs  and 
s

r .  
 
Discriminant function can be defined as )][|()]([ CijdCi xXPxg . Depending upon )][|( Cijd xXP  value, Cix ][ is 
said to be of positive region or boundary region or negative region. 

4. Determining threshold parameters using LMS training rule 

Algorithm 1 LMS Algorithm to determine optimal loss functions 
Input: S - decision table,  - learning rate, - threshold value 
Output: Optimal loss functions. 

1: Initialize each of the loss functions with a small random value 
2: Initialize error value E to zero 
3: For each equivalence class Cix ][  

i) Determine )]([ CixV as 
otherwise

xXPorxXPif CijdCijd

0

)1)][|(()1)][|((1
 

 

ii) Use the current loss functions and compute )]([ˆ
CixV  

)][|()][|()][|(

)][|()][|()][|()]([ˆ

CijdjdXNCijdjdNXCijdjdXB

CijdjdBXCijdjdXPCijdjdPXCi

xXPxXPxXP

xXPxXPxXPxV
 

iii) Update each loss function as  

)][|())]([ˆ)]([(,)][|())]([ˆ)]([(

)][|())]([ˆ)]([(,)][|())]([ˆ)]([(

)][|())]([ˆ)]([(,)][|())]([ˆ)]([(

CijdCiCijdXNjdXNCijdCiCijdNXjdNX

CijdCiCijdXBjdXBCijdCiCijdBXjdBX

CijdCiCijdXPjdXPCijdCiCijdPXjdPX

xXPxVxVxXPxVxV

xXPxVxVxXPxVxV

xXPxVxVxXPxVxV

 
iv) Update error  as 2))]([ˆ)]([( CiCi xVxVEE  
v) If  the constraints 

jdNXjdBXjdPX  and 
jdXPjdXBjdXN are satisfied then, continue 

learning                                                                                                                                  
otherwise stop learning and output the current loss function values. 

4: Repeat steps  2 - 3  till E  
5: Return the final loss function 

 
To determine optimal values for threshold parameters, we have to design a learning system. A learning system is 

provided with a set of training examples along with the ideal target function  V and a representation to describe the 
target function. The learned function which we want to approximate the target function can be represented as a 
linear function of the form  nn xwxwxwwV 22110

ˆ , where 1x , 2x , , nx  are features of the problem to 
be solved and 0w , 1w , 2w , , nw  are the numerical coefficients or the weights of each feature. The learned 
function learns its weights 0w , 1w , 2w , , nw by using LMS training rule to approximate the target function V .  

LMS training rule is a learning algorithm for choosing the weights to best fit the set of training examples. The 
best fit weights are those which minimize the squared error between the target function  )]([ CixV values and the 
learned function )]([ˆ

CixV values. Optimal values for the threshold parameters can be determined using LMS 
training rule. The target function  )]([ CixV  is defined as  

otherwise

xXPorxXPif
xV CijdCijd

Ci
0

)1)][|(()1)][|((1
)]([
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Learned function )]([ˆ
CixV  is defined as 665544332211)]([ˆ xxxxxxxV Ci where 

)][|(321 Cijd xXPxxx , )][|(654 Cijd xXPxxx , 
jdPX1 , 

jdBX2 ,  
jdNX3 ,

jdXP4 , 

jdXB5 and 
jdXN6 . 1 , 2 , 3 , 4 , 5 , and 6 are the weights used by the learning function. These 

weights are the loss functions used in the calculation of expected overall risk shown in equation (1). The squared 
error E  between the target function and the learned function is defined as 2

][

))]([ˆ)]([(
CCix

CiCi xVxVE . 
 
The LMS algorithm to determine the optimal values of the loss functions is shown in Algorithm 1. Initialize all 

the loss functions to a small random values while satisfying the constraints 
jdNXjdBXjdPX  and 

jdXPjdXBjdXN . In this algorithm, in each iteration adjust the loss functions in the direction to reduce the error. 
The algorithm loops through steps 2 - 3  until the error E falls below the threshold value .  is chosen to be a 
sufficiently small value.  The algorithm returns optimal values for the loss functions.  and  values are 
determined from the loss functions.  

5. Particle Swarm Optimization algorithm for attribute reduction in DTRSM 

Algorithm 2 Finding the reduct in DTRSM using PSO 
Input: S  - decision table,  and  - threshold parameters, n - size of the particle swarm, maxV  - maximum 
velocity of the particles in the swarm, cnt - iteration count, 1c  and 2c - positive constants, 1r  and 2r  - random 
numbers, w  - inertia factor. 
Output: Reduct - an attribute set R  with optimized (minimized) fitness value. 

1: Initialize particles at random positions in the search space 
2: Initialize velocities of the particles as a positive integer between 1  and maxV  
3: For each particle initialize its best position as the current position 
4: Initialize t  to zero 
5: Repeat steps  6 - 8  till cntt  
6: For each particle i  in the swarm 

i) calculate the fitness value  
a.  Let A  be the attribute set represented by the position of the particle i  
b. 

AAix
AiNAiBAiP xaRxaRxaR

C
ACAf

][

)][|()][|()][|(
||

||||)(  
 

ii) if the current fitness value of the particle is greater than the fitness value of its previous best 
position then, update its best position to the current position 

iii) calculate its velocity )(tvi  
a. Let )1(tpi  be the position of the particle at iteration 1t , let ipBest  is the best 

position of the particle  i  till iteration t and let globalpBest  be the global best position of 
the swarm 

b. ))1(-(**) )1(-(**)1(*)( 2211 tppBestrctppBestrctvwtv iglobaliiii  
iv) update its position as  )()1()( tvtptp iii  

7: Set the global best position globalpBest  as the position of the particle with the maximum fitness value. 
8: Update t  to 1t . 
9: Return the attribute set R , that is represented by the position of the global best particle as the reduct with 

the optimized fitness value. 
 
Particle swarm optimization (PSO) is an evolutionary algorithm introduced by Kennedy and Eberhart 10. PSO 

provides a methodology to solve optimization problems with a huge search space. PSO is motivated by the social 
behavior of a flock of birds trying to reach an unknown destination. In this paper, we use PSO as a search algorithm 
to the problem of attribute reduction. Search space for attribute reduction is 12 n  attribute subsets, where || Cn .  
In 19, Xiangyang Wang et al. have  solved the problem of attribute reduction using PSO.  
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 Xiangyang Wang et al. have represented the position of a particle by a bit string of length || C . Let 
},,,{ 21 mcccC , be the set of conditional attributes. A value of 1  in the bit string at position  i  represents  ic  is 

present in the attribute set and a value of 0  in the bit string at position  i  represents ic is not present in the attribute 
set. Hence, an attribute set is represented by the position of a particle. Different attribute sets are represented by the 
respective positions of particles in the swarm. The difference between two positions is the number of distinct bits 
between the two positions.  

Xiangyang Wang et al. have defined velocity of a particle as the positive integer between 1  and maxV . The 
velocity of a particle i  at iteration t  is defined as follows as  

))1(-(** ))1(-(**)1(*)( 2211 tppBestrctppBestrctvwtv iglobaliiii

 

where w  is the inertia factor, )1(tvi  is the velocity of the particle i at iteration 1t , 1c  and 2c  are the positive 
constants, 1r and 2r are the random numbers, ipBest  is the best position of the particle i  till iteration 1t , )1(tpi  
is the position of the particle i at iteration 1t  and globalpBest  is the global best position of the swarm till iteration 

1t . The position of the particle i at iteration t  is updated as )()1()( tvtptp iii , where )(tpi  is the position 
of the particle i  at iteration t , )1(tpi  is the position of the particle i  at iteration 1t  and )(tvi  is the  velocity 
of the particle i  at iteration t . 

Fitness function of an attribute set CA  is denoted by )(Af . An attribute set with a minimum number of 
attributes and  with minimum expected overall risk will be the fittest attribute set. Such attribute sets will survive 
through PSO iterations. The attribute set with minimum fitness value will be selected as the reduct. The fitness 
function  )(Af  is defined as  

.)][|()][|()][|(
||

||||)(
][ AAix

AiNAiBAiP xaRxaRxaR
C

ACAf

 The first term of )(Af  corresponds to a measure of the cardinality of the reduct and the second term corresponds to 
the expected overall risk. The PSO algorithm to find  reduct in DTRSM is as shown in Algorithm 2 . The inputs for 
this algorithm are decision table S , threshold parameters  and  determined using the LMS training rule, size of 
the particle swarm n , maximum velocity of the particles in the swarm maxV , positive constants 1c  and 2c , random 
numbers 1r  and 2r  and iteration count. The output of this algorithm is the reduct R  with minimized fitness value.   

6. Experimental results and analysis 

In this section, we analyze the effectiveness of our proposed DTRSM-PSO algorithm for attribute reduction by 
conducting a series of experiments on 10  data sets from machine learning repository at University of California, 
Irvine 2. The details of all the 10  data sets selected for our experimentation are shown in table 1 . All the chosen data 
sets are of multi-category, with the number of classes ranging from 2  to 24 , the number of objects ranging from 
148  to 8124 and the number of conditional attributes ranging from 9  to 69 . The experiments were conducted on a 

27.2 GHz PC running Windows 7  with Intel Core 3i  processor with 4 GB RAM. 

Table 1. Data sets description. 

S. No Data set No. of Conditional Attributes   No. of Objects  No. of Classes 

1. Audiology 69 226 24 

2. Breast-cancer 9 286 2 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10.  

Dermatology 

German-credit 

Hepatitis 

Lymphography 

Mushroom 

Primary-tumor 

Vehicle 

Vote 

34 

20 

19 

18 

22 

17 

18 

16 

366 

1000 

155 

148 

8124 

339 

846 

435 

6 

2 

2 

4 

2 

22 

4 

2 
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We conducted a series of experiments using DTRSM-PSO algorithm to determine a reduct on all the 10 data sets 

shown in table 1 . We also compared our proposed DTRSM-PSO algorithm with the reduct obtained using the CSE 
algorithm 14 described in the literature. Criteria for comparison chosen are i) cardinality of the reduct ii) attributes of 
reduct iii) classification accuracies obtained, when tested using the C4.5 classifier 18 and iv) classification accuracies 
obtained, when tested using the Naive Bayes classifier 9. 

Table 2  shows the comparisons on cardinality of the reduct determined by CSE algorithm and DTRSM-PSO 
algorithm. These results show that DTRSM-PSO  algorithm is achieving a minimal length reduct on  6  out of 10  
data sets. CSE algorithm is achieving a minimal length reduct on 3  out of  10 data sets. Both the algorithms are 
achieving equal length reduct on remaining 1  data set. The bold values in this table indicate the minimal length 
reduct.  

Table 2. Comparisons of the cardinality of the reduct determined by CSE and DTRSM-PSO algorithm. 
S. No Data set CSE   DTRSM-PSO  

1. Audiology 13 16 

2. Breast-cancer 8 4 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10.  

Dermatology 

German-credit 

Hepatitis 

Lymphography 

Mushroom 

Primary-tumor 

Vehicle 

Vote 

9 

11 

6 

7 

5 

16 

7 

12 

23 

6 

5 

12 

3 

11 

7 

4 

 
Reduced data sets are obtained by retaining the attributes of reduct in the original data sets and removing other 

attributes not in the reduct. The performance of DTRSM-PSO algorithm is evaluated by training C4.5 classifier and 
Naive Bayes classifier on the reduced data sets. We have used the implementation of C4.5 classifier and Naive 
Bayes classifier provided by Weka software tool 3. Classification accuracy was obtained by using C4.5 classifier and 
Naive Bayes classifier with 10  fold cross-validation approach for validation.  

Table 3. Comparisons of the reduct attributes obtained using CSE and DTRSM-PSO algorithm  

S. No Data set CSE   DTRSM-PSO  

1. Audiology {c1, c2, c4, c5, c6, c7, c10, c14, c15, c40, c47, c64, c66} {c1, c2, c3, c4, c5, c6, c7, c10, c11, c15, c57, c58, c59, c60, c64, c66} 

2. Breast-cancer {c1, c2, c3, c4, c6, c7, c8, c9} {c4, c5, c6, c9} 

3. Dermatology {c1, c4, c9, c14, c15, c21, c32, c33, c34} {c2, c3, c4, c5, c6, c8, c9, c10, c12, c14, c15, c16, c19, c20, c21, c22, 
c24, c25, c26, c27, c28, c29, c33} 

4. German-credit {c1, c2, c3, c4, c5, c6, c7, c8, c9, c13, c14} {c1, c2, c3, c4, c5, c6} 

5. Hepatitis {c1, c11, c12, c14, c15, c16} {c6, c12, c13, c18, c19} 

6. Lymphography {c1, c2, c8, c10, c13, c14, c18} {c1, c2, c7, c8, c9, c10, c11, c12, c13, c14, c15, c18} 

7. Mushroom {c2, c3, c5, c12, c20} {c5, c9, c20} 

8. Primary-tumor {c1, c2, c3, c4, c5, c7, c8, c9, c10, c11, c12, c13, c14, 
c15, c16, c17} 

{c1, c2, c3, c4, c5, c9, c10, c13, c15, c16, c17} 

9. Vehicle {c2, c3, c9, c13, c15, c16, c18} {c1, c3, c7, c8, c9, c11, c12} 

10. Vote {c1, c2, c3, c4, c5, c7, c10, c11, c12, c13, c15, c16} {c3, c4, c5, c12} 

 
Next, we present the comparison analysis of the performance of our proposed DTRSM-PSO algorithm with the 

CSE algorithm. Table 3  shows the comparisons on the reducts obtained using CSE algorithm and DTRSM-PSO 
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algorithm. For the different data sets, columns 3  and 4  of table 4  shows the comparisons of  classification 
accuracies obtained by training C4.5 classifier for the reduct determined by DTRSM-PSO algorithm with the reduct 
obtained using CSE algorithm. These results show that DTRSM-PSO algorithm is achieving a reduct with higher 
classification accuracies on majority i.e., 6  out of  10 data sets. CSE algorithm is achieving reduct with higher 
classification accuracies on 4  out of  10  data sets. For the different data sets, columns 5  and 6  of table 4  shows 
the comparisons of  classification accuracies obtained for the reduct determined by DTRSM-PSO algorithm with the 
reduct obtained using CSE algorithm. These results show that DTRSM-PSO algorithm is achieving a reduct with 
higher classification accuracies on majority i.e., 7 out of  10  data sets. CSE algorithm is achieving a reduct with 
higher classification accuracies on 2  out of  10  data sets. Both the algorithms are achieving equal classification 
accuracy on remaining 1  data set. The bold values in this table indicate the higher classification accuracies. 

 
Table 4. Comparisons of the classification accuracy obtained by CSE and DTRSM-PSO algorithm 

S. No Data set                    C4.5          Naive Bayes 

  CSE  DTRSM-PSO  CSE DTRSM-PSO  

1. Audiology 75.67  76.30 69.09 73.28 

2. Breast-cancer 72.51  73.75 72.29 72.27 

3. Dermatology 89.45  92.05 90.71 97.21 

4. German-credit 73.38  74.44 76.23 75.29 

5. Hepatitis 83.65  83.13 79.88 83.99 

6. Lymphography 75.95  80.41 83.56 85.09 

7. Mushroom 100  99.41 98.52 98.88 

8. Primary-tumor 41.04  42.63 47.14 46.46 

9. Vehicle 65.16  64.54 56.43 57.48 

10. Vote 96.32  95.63 91.82 92.85 

 
From the experimental results obtained, we conclude that DTRSM-PSO algorithm is giving better results 

compared to CSE algorithm in terms of i) cardinality of the reducts found for different data sets ii) classification 
accuracies obtained for different data sets, when tested using the C4.5 classifier and iii) classification accuracies 
obtained for different data sets, when tested using the Naive Bayes classifier.  

7. Conclusion 

The contribution of this paper is the proposed DTRSM-PSO algorithm. In this algorithm, the attribute subset 
evaluation is done by optimizing the expected overall risk in DTRSM. Particle swarm optimization is used as the 
search algorithm for finding the reduct. We have analyzed the performance of our proposed DTRSM-PSO algorithm 
by conducting a series of experiments on 10  data sets from machine learning repository at University of California, 
Irvine. Initially, we conducted a series of experiments using DTRSM-PSO algorithm to determine reducts for each 
of the 10 data sets. Reduced data sets from each of the 10  data sets are obtained by retaining the attributes of reduct 
in the original data sets and removing other attributes not in the reduct. Testing for classification accuracy was done 
on all 10  reduced data sets using C4.5 classifier and Naive Bayes classifier respectively. We compared our 
proposed DTRSM-PSO algorithm with the consistency subset evaluation feature selection algorithm proposed by 
Huan Liu et al. We conclude that DTRSM-PSO algorithm is giving better results compared to consistency subset 
evaluation feature selection  algorithm as shown by the experimental results obtained for  i) cardinality of the 
reducts found for different data sets ii) classification accuracies obtained for different data sets, when tested using 
the C4.5 classifier and iii) classification accuracies obtained for different data sets, when tested using the Naive 
Bayes classifier.   
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