The smallest ideal of βS is not closed

Yevhen Zelenyuk

School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa

A R T I C L E I N F O

Article history:
Received 4 November 2008
Accepted 12 February 2009

MSC:
primary 22A15, 22A30
secondary 05D10, 54H11

Keywords:
Stone–Čech compactification
Ultrafilter
Smallest ideal
Idempotent
Compact group

A B S T R A C T

Let S be an infinite discrete semigroup which can be embedded algebraically into a compact topological group and let βS be the Stone–Čech compactification of S. We show that the smallest ideal of βS is not closed.

© 2009 Elsevier B.V. All rights reserved.

Given a discrete semigroup S, the operation can be naturally extended to the Stone–Čech compactification βS of S making βS a compact right topological semigroup with S contained in its topological center. That is, for each $p \in \beta S$, the right translation $\beta S \ni x \mapsto xp \in \beta S$ is continuous, and for each $a \in S$, the left translation $\beta S \ni x \mapsto ax \in \beta S$ is continuous.

We take the points of βS to be the ultrafilters on S, the principal ultrafilters being identified with the points of S. Given $A \subseteq S$,

$$\overline{A} = \{ p \in \beta S : A \in p \}$$

and we write A^* and $U(A)$ for the sets of nonprincipal and uniform ultrafilters from \overline{A}, respectively. The family $\{ \overline{A} : A \subseteq S \}$ is a base for the topology of βS. For $p, q \in \beta S$, the ultrafilter pq has a base consisting of subsets

$$\bigcup \{ xB_x : x \in A \}$$

where $A \in p$ and $B_x \in q$.

As any compact Hausdorff right topological semigroup, βS has a smallest two sided ideal $K(\beta S)$ which is a disjoint union of minimal right ideals and a disjoint union of minimal left ideals. The intersection of a minimal right ideal and a minimal left ideal is a group, and all these groups are isomorphic. The closure $\overline{cE(K(\beta S))}$ of $K(\beta S)$ is also a two sided ideal. An elementary introduction to βS can be found in [2].

It is known that for every countably infinite discrete cancellative semigroup S, $K(\beta S)$ is not closed. Also the set $E(\overline{cE(K(\beta S))})$ of idempotents from $cE(K(\beta S))$ is not closed. These are consequences of the fact that there are elements in $cE(K(\beta S))$ which are not in S^*S^* [2, Theorem 8.22].

In this note we prove the following result.

Supported by NRF grant FA2007041200005 and the John Knopfmacher Centre for Applicable Analysis and Number Theory.

E-mail address: yevhen.zelenyuk@wits.ac.za.
Theorem 1. Let S be an infinite discrete semigroup which can be embedded algebraically into a compact group. Then both $K(\beta S)$ and $E(\text{cl} \ K(\beta S))$ are not closed.

By a compact group one means a compact Hausdorff topological group. Note that the class of semigroups which can be embedded algebraically into a compact group is big enough. It includes, in particular, the commutative cancellative semigroups (= the subsemigroups of Abelian groups) and the free semigroups.

The proof of Theorem 1 involves the following concept.

Let (S, T) be a left topological semigroup with identity 1. Suppose that T satisfies the T_1 separation axiom and let \mathcal{F} denote the neighborhood filter at 1. Define $\text{Ult}(T) \subseteq S^*$ by

$$\text{Ult}(T) = \bigcap_{V \in \mathcal{F}} V \setminus \{1\}.$$

Equivalently, $\text{Ult}(T)$ consists of all nonprincipal ultrafilters on S containing \mathcal{F}, that is, converging to 1 in T.

Lemma 2. $\text{Ult}(T)$ is a closed subsemigroup of βS.

Proof. Being the intersection of closed sets, $\text{Ult}(T)$ is closed. To see that it is a subsemigroup, let $p, q \in \text{Ult}(T)$ and let $V \in \mathcal{F}$. We have to show that $V \setminus \{1\} \in p q$. Clearly, one may suppose that V is open, and so is $V \setminus \{1\}$. For every $x \in V \setminus \{1\}$, there is $W_x \in \mathcal{F}$ such that $x W_x \subseteq V \setminus \{1\}$. Then $\bigcup_{x \in V \setminus \{1\}} x W_x \in p q$. Since $V \setminus \{1\} \in p$ and $W_x \in q$, one has $\bigcup_{x \in V \setminus \{1\}} x W_x \in p q$. Hence $V \setminus \{1\} \in p q$. □

The semigroup $\text{Ult}(T)$ is called the ultrafilter semigroup of T.

Lemma 3. If (S, T) can be topologically and algebraically embedded into a compact group, then $\text{Ult}(T)$ contains all the idempotents of S^*.

Proof. Let (S, T) be a subsemigroup of a compact group G and let G_d denote the group G reendowed with the discrete topology. Then βS can be identified with the subset \mathfrak{S} of βG_d. By [3, Lemma 3], every idempotent from G_d converges to the identity of G. It follows that every idempotent from S^* converges to the identity of (S, T). □

Note that if (S, T) can be topologically and algebraically embedded into a compact group, then it can be embedded also into a compact group of weight $\leq |S|$. (Recall that the weight of a space is the minimum of cardinalities of its bases.) Indeed, without loss of generality one may assume that (S, T) is a subsemigroup of a compact group G. For every $s \in S \setminus \{1\}$, there is a unitary group G_s (a compact group of countable weight) and a continuous homomorphism $h_s : G \to G_s$ such that $h_s(s) \neq h_s(1)$. Then $G^s = \prod_{s \in S \setminus \{1\}} G_s$. Define $h : G \to G'$ by $h(x) = (h_s(x))_{s \in S \setminus \{1\}}$. Then the restriction of h to (S, T) is the required embedding.

Now let (S, T) be a subsemigroup of a compact group G of weight $\leq |S|$ and let $T = \text{Ult}(T)$. By Lemma 3, T contains all the idempotents of S^*, in particular, the idempotents of $K(\beta S)$. Consequently, $T \cap K(\beta S) \neq \emptyset$. Then by [2, Theorem 1.65],

$$K(T) = K(\beta S) \cap T.$$

Hence, the idempotents of $K(T)$ are the same as those of $K(\beta S)$. It follows that in order to prove Theorem 1, it suffices to show the following.

Theorem 4. There are elements in $\text{cl} \ E(\text{cl} \ K(T))$ which are not in $\text{cl} \ E(\text{cl} \ K(T)) T$.

Indeed, let $p \in (\text{cl} \ E(\text{cl} \ K(T))) \setminus ((\text{cl} \ E(\text{cl} \ K(T))) T)$. Then, since $K(T) \subseteq K(\beta S)$, one has $p \in \text{cl} \ E(K(\beta S)) \subseteq (\text{cl} \ K(\beta S)) T$. To see that $p \notin K(\beta S)$, assume the contrary. Let q be the identity of the maximal group in $K(\beta S)$ containing p. Then $p = p q$. Since T contains all the idempotents of S^*, one has $q \in T$. Hence, $p = p q \in (\text{cl} \ E(\text{cl} \ K(T))) T$ — a contradiction.

To see that $p \notin E(\text{cl} \ K(\beta S))$, assume the contrary. Then $p \in T$. Consequently, $p = p p \in (\text{cl} \ E(\text{cl} \ K(T))) T$ — a contradiction.

In the rest of the note we prove Theorem 4. Let H be the subgroup of G algebraically generated by S and let $|H| = \kappa$.

Lemma 5. There is a function $\phi : H \to \kappa$ such that

(a) for every $X \subseteq H$ with $|X| = \kappa$, $|\phi(X)| = \kappa$,
(b) if $\kappa = \omega$, then for every $x \in H$, there is a neighborhood V of $1 \in H$ such that $\phi(xy) = \phi(y)$ for all $y \in V \setminus \{1\}$, and
(c) if $\kappa > \omega$, then for every $x \in H$, there is a subset $Y \subseteq H$ with $|H \setminus Y| < \kappa$ such that $\phi(xy) = \phi(x y) = \phi(y)$ for all $y \in Y$.

Proof. Consider two cases.

Case 1: $\kappa = \omega$. Let \mathbb{B} denote the countably infinite Boolean group $\bigoplus_\omega \mathbb{Z}_2$ endowed with the topology induced by the product topology on $\prod_\omega \mathbb{Z}_2$. By [4, Theorem 3.1], there is a homeomorphism $h : H \to \mathbb{B}$ such that $h(1) = 0$ and $h(xy) = \phi(xy)$ for all $x, y \in H$. □
\(h(x) + h(y) \) whenever \(\max \text{supp}(h(x)) + 2 \leq \min \text{supp}(h(y)) \). Define \(\phi : H \to \omega \) by

\[
\phi(x) = \begin{cases}
\max \text{supp}(h(x)) & \text{if } x \neq 0, \\
0 & \text{if } x = 0.
\end{cases}
\]

Since \(\phi \) is finite-to-one, (a) is satisfied. To check (b), let \(x \in H \). If \(x = 1 \), then \(\phi(x) = \phi(y) \) for all \(y \in H \). Therefore one may assume that \(x \neq 1 \). Let

\[V = \{ y \in H : \max \text{supp}(h(x)) + 2 \leq \min \text{supp}(h(y)) \} \cup \{ 1 \}. \]

Then \(V \) is a neighborhood of \(1 \in H \) and for every \(y \in V \setminus \{ 1 \} \), one has

\[
\phi(x + y) = \max \text{supp}(h(x + y)) = \max \text{supp}(h(x) + h(y)) = \max \text{supp}(h(y)) = \phi(y).
\]

Case 2: \(\kappa > \omega \). Construct inductively a \(\kappa \)-sequence \((H_\alpha)_{\alpha < \kappa} \) of subgroups of \(H \) with \(H_0 = \{ 1 \} \) such that

(i) for every \(\alpha < \kappa \), \(|H_\alpha| < \kappa \),
(ii) for every \(\alpha < \kappa \), \(H_\alpha \subseteq H_{\alpha + 1} \),
(iii) for every limit ordinal \(\alpha < \kappa \), \(H_\alpha = \bigcup_{\gamma \in \alpha} H_\gamma \), and
(iv) \(\bigcup_{\alpha < \kappa} H_\alpha = H \).

Note that \(H \) is a disjoint union of sets \(H_{\alpha + 1} \setminus H_\alpha \), where \(\alpha < \kappa \), and \(H_0 \). Define \(\phi : H \to \kappa \) by

\[
\phi(x) = \begin{cases}
\alpha + 1 & \text{if } x \in H_{\alpha + 1} \setminus H_\alpha, \\
0 & \text{if } x \in H_0.
\end{cases}
\]

Clearly \(\phi \) satisfies (a). To check (c), let \(x \in H \). One may assume that \(x \neq 1 \). Then \(x \in H_{\alpha + 1} \setminus H_\alpha \) for some \(\alpha < \kappa \). Now let \(Y = H \setminus H_\alpha \) and let \(y \in Y \). Then \(y \in H_{\gamma + 1} \setminus H_\gamma \) for some \(\gamma \geq \alpha + 1 \). It follows that both \(xy \) and \(yx \) also belong to \(H_{\gamma + 1} \setminus H_\gamma \). Hence, \(\phi(xy) = \phi(yx) = \phi(y) \). \(\square \)

Let \(\phi : H \to \kappa \) be a function guaranteed by Lemma 5 and let \(\tilde{\phi} : \beta H \to \beta \kappa \) denote the continuous extension of \(\phi \).

Corollary 6.

(1) If \(\kappa = \omega \), then for every \(q \in \beta S \) and \(p \in T \), one has \(\tilde{\phi}(qp) = \tilde{\phi}(p) \).

(2) If \(\kappa > \omega \), then for every \(q \in \beta S \) and \(p \in U(S) \), one has \(\tilde{\phi}(qp) = \tilde{\phi}(p) \).

Proof. (1) Let \(q \in \beta S \) and \(p \in T \). To see that \(\tilde{\phi}(qp) = \tilde{\phi}(p) \), let \(R \in p \). For every \(x \in S \), there is a neighborhood \(V_x \) of \(1 \in H \) such that \(\phi(xy) = \phi(y) \) for all \(y \in V \setminus \{ 1 \} \). Since \(p \in T \), \(V_x \setminus \{ 1 \} \in p \). Put \(P_x = R \cap V_x \setminus \{ 1 \} \). Then \(\bigcup_{x \in S} xP_x \in \phi(q) \) and, whenever \(x \in S \) and \(y \in Y_x \), one has \(\phi(xy) = \phi(y) \). \(\phi(R) \).

(2) Let \(q \in \beta S \) and \(p \in U(S) \). To see that \(\tilde{\phi}(qp) = \tilde{\phi}(p) \), let \(R \in p \). For every \(x \in S \), there is \(Y_x \subseteq S \) with \(|S \setminus Y_x| < \kappa \) such that \(\phi(xy) = \phi(y) \) for all \(y \in Y_x \). Since \(p \) is uniform, \(Y_x \subseteq p \). Put \(P_x = R \cap Y_x \). Then \(\bigcup_{x \in S} xY_x \subseteq \phi(q) \) and, whenever \(x \in S \) and \(y \in Y_x \), one has \(\phi(xy) = \phi(y) \). \(\phi(R) \). \(\square \)

Corollary 7.

(1) If \(\kappa = \omega \), then for every \(D \subseteq \omega \) such that \(\tilde{\phi}^{-1}(D^*) \cap T \neq \emptyset \), \(\tilde{\phi}^{-1}(D^*) \cap T \) is a left ideal of \(T \).

(2) If \(\kappa > \omega \), then for every \(D \subseteq \phi(S) \) with \(|D| = \kappa \), \(\tilde{\phi}^{-1}(U(D)) \cap \beta S \) is a left ideal of \(\beta S \).

Proof. (1) Let \(D \subseteq \omega \) and suppose that \(L = \tilde{\phi}^{-1}(D^*) \cap T \) is nonempty. To see that \(L \) is a left ideal of \(T \), let \(p \in L \) and \(q \in T \). Then \(qp \in T \) and \(\tilde{\phi}(qp) = \tilde{\phi}(p) \in D^* \). Hence, \(qp \in L \).

(2) Let \(D \subseteq \phi(S) \) and \(|D| = \kappa \). Then \(\phi^{-1}(D) \cap S = \kappa \). It follows that \(L = \tilde{\phi}^{-1}(U(D)) \cap \beta S \) is nonempty. To see that \(L \) is a left ideal of \(\beta S \), let \(p \in L \) and \(q \in S \). Then \(qp \in \beta S \), \(p \in U(S) \) and \(\tilde{\phi}(qp) = \tilde{\phi}(p) \in U(D) \). Hence, \(qp \in L \). \(\square \)

Lemma 8. There is \(D \subseteq \kappa \) with \(|D| = \kappa \) such that whenever \(D_0 \subseteq D \) and \(|D_0| = \kappa \), \(\tilde{\phi}^{-1}(U(D_0)) \cap T \) is a left ideal of \(T \).

Proof. Consider two cases.

Case 1: \(\kappa = \omega \). Let \(\{ V_n : n < \omega \} \) be a decreasing neighborhood base at \(1 \in H \). Construct inductively a sequence \((x_n)_{n < \omega} \) in \(S \) such that for each \(n < \omega \), \(x_n \in V_n \setminus \{ 1 \} \) and \(\phi(x_{n+1}) \notin \{ \phi(x_i) : i \leq n \} \). Then \((x_n)_{n < \omega} \) converges to \(1 \) and \(\phi(x_n) \neq \phi(x_{n+1}) \).
if \(n \neq m \). Put \(D = \{ \phi(x_n) : n < \omega \} \). Clearly \(D \) is infinite. Now let \(D_0 \) be an infinite subset of \(D \). Then \(\{ x_n : \phi(x_n) \in D_0 \} \) is a subsequence of \(\{ x_n \}_{n < \omega} \), and so is converging to 1. Consequently, \(\overline{\phi^{-1}(D_0)} \cap T \neq \emptyset \). Hence by Corollary 7(1), \(\overline{\phi^{-1}(D_0)} \cap T \) is a left ideal of \(T \).

Case 2: \(\kappa > \omega \). Put \(D = \phi(S) \). Then \(|D| = \kappa \). Now let \(D_0 \subseteq D \) and \(|D_0| = \kappa \). Then by Corollary 7(2), \(\overline{\phi^{-1}(D_0)} \cap \beta S \) is a left ideal of \(\beta S \). Since \(T \) contains all the idempotents of \(S^* \), \(\overline{\phi^{-1}(D_0)} \cap T \neq \emptyset \). It then follows that \(\overline{\phi^{-1}(U(D_0))} \cap T \) is a left ideal of \(T \). \(\square \)

Let \(D \) be a subset of \(\kappa \) guaranteed by Lemma 8. Pick any sequence \((D_n)_{n < \omega} \) of pairwise disjoint subsets of \(D \) of cardinality \(\kappa \). Then for each \(n < \omega \), \(\overline{\phi^{-1}(U(D_n))} \cap T \) is a left ideal of \(T \), so there is an idempotent \(p_n \in \overline{\phi^{-1}(U(D_n))} \cap K(T) \). Thus, for every \(n < \omega \), one has \(p_n \in E(K(T)) \) and \(\phi(p_n) \in D_n \). Let \(p \in \phi \{ p_n : n < \omega \} \). Then \(p \in \phi \{ p_n : n < \omega \} \) for each \(n < \omega \). We shall show that \(p \notin (\phi \{ T \}) \cap T \).

Recall that a subset \(C \subseteq S \) is syndetic if there is a finite \(F \subseteq S \) such that \(F^{-1}C = S \). Here, \(F^{-1}C = \bigcup_{x \in F} x^{-1}C \) and \(x^{-1}C = \{ y \in S : xy \in C \} \).

Lemma 9. Let \(B \subseteq S \). If \(\phi \{ T \} \) is not syndetic, then \(B \cap K(T) = \emptyset \).

Proof. Assume the contrary that there is \(q \in B \cap K(T) \) and let

\[C = \{ x \in S : x^{-1}B = q \} \]

Then by [2, Theorem 4.39], \(C \) is syndetic. But \(C \subseteq \phi \{ T \} \). Hence, \(\phi \{ T \} \) is syndetic as well — a contradiction. \(\square \)

Construct inductively a sequence \((W_n)_{n < \omega} \) of neighborhoods of 1 in \(H \) and a sequence \((x_n)_{n < \omega} \) in \(S \) such that \(W_0 = H \) and for every \(n < \omega \), the following conditions are satisfied:

(i) \(W_{n+1} \subseteq W_n \),
(ii) \(x_n \in (W_n \setminus W_{n+1}) \cap S \), and
(iii) \(x_n W_{n+1} \subseteq W_n \).

These conditions imply that

(iv) \(\phi \{ T \} W_{n+1} \subseteq W_n \), and
(v) whenever \(F \subseteq H \) and \(|F| < n \), one has \(F^{-1}W_{n+1} \setminus S \neq \emptyset \).

Indeed, to see (iv), let \(x \in \phi \{ T \} W_{n+1} \). Then \(W_{n+1}x \cap W_{n+1} \neq \emptyset \). Consequently, \(x \in W_{n+1}^{-1}W_{n+1} \subseteq W_n \).

To see (v), assume the contrary. Then there is \(x \in F \) and \(i < j < n \) such that \(x_i, x_j \in x^{-1}W_{n+1} \). Hence,

\[x_j^{-1}x_i \in W_{n+1}^{-1}xW_{n+1} = W_{n+1}^{-1}W_{n+1} \subseteq W_n \]

It follows that

\[x_i x_j^{-1} \subseteq W_{n+1} \]

which is a contradiction.

We have that \(S \) is a disjoint union of sets \((W_n \setminus W_{n+1}) \cap S \), where \(n < \omega \), and the set \(B = \bigcap_{n < \omega} W_n \cap S \). It follows from (iv) that \(B \) is closed in \(T \), and from (v) that \(B \) is not syndetic. Hence by Lemma 9, \(B \cap K(T) = \emptyset \).

For every \(n < \omega \), let \(A_n = \phi^{-1}(D_n) \cap W_n \cap S \) and \(A = \bigcup_{n < \omega} A_n \). Note that \(A \in p \).

Now to show that \(p \notin (\phi \{ T \})T \), assume on the contrary that \(p = qr \), for some \(q \in \phi \{ T \} \) and \(r \in T \). Choose \(Q \in q \) such that \(Qr \subseteq A \). Since \(q \in \phi \{ T \} \), one has \(B \notin q \), so \(Q \subseteq B \). Pick \(x \in Q \setminus B \). Then \(x \in A \) and \(x \in W_n \setminus W_{n+1} \) for some \(n < \omega \). Since \(r \in T \) and \(\phi \{ T \} W_{n+2} \subseteq W_{n+1} \), we obtain that \(x \in S \setminus W_{n+2} \). It then follows that \(x \in \bigcup_{i < n+1} \overline{A_i} \). Hence, \(\overline{\phi(r)} = \overline{\phi(xr)} \subseteq \bigcup_{i < n+1} \overline{D_i} \). But \(\overline{\phi(r)} = \overline{\phi(qr)} = \overline{\phi(p)} \neq \overline{D_i} \) for each \(i < n \) — a contradiction.

The proof of Theorem 4 is complete.

Remark. For subsemigroups of compact groups of countable weight Theorem 4 can be strengthened as follows: There are elements in \((\phi \{ T \}) \) which are not in \(T^2 \). Indeed, in this case the sequence \((W_n)_{n < \omega} \) of neighborhoods of 1 in \(H \) may be chosen in addition so that \(\bigcap_{n < \omega} W_n \cap S = \{ 1 \} \). Then for every \(q \in T \), one has \(\bigcup_{n < \omega} (W_n \setminus W_{n+1}) \cap S \subseteq q \).

References