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1 Introduction

A dedicated search for Dark Matter (DM) at the Large Hadron Collider is currently one of

the foremost objectives in particle physics. The most generic search channel is the mono-

jet plus missing transverse energy signal, which searches for a single jet recoiling against

the momentum of the DM particles which escape the detector unseen [1–6]. In order to

make such a search possible, it is necessarily to have a framework in which to describe

the interactions of dark matter particles with SM fields. Given the plethora of possible

dark matter models in the literature, it is impractical to perform a dedicated analysis of

each model. It is thus imperative to work with a small number of models that capture the

essential aspects of the physics in some approximate way. Effective field theories (EFTs)

achieve this aim, by parameterising the DM interactions with SM particles by a small set

of non-renormalizable operators. For instance, the lowest order operators that describe the

interaction of a pair of fermionic DM particles, χ, with a pair of SM fermions, f , are of

the form
1

Λ2
(χΓχχ)

(
fΓff

)
, (1.1)
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where the Lorentz structure Γχ,f can be 1, γ5, γµ, γ5γµ, σµν . A full set of operators can

be found in [7, 8], where a standard naming convention has been defined. Such operators

are not intended to be complete description of DM interactions, valid at arbitrarily high

energy. They would be obtained as a low energy approximation of some more complete

theory by integrating out heavy degrees of freedom. The energy scale Λ is related to the

parameters of that high energy theory as Λ = g/M , where g is a coupling constant and M

is the mass of a heavy mediator.

The EFT description will clearly break down at energies comparable to Λ, at which

scale we expect the mediators to be produced on-shell or give rise to cross section reso-

nances. Moreover, while the EFT will provide physically well-behaved cross sections at low

energies, they will give rise to bad high energy behaviour if used outside their region of

validity. This manifests as a violation of perturbative unitarity [9–12]. While these issues

may be remedied with a simplified model [13] in which a mediator is explicitly introduced,

issues of unitarity violation can persist if gauge invariance is not respected. The shortcom-

ing of EFTs and simplified models that violate SM gauge invariance [14–17] or dark-sector

gauge invariance [18, 19] have recently been discussed.

Given the usefulness of the EFT and simplified model description of DM interactions,

they will continue to be used in collider DM search analyses. Therefore, it is important

to limit analyses to parameters that respect perturbative unitarity. One such approach

is to use a truncation technique [20–22], which introduces a momentum cutoff equal to

the mass of the would-be integrated-out mediator. In this paper we will instead use a

procedure known as K-matrix unitarisation [23–28] to enforce unitarisation of all scattering

amplitudes. Although this procedure will not capture the resonance structure of the true

high energy theory, it will force scattering amplitudes to be well behaved at high energies,

allowing us to derive meaningful limits on EFT models from LHC collisions with high

centre of mass energies.

We will use the K-matrix approach to unitarise the 2 to 2 scattering amplitudes, such

as qq → χχ. This will allow us to determine unitarised cross sections for the 2 to 3 mono-jet

processes such as qq → χχg, under the assumption that the gluon can be treated with the

collinear approximation. We will also compare the results obtained from this unitarisation

technique with those obtained with truncation. The rest of the paper is organised as follows:

in section 2 we summarise the theoretical framework for the unitarisation procedure. We

illustrate the unitarisation procedure in two toy models in section 3 and apply it to the

standard vector operator D5 in section 4. Section 5 contains the conclusions, while in

appendix A we derive the relevant cross sections in the collinear limit.

2 K-matrix unitarisation

The K-matrix formalism was first introduced in ref. [23, 24]. It is a technique to impose

unitarity on amplitudes which naively violate unitarity. In the derivation we largely follow

the notation and arguments in refs. [25, 26, 29].1 Unitarity of the S-matrix,

S = I + 2iT , (2.1)

1See ref. [27, 28] for further details.
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implies the well-known relation for the T -matrix

T − T † = 2iTT † . (2.2)

Note the factor of 2 in the definition of the T -matrix which has been introduced for con-

venience.

Following the seminal work by Jacob and Wick [27], for scattering processes a b→ c d

we can describe both the initial and the final state in terms of two-particle helicity states

|Ωλ1λ2〉 which are characterised by the helicities λi of the two particles and two angles

θ and φ, collectively denoted Ω. Choosing the initial state to align with the z-axis, the

individual T -matrix element for a process a b → c d with fixed helicities in the initial and

final state is given by

〈Ωλcλd|T |0λaλb〉 =
1

4π

∑
J

(2J + 1)T Jλ′λDJ∗λλ′(φ, θ, 0) , (2.3)

in terms of the partial waves

T Jλ′λ ≡ 〈Jλcλd|T |Jλaλb〉 =

∫
dΩ 〈Ωλcλd|T |0λaλb〉DJλλ′(φ, θ, 0) , (2.4)

the Wigner D-functions DJλλ′ with total angular momentum J , and the resultant helicity of

the two-particle states λ = λa−λb and λ′ = λc−λd, where we used the normalisation of the

Wigner D-functions in ref. [26]. Assuming that no three-particle states are kinematically

accessible, an analogous unitarity relation holds for each partial wave T Jλλ′ separately,

T J − T J† = 2iT J†T J , (2.5)

in terms of matrices T J with components T Jλ′λ. This condition can be rewritten in terms of(
KJ
)−1 ≡

(
T J
)−1

+ iI =
((
T J
)−1

+ i I
)†

, (2.6)

which motivates the definition of the K-matrix for the Jth partial wave, KJ . The K-matrix

is hermitean, KJ = KJ†. If the S-matrix is invariant under time reversal, the K-matrix is

symmetric and thus KJ and
(
KJ
)−1

are real. Hence (KJ)−1 can be considered as the real

part of (T J)−1 and the imaginary part of T J is determined by the term iI in eq. (2.6). We

can invert the relation in eq. (2.6) to obtain

T J ≡ 1

(KJ)−1 − iI
. (2.7)

The matrix T J is given by the stereographic projection of the K-matrix on the Argand

circle as shown in figure 1. If perturbative unitarity is violated in any amplitude, it can be

enforced by imposing reality on (KJ)−1, i.e. replacing (KJ)−1 by Re[(T J)−1], which leads

to the unitarised T -matrix2

T JU ≡
1

Re [(T J)−1]− iI
. (2.8)

2Note that this prescription is not analytic at T J = 0 [29]. K-matrix unitarisation does not enforce a

consistent analytic structure [30]. In practice this is not important, because we are interested in studying

monojet searches at the LHC where the amplitudes are large and T J 6= 0.

– 3 –
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KJ

2
KJ

i

i
2

T JU

Figure 1. Argand circle and Thales projection.

Particularly in case the T -matrix quadratically grows with the centre of mass energy,

T J ∝ s
16πΛ2 , the unitarised T -matrix asymptotically reaches saturation

T JU =
1

16πΛ2

s − i
s→∞−→ i , (2.9)

which can be interpreted as a resonance at infinity. Note that the restriction to the real

part of
(
T J
)−1

can be understood as the Thales projection onto the real axis [29], if the

T -matrix T J is complex, i.e. points lying on the red dashed circle in figure 1 are projected

onto the same unitarised T -matrix T JU as KJ . All discussed operators in sections 3 and 4

lead to a real T -matrix T J in the considered scattering processes. Alternatively, following

ref. [31, 32] the hermiteanK-matrix can be considered as an approximation to the scattering

amplitude, which can be obtained order by order in perturbation theory using eq. (2.6).

Using the fact that the K-matrix is the Cayley transform of the S-matrix [33, 34]

S =
I + iK

I− iK
, (2.10)

it is possible to reconstruct a unitary S-matrix starting from an approximate K-matrix.

The S-matrix defined in eq. (2.10) restores unitarity, which is lost in the usual expansion

of the S-matrix, if only a finite number of terms are taken into account in perturbation

theory. The K-matrix formalism can be considered minimal, since it does not introduce

new parameters or visible structures in scattering amplitudes like resonances. However

it does not yield a viable UV completion of the effective theory. New resonances have

to be included by hand. See refs. [29, 35, 36] for a recent discussion in the context of

WW scattering.

In the following, we will make use of this prescription to obtain unitary amplitudes

for DM pair production at the LHC. Taking the normalisation of the two-particle states

properly into account, the T -matrix is related to the usual Lorentz-invariant matrix element

Mfi by

〈Ωλcλd|T |0λaλb〉 =
1

32π2

√
4pfpi
s
Mfi , (2.11)

and analogously the partial waves. In the ultra-relativistic limit, the initial and final state

phase space densities 2pi,f/
√
s approach unity, simplifying the calculation of the unitarised

– 4 –
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T -matrix considerably. Finally, the differential cross section in terms of the T -matrix

element is given by
dσfi
dΩ

=
(4π)2

s

s

4 p2
i

|〈Ωλcλd|T |0λaλb〉|2 , (2.12)

and thus the total cross section can be conveniently expressed in terms of the partial waves

σfi =
4π

s

s

4 p2
i

∑
J

(2J + 1)
∣∣T Jλ′λ∣∣2 =

4π

s− 4m2
i

∑
J

(2J + 1)
∣∣T Jλ′λ∣∣2 . (2.13)

Note that this is the cross section for fixed helicities. The unpolarised and color averaged

cross section is obtained in the usual way by averaging over the initial state helicities and

number of colours and summing over the final state ones, i.e.,

σ(qq̄ → X) =
1

12

∑
helicities

σfi (2.14)

for the unpolarised cross section qq̄ → X with two quarks in the initial state. The unitarised

cross section is obtained by replacing T Jλ′λ by the corresponding unitarised T -matrix element

T JUλ′λ. Thus the cross section is unitarised for each quark color and helicity separately.

3 Simple two-channel models

To illustrate the unitarisation procedure, we will make a simplifying assumption concerning

the quark states in the operator and consider two simple models which feature only two

channels. The effective operator D5 shall then be discussed in the next section.

3.1 States

As we are working in the collinear approximation, in the T -matrix we ought to consider all

coupled two-particles states to expect the unitarity of the S-matrix to hold. If we consider

the SM plus the DM particle coupled with an EFT operator, this implies the consideration

of all possible two-particle states in the standard model with zero charge, baryon and lepton

number, in addition to χχ̄. Taking into account color, helicity and flavour, this results in

3 · 3 · 4 · 6 = 216 states for the quarks alone. To simplify the framework, we consider only

the singlet color state
RR̄+ V V̄ +BB̄√

3
, (3.1)

because all other color combinations decouple from this state and the DM sector. Moreover

we assume the same operator suppression scale Λ for all quark flavours. In this case we

can also consider just one flavour state:

uū+ dd̄+ ss̄+ cc̄+ bb̄+ tt̄√
6

, (3.2)

as, again, all other flavour combinations decouple from this state and the DM sector.

Now, if we “turn off” electro-weak interactions, i.e. approximating αEW � αs, this state

decouples from all other standard model states, and only couples to itself and the DM states.

– 5 –
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3.2 EFT motivated by T-channel scalar exchange

We now consider a toy model scenario that can be solved analytically. We take the following

EFT operator connecting the dark and the visible sector:

L1 =
1

Λ2
qχ

q̄γµPRqχ̄γ
µPLχ . (3.3)

This operator can arise by integrating out a heavy coloured scalar t-channel mediator

coupling only to right-handed quarks and left-handed DM particles. In the limit of massless

particles, s � m2
χ,m

2
q , the only non-zero T -matrix elements are 〈χLχ̄R|T |qRq̄L〉3 and the

matrix element 〈qRq̄L|T |χLχ̄R〉 related by time-reversal. Thus we are left with a 2 × 2

T -matrix,

T = − 1

16π2

s

Λ2
qχ

(
0 1

1 0

)
sin2 θ

2
, (3.4)

in the basis of the two helicity 1 two-particle states (|qRq̄L〉 , |χLχ̄R〉). We only include the

contribution of the effective operator and neglect any QCD contribution. The partial wave

expansion only contains the term with total angular momentum J = 1,

T 1 = − 1

12π

s

Λ2
qχ

(
0 1

1 0

)
, (3.5)

which grows linearly with s and thus is going to violate perturbative unitarity for scales

s & 12πΛqχ2 . After unitarising the amplitudes using K-matrix unitarisation, the unitarised

amplitude turns out to be

T 1
U =

1

s2 + 144π2Λ4
qχ

(
is2 −12πsΛ2

qχ

−12πsΛ2
qχ is2

)
. (3.6)

Note that the unitarisation procedure introduces contributions to the scattering of q̄q → q̄q

and χ̄χ → χ̄χ. The denominator leads to a smooth cutoff around s ∼ 12πΛ2
qχ, indicat-

ing that the non-unitarised amplitude strongly violates perturbative unitarity above such

energy. When discussing the validity of the EFT, this in turn means that, unless new

states and/or new interactions are introduced, the EFT breaks at this energy scale. The

unitarised T -matrix is well-behaved for large s and converges to iI and it can be thus used

to interpret scattering events, like monojet signatures at the LHC. In fact, the high-energy

tail leads to a negligible contribution due to the suppression of the parton distribution

function at high-energy in contrast to the EFT.

3.3 EFT motivated by S-channel vector boson exchange

Generally there might also be operators between two quark currents or two dark matter

currents. As second example we consider an effective theory with three operators

L2 =
1

2Λ2
qq

q̄γµPRqq̄γ
µPRq +

1

Λ2
qχ

q̄γµPRqχ̄γ
µPRχ+

1

2Λ2
χχ

χ̄γµPRχχ̄γ
µPRχ , (3.7)

3Note that right-handed (left-handed) particles have helicity + 1
2

(− 1
2
).

– 6 –
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which might arise from a simplified model with a Z ′ gauge boson coupling only to the

right-handed quark and DM currents. In such a model the EFT parameters are related

to those of the UV complete theory according to Λ2
qq = M2

Z′/g2
q , Λ2

qχ = M2
Z′/(gqgχ) and

Λ2
χχ = M2

Z′/g2
χ, where gq,χ are the couplings of the Z ′ to the quarks and the DM, and

MZ′ is the mediator mass. The effective operators lead to four non-vanishing entries in the

T -matrix, 〈qRq̄L|T |qRq̄L〉, 〈χRχ̄L|T |χRχ̄L〉, 〈χRχ̄L|T |qRq̄L〉, and 〈qRq̄L|T |χRχ̄L〉, where the

latter two are related by time-reversal. The T -matrix in the basis (|qRq̄L〉 , |χRχ̄L〉) is then

given by

T = − 1

16π2

(
2s

Λ2
qq

s
Λ2
qχ

s
Λ2
qχ

2s
Λ2
χχ

)
cos2 θ

2
. (3.8)

Gluon s-channel exchange between quark - anti-quark pairs leads to an additional con-

tribution to the 〈qRq̄L|T |qRq̄L〉 element. It does not grow with s like the other contribu-

tions and thus can be neglected for large s, when perturbative unitarity becomes an issue.

The only non-vanishing term in the partial wave expansion has total angular momentum

J = 1 reading

T 1 = − 1

12π

(
2s

Λ2
qq

s
Λ2
qχ

s
Λ2
qχ

2s
Λ2
χχ

)
. (3.9)

The expression for the unitarised T -matrix turns out to be complicated. Assuming an

underlying simplified model with a Z ′ mediator, the operator suppression scales are re-

lated via

ΛqqΛχχ = Λ2
qχ . (3.10)

This motivates the definition of the ratio

r =
Λqχ
Λχχ

=
Λqq
Λqχ

. (3.11)

In terms of the ratio r, the unitarised T -matrix, T 1, is

T 1
U,r =

1

r2s2 − 8iπ (r4 + 1) sΛ2
qχ − 48π2r2Λ4

qχ

(
is2r2 + 8πsΛ2

qχ 4πr2sΛ2
qχ

4πr2sΛ2
qχ is2r2 + 8πsΛ2

qχ

)
. (3.12)

Note that one can always parameterize new physics using a complete set of EFT opera-

tors like the ones in eq. (3.7), thus this choice is not model dependent, if one chooses a

complete basis. The only model-dependent hypothesis we are using comes from imposing

the relation (3.10) based on the assumption that the chosen EFT operators comes from

an integrated-out Z ′ mediator. Even though this choice is model dependent, we will keep

this constraint to reduce the number of parameters of the model. In the following we will

restrict ourselves to this relation for simplicity and study the impact of the unitarisation

procedure on the cross section using the well-studied D5 operator and the corresponding

four-fermion operators with only quark and dark matter fields, respectively.

– 7 –
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4 Unitarising the effective operator D5

The K-matrix unitarisation procedure can be applied to any of the studied operators. We

will focus on the operator D54 which might arise from a simplified model with a Z ′ gauge

boson coupling to both the quark and DM vector currents. Besides the operator D5, whose

Wilson coefficient we denote by Λ−2
qχ , we have to consider the two four-fermion operators

with only quarks and DM particles χ, respectively

LD5 =
1

2Λ2
qq

q̄γµqq̄γ
µq +

1

Λ2
qχ

q̄γµqχ̄γ
µχ+

1

2Λ2
χχ

χ̄γµχχ̄γ
µχ . (4.1)

The explicit expressions for the T -matrix, the partial waves and the unitarised partial waves

are summarised in appendix C. Similarly to the second toy model in the previous section,

we assume relation (3.10) for simplicity and express the results in terms of the ratio (3.11).

K-matrix unitarisation does not depend on this assumption, but it considerably simplifies

the analysis by constraining the parameter space of the three Wilson coefficients to the

two-dimensional submanifold defined by eq. (3.10).

Before comparing the result of K-matrix unitarisation with the 8 TeV ATLAS EFT

limits for the operator D5 [3] and the method of truncation, we comment on the validity

of the collinear approximation and the importance of quark jets.

4.1 Validity of collinear approximation

The collinear approximation is technically only valid in the limit of small scattering angles,

i.e. small transverse momentum pT compared to the centre of mass energy
√
s. Thus it is

essential to estimate how well the collinear approximation performs for monojet searches,

which usually employ a high cut on pT to suppress QCD background. The full three-body

final state cross section for the effective operator D5 with an emission of one gluon jet is

presented in the appendix of ref. [21]. Figure 2 depicts the ratio of the cross section using

the analytic result in ref. [21] over the cross section obtained in the collinear approximation

as a function of the minimum pT,min both for 8 TeV (red line) and 13 TeV (blue line).5 The

collinear approximation leads to an enhancement of less than about 10% of the cross section

for a minimum pT,min ' 100 GeV, which grows to 45% (30%) with pT,min = 800 GeV for

8 TeV (13 TeV) centre of mass energy. The ATLAS 8 TeV monojet analysis [3] required

pT > 120 GeV and thus the collinear approximation overestimates the cross section by

about 13%. The 13 TeV monojet searches plan to require pT,min = 600 GeV leading to about

37% overestimation of the cross section by taking the collinear limit. We expect similar

results for the cross section in the unitarised EFT, which is suggested by the fact that the

cross section in the effective theory can be factorised in the two-body cross section qq̄ → χχ̄

and a function dependent on the scattering angle of the jet and its rapidity. Consequently

we expect the overestimation by taking the collinear limit to mostly cancel out in the ratio

4The operator D5 belongs to the list of operators presented in ref. [7], which have been widely used in

the LHC monojet searches reported by the ATLAS and CMS collaborations. See table 1 for the full list

of operators.
5Note that the collinear limit for the effective operators D1 and D4 agrees with the exact result.

– 8 –
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Figure 2. Ratio of the full cross section to the collinear one as a function of the minimum transverse

momentum pT for mDM = 100 GeV. The Blue line refers to beam energy of 13TeV, the red one

to 8 TeV.

of the cross sections (RU and RΛ, defined below). Hence the ratios calculated with the

collinear approximation will be closer to the values obtained from a full 3-body final state

calculation than the result in figure 2 suggests. Thus the collinear approximation works

well, which is also supported by a similar analysis in ref. [37]. Going beyond the collinear

limit requires the inclusion of three-body states in the T -matrix rendering the K-matrix

unitarisation procedure more complicated. We will defer an analysis beyond the collinear

limit to a future publication.

4.2 Importance of quark-jets

In the previous subsection we only considered gluon jets, shown in figure 4a, and neglected

the additional contribution from quark jets. It originates from diagrams with gluons in

the initial state as shown in figure 4b. Quark jets generally lead to a 10% increase in the

cross section, as it is suggested by figure 6 in ref. [21]. We included quark jets and show in

figure 3 the ratio of the unitarised cross section over the cross section using the effective

field theory in the collinear limit for a fixed value of the DM mass, mDM = 100 GeV,

RU =
σunitarised,coll.

σEFT,coll.
, (4.2)

for different values of r = 1, 2, 5. The dotted lines show the ratio RU , if quark jets are ne-

glected, while the solid lines take both contributions into account. The additional contribu-

tion of quark jets generally enhances the unitarised cross section over the EFT cross section.

4.3 Reinterpretation of the 8 TeV ATLAS monojet limit

ATLAS performed a monojet analysis with their full 8 TeV dataset of 20.3 fb−1. The

limits were interpreted for different EFT models including the operator D5. Besides the

– 9 –
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Figure 3. The ratio RU as a function of the cut-off scale Λ, for different values of r for mDM =

100 GeV. The solid lines refer to RU including both quark and gluon jets, the dotted lines refer to

RU including only gluon jets.
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Figure 4. Initial state radiation leading to monojet signature in DM pair production at the LHC.

EFT limit, ATLAS also quotes the limit obtained using truncation, where only events are

kept, which are consistent with the EFT interpretation and satisfy the constraint

Λ >
Qtr√
gqgχ

> 2
mDM√
gqgχ

, (4.3)

i.e. the requirement that the momentum transfer Qtr is always smaller than the mass of the

mediator M =
√
gqgχΛ, which is expressed in terms of the cutoff scale Λ and the couplings

gq,χ of the quarks and DM particles χ to the mediator. In case of D5, this could be the

mass of an Z ′ gauge boson, which is exchanged in the s-channel, and the corresponding

gauge couplings with quarks and DM. For gauge couplings, we naively expect the couplings

to be of a similar order of magnitude. We reproduce in figure 5 the official ATLAS 8 TeV

monojet limit shown in figure 10b of ref. [3]. The blue solid line refers to the ATLAS EFT

limit, and the green and yellow regions indicate the 1 and 2σ uncertainty bands. The red

dashed line corresponds to the limit using truncation with maximal couplings gqgχ = 4π

and the purple dashed line to the one using truncation with couplings gqgχ = 1. The purple

dotted line is our result for truncation with unit couplings using the collinear limit. The

black solid lines show the limit obtained using the unitarised amplitude with r = 1, 2, 3, 4, 5

from top to bottom. The limits are only shown for small DM masses mDM < 100 GeV,
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Figure 5. Reinterpretation of ATLAS limit at 8TeV. The blue line refers to the ATLAS limit,

the green and yellow band indicating the 1 and 2 sigma uncertainty bands, as in [3]. The red

dashed line indicates the limit using truncation with maximal couplings, the purple dashed one

using truncation with unit couplings. The purple dotted lines refers to our result using the collinear

limit for the truncation with unit couplings, while the black lines refer to the unitarised amplitude

with r = 1, 2, 3, 4, 5 from top to bottom.

because they are derived neglecting the DM mass. In our analysis, we employ the collinear

limit and only include the leading jet unlike the ATLAS analysis, which included a second

jet. These effects go in the opposite direction and partly cancel each other. The unitarised

amplitude with r ≤ 3 leads to a stronger limit than using truncation with gqgχ = 1.

4.4 Future projection to 13 TeV and comparison to truncation

Using the cross section ratio, it is straightforward to apply the same method to a future

analysis. The EFT cross section is suppressed by the fourth power of the scale of the

effective operator Λ ≡ Λqχ. Thus a reduction of the unitarised cross section by a factor

RU approximately results in a decrease of the limit on the scale Λ by a factor of R
1/4
U . In

practice the unitarised limit has to be obtained iteratively [38]. Figure 6 shows the ratio

RU as a function of the cutoff scale Λ for different values of r = 1, 5, 10 as solid lines. The

dashed lines serve as a comparison to the corresponding ratio

RΛ =
σtruncated,coll.

σEFT,coll.
, (4.4)

using the truncated amplitudes for different benchmark values of the couplings gqgχ =

0.5, 1, 2, 4π. All ratios have been obtained using the collinear approximation including

exactly one jet, which can be either a quark or a gluon jet. The centre of mass energy is

fixed to
√
s = 13TeV and the DM mass to mDM = 100 GeV. The transverse momentum
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Figure 6. Quantities RU , RΛ as a function of the cut-off scale Λ for different values of r = 1, 5, 10

and gqgχ = 0.5, 1, 2, 4π for mDM = 100 GeV. The solid lines refer to RU , the dashed lines refer to

RΛ. Both gluon and quark jets were included in both cases.

pT is limited to 600 GeV ≤ pT ≤ 2TeV and rapidity is required to satisfy |η| ≤ 2. The

ratios RU and RΛ do not change much if the cut on pT is slightly increased to 700 GeV.

The suppression is generally stronger for low cut-off scales Λ, because more events have

to be discarded using the truncation procedure or the amplitude is reduced for smaller

center of mass energies
√
s using K-matrix unitarisation. The more a value deviates from

r = 1, the more the unitarised cross section is suppressed, similar to smaller couplings gqgχ
when using truncation. This can be clearly seen in figure 6.

The values of RU reported in figure 6 can be used to rescale EFT limits in the same way

as with RΛ. The precise description of the rescaling procedure and its main consequences

are outlined in ref. [38].

Finally we compare the K-matrix unitarisation to the truncation procedure in the

figure 7. The solid lines show the lines of constant gqgχ = 0.5, 1, 8 from left to right.

The vertical dashed line indicates the current limit from dijet searches restricting gq .
0.25 for mediator masses up to 3 TeV [39]. The light blue shaded region has RU < RΛ,

i.e. unitarisation leads to a larger suppression of the cross section than truncation and thus

a less stringent limit. Generally the truncated amplitude is less suppressed for gqgχ & 3 and

thus leads to a stronger limit. In the region which is not excluded by the dijet constraint,

i.e. gq . 0.25, we find that the unitarisation method leads to a stronger limit, RU > RΛ,

for gχ . 1.

5 Conclusions

Non-renormalisable operators lead to violation of perturbative unitarity in scattering am-

plitudes above the scale of the operator. This particularly poses a problem for the interpre-

tation of monojet searches at the LHC experiments in terms of EFTs, because the limits on

the cut-off scale Λ obtained assuming an EFT are lower than the centre of mass energy
√
s.
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Figure 7. The light blue shaded region is the region of the parameter space with RU < RΛ. The

region covered by black dashed lines is excluded by dijet search [39] (for mediators below 3TeV).

The brown, blue and red lines are contours where the value of gqgχ is constant, and equal to 1/2

(brown), 1 (blue) and 8 (red).

Thus there are many high-energy collisions with a centre of mass energy greater than Λ.

Although high-energy events are penalised by the small values of the parton distribution

functions, this is cancelled by the enhanced scattering amplitude, which grows proportional

to the centre of mass energy.

K-matrix unitarisation allows consistent limits to be obtained within the EFT frame-

work. We exemplified this for the operator D5 as well as two other simple toy models.

It leads to a smooth suppression of the scattering amplitude. In the limit of large centre

of mass energy,
√
s → ∞, the T -matrix approaches i1 and thus the off-diagonal elements

describing DM pair production at the LHC vanish. K-matrix unitarisation introduces a

dependence on the other T -matrix elements and thus the cut-off scales of other operators,

e.g. four quark operators and operators with four DM particles. The smallest cut-off scale

among all relevant operators determines the scale when the suppression due to K-matrix

unitarisation sets in. Hence the least suppression of the cross section in the K-matrix uni-

tarisation framework is obtained if the cut-off scales are of a similar order of magnitude.

This can be clearly seen for the D5 operator: the suppression increase with r = Λqχ/Λχχ,

since the smallest cut-off scale decreases with r.
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We recast the ATLAS 8 TeV monojet limit on the operator D5 for five benchmark

values of r = 1, 2, 3, 4, 5 finding a slight suppression of a few percent for r = 1 which grew

to more than 50% for r = 5. Given the suppression of the cross section as a function of

the cut-off scale Λ, it is straightforward to recast the limit obtained using an EFT to a

limit for the unitarised EFT. We provide this ratio for three different choices of r, for a

centre of mass energy of
√
s = 13TeV, which can be directly used to obtain the unitarised

EFT limit given the EFT limit. Note however that all results have been obtained in the

collinear approximation and without including a possible second jet. Going beyond these

two approximations, and the application of the same procedure to the other considered

operators, will be an interesting extension of the present work.

K-matrix unitarisation of EFT amplitudes provides a new way to extract model-

independent and theoretically reliable limits on the dark matter production cross section

at the LHC. The method can be applied to a wide class of scenarios, including other mono-

X searches or simplified models without manifest gauge invariance, providing, in certain

cases, more stringent limits than the truncation method currently used.
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A Collinear approximation

The collinear approximation allows to drastically simplify the discussion. This appendix

contains a detailed derivation of the relevant cross section. Starting by simplifying the

three-body phase space, we can write

dφ3body = (2π)4δ4

(
3∑
i=1

pi−p0

)
3∏
i=1

d3pi
(2π)32Ei

=
1

28π5

d3p1d
3p2

E1E2E3
δ(E1+E2+E3−E0) . (A.1)

The phase space is Lorentz invariant, so we are free to evaluate this expression in any ref-

erence system. After introducing the four-momentum p23 = p2 +p3 with the corresponding

energy E23 = p0
23 and invariant four-momentum s23 = p2

23, it is possible to use the identities

1 = ds23δ(s23 − p2
23)θ(p0

23) (A.2)

δ(E1 + E2 + E3 − E0) = δ(E2 + E3 − E23)δ(E1 + E23 − E0)dE23 (A.3)

to separate the two-body phase space of particles 2 and 3

dφ3body =
1

28π5

d3p1d
3p2

E1E2E3
ds23δ(s23−p2

23)θ(p0
23)δ(E2+E3−E23)δ(E1+E23−E0)dE23 (A.4)

=
1

24π3

d3p1

E1
ds23δ(s23−p2

23)θ(p0
23)δ(E1+E23−E0)dE23dφ

2body
2,3 , (A.5)
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where in the last step we have used the definition of the two-body phase space of the

particles 2 and 3

dφ2body
2,3 ≡ 1

24π2

d3p2

E2E3
δ(E2 + E3 − E23) , (A.6)

which will be included in the two-body cross section. The remaining part can be further

simplified by integrating over E23

dφ3body = dφ2body
2,3

ds23

2π

1

24π2

d3p1

E1E23
δ(E1 + E23 − E0) . (A.7)

While we are not interested in simplifying dφ2body
2,3 further, as its expression in terms of

kinematic variables will be necessary only to calculate the cross section σqq̄→χχ̄, we want

to simplify the last delta function in

dφ3body = dφ2body
2,3

ds23

24π2

d cos θ0E1dE1

E23
δ(E1 + E23 − E0) , (A.8)

which can be evaluated using

E23 =
√
E2

1 + s23
dE23

dE1
=

E1√
E2

1 + s23

=
E1

E23
. (A.9)

Thus we obtain after the integration with respect to E1

dφ3body = dφ2body
2,3

ds23d cos θ0

24π2

E1

E0
(A.10)

The phase space and cross section are simple to evaluate in the centre of mass frame,

where momentum fraction of the partons equal x1 = x2 = x and the following kinematic

relations hold

ŝ = (p1 + p2 + p3)2 = sx2 E1 =
√
sx2

z0

2
(A.11)

s23 = (p2 + p3)2 = sx2(1− z0) E23 =
√
sx2

(
1− z0

2

)
(A.12)

The definition of z0, θ0 is given in the following parametrisation of the momenta in the

centre of mass frame

pµ1 =
√
sx2

z0

2
(1, 0, sin θ0, cos θ0) (A.13)

pµ2 =
√
sx2

(
1− y0

2
,
√

(1− y0)2 − a2p̂3

)
(A.14)

pµ3 =
√
sx2

(
1 + y0 − z0

2
,
√

(1 + y0 − z0)2 − a2p̂4

)
, (A.15)

where the angle between p2 and p1 is fixed by momentum conservation and the fraction
2mDM√
sx2

. Using this parametrisation allows us to write the three-body phase space as

dφ3body = dφ2body
2,3

sx2z0

32π2
dz0d cos θ0 (A.16)
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clearly separating the two-body phase space factor from the variables z0 and cos θ0 describ-

ing the additional jet.

After the derivation of the convenient form of the three-body phase space factor, we

are ready to work with the collinear approximation. The four-momentum of the jet is

denoted p1, while the four-momenta of the DM particles are p2,3. Following the standard

discussion of the collinear limit (See e.g. [40]), the monojet cross section with a gluon jet

can be written as6

dσqq̄→χχ̄+j(g) =
1

|vq − vq̄|2Eq2Eq̄

[
1

2

∑
|M |2

]
1

(pq,q̄−p1)4

1

4
|M |2qq̄→χχ̄(s23)dφ3body (A.17)

=
1

2sx2

[
2g2
sp

2
T

z0(1−z0)

1+(1−z0)2

z0

]
z2

0

p4
T

1

4
|M |2qq̄→χχ̄(s23)dφ2body

2,3

sx2z0

32π2
dz0d cos θ0

neglecting the color factor. The four-momentum pq,q̄ denotes the initial state four-momen-

tum of the parton radiating off the gluon and the transverse momentum of the gluon is

given by

pT =
√
sx2

z0

2
sin θ0 . (A.18)

The 2→ 2 scattering cross section for qq̄ → χχ̄,

σqq̄→χχ̄(s23) =
1

4

|M |2qq̄→χχ̄(s23)

2sx2(1− z0)
dφ2body

2,3 , (A.19)

can be factored out leading to

dσqq̄→χχ̄+j(g) = σqq̄→χχ̄(s23)
αs
4π

1 + (1− z0)2

z0

z0

p2
T

sx2z0dz0d cos θ0 (A.20)

= σqq̄→χχ̄(s23)
αs
π

1 + (1− z0)2

z0

1

sin2 θ0
dz0d cos θ0 , (A.21)

where eq. (A.18) has been used in the last line. Finally the cross section has to expressed in

terms of the variables in the lab frame to properly take the detector geometry into account.

The change from the so-far considered variables in the centre of mass frame (z0, θ0) to the

transverse momentum and rapidity of the jet, (pT , η), leads to the following Jacobian factor

dz0d cos θ0

dpTdη
=

4pT
sx1x2z0

(A.22)

and the old variables can be rewritten as follows

1

sin2 θ0
=
sx1x2

4p2
T

z2
0 z0 =

pT√
s

x1e
−η + x2e

η

x1x2
. (A.23)

Finally the color factors have to be included. For gluon emission it is 1/3 for color average,

Tr[TaTa] = 1/2 and a factor of 8 for the sum over gluons. Thus the color factor is CF = 4/3.

The cross section σqq̄→χχ̄ contains the color factor 1/3: (1/3)2 for the color average and

6Note that only one of the two diagrams contributes, as only one can be “collinear”. Consequently also

interference is negligible.
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3 for the color sum. Thus the color factor for the full 3body cross section is 4/9 and the

final expression for the emission of a gluon jet replacing x2 by x1x2 is given by

σqq̄→χχ̄+j(g) = (A.24)∑
q

∫
dx1dx2dpTdη(fq(x1)fq̄(x2)+fq(x2)fq̄(x1))

dzd cos θ0

dpTdη
σqq̄→χχ̄(s23)Pq→g(z0, θ0)

with the splitting function

Pq→g(z0, θ0) =
4αs
3π

1 + (1− z0)2

z0 sin2 θ0
. (A.25)

This expression is consistent with the expression in ref. [37]. The factor 2 for the 2 emissions

from the initial quark and anti-quark lines is already taken into account, because the

expression is only valid for θ ∈ (0, θmax) for the emission from parton 1 or θ ∈ (θmax, π) for

the emission from parton 2. Each time only one of the 2 diagrams contributes. Extending

to the maximum, i.e. θmax = π/2, the cross section is given by the calculated expression

integrated over the full range of θ, without any additional factor of 2.

Similarly, the cross section for radiating off a quark-jet is given by

σqq̄→χχ̄+j(q) =
∑
q

∫
dx1dx2dpTdη (fq(x1)fg(x2) + fq(x2)fg(x1) + [q → q̄])

dzd cos θ0

dpTdη
σqq̄→χχ̄(s23)Pg→q(z0, θ0) , (A.26)

where the splitting function for a quark-jet with nf different possible quark flavours is

Pg→q(z0, θ0) =
nf αs

4π

z2
0 + (1− z0)2

sin2 θ0
. (A.27)

B Convention for spinors

We explicitly list the helicity spinors used in our calculations to fix the convention of phases.

In the ultra-relativistic limit and setting the azimuthal angle φ = 0, the helicity spinors

take the form

uR(E, θ) = vL(E, θ) =
√

2E


0

0

cos θ2
i sin θ

2

 uL(E, θ) = −vR(E, θ) =
√

2E


i sin θ

2

cos θ2
0

0

 . (B.1)
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C K-matrix unitarisation of D5

The T -matrix for 2 → 2 scattering of quark - anti-quark and DM-DM two-particle states

in case of the effective theory described by the Lagrangian in eq. (4.1) is given by

T = − 1

16π2



2s cos2( θ2)
Λ2
qq

0 0
s sin2( θ2)

Λ2
qq

s cos2( θ2)
Λ2
qχ

0 0
s sin2( θ2)

Λ2
qχ

0 s
Λ2
qq

0 0 0 0 0 0

0 0 s
Λ2
qq

0 0 0 0 0

s sin2( θ2)
Λ2
qq

0 0
2s cos2( θ2)

Λ2
qq

s sin2( θ2)
Λ2
qχ

0 0
s cos2( θ2)

Λ2
qχ

s cos2( θ2)
Λ2
qχ

0 0
s sin2( θ2)

Λ2
qχ

2s cos2( θ2)
Λ2
χχ

0 0
s sin2( θ2)

Λ2
χχ

0 0 0 0 0 s
Λ2
χχ

0 0

0 0 0 0 0 0 s
Λ2
χχ

0

s sin2( θ2)
Λ2
qχ

0 0
s cos2( θ2)

Λ2
qχ

s sin2( θ2)
Λ2
χχ

0 0
2s cos2( θ2)

Λ2
χχ



(C.1)

in the basis (|qLq̄R〉 , |qLq̄L〉 , |qRq̄R〉 , |qRq̄L〉 , |χLχ̄R〉 , |χLχ̄L〉 , |χRχ̄R〉 , |χRχ̄L〉). The two-

particle states with the same helicity, completely decouple from the other states and can

be treated separately. They are pairwise related by parity and they only contribute to the

J = 0 term in the partial wave expansion

〈
qLq̄L|T 0|qLq̄L

〉
=
〈
qRq̄R|T 0|qRq̄R

〉
= − 1

4π

s

Λ2
qq

(C.2)

〈
χLχ̄L|T 0|χLχ̄L

〉
=
〈
χRχ̄R|T 0|χRχ̄R

〉
= − 1

4π

s

Λ2
χχ

. (C.3)

Thus the only non-vanishing elements of the unitarised T -matrix, T 0, are given by

〈
qLq̄L|T 0

U |qLq̄L
〉

=
〈
qRq̄R|T 0

U |qRq̄R
〉

=
is

s− 4πiΛ2
qq

(C.4)

〈
χLχ̄L|T 0

U |χLχ̄L
〉

=
〈
χRχ̄R|T 0

U |χRχ̄R
〉

=
is

s− 4πiΛ2
χχ

. (C.5)

The remaining states with opposite helicities contribute to the J = 1 term in the

partial wave expansion. The 4 × 4 sub-block of the T -matrix, T 1, in the basis

(|qLq̄R〉 , |qRq̄L〉 , |χLχ̄R〉 , |χRχ̄L〉) is given by

T 1 = − 1

12π


2s

Λ2
qq

s
Λ2
qq

s
Λ2
qχ

s
Λ2
qχ

s
Λ2
qq

2s
Λ2
qq

s
Λ2
qχ

s
Λ2
qχ

s
Λ2
qχ

s
Λ2
qχ

2s
Λ2
χχ

s
Λ2
χχ

s
Λ2
qχ

s
Λ2
qχ

s
Λ2
χχ

2s
Λ2
χχ

 . (C.6)

Many of the elements are related by the time-reversal symmetry and parity. [28, 41] There

are only 6 independent matrix elements and we find for the independent elements of the
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unitarised T -matrix T 1
U〈

qLq̄R|T 1
U |qLq̄R

〉
=

s
(
48πΛ2

qχr
4s+ir2

(
5s2−288π2Λ4

qχ

)
+36πΛ2

qχs
)(

s−12iπΛ2
qχr

2
) (
−36iπΛ2

qχr
4s+r2

(
5s2−144π2Λ4

qχ

)
−36iπΛ2

qχs
)

(C.7)〈
qLq̄R|T 1

U |qRq̄L
〉

=
12πΛ2

qχr
2s
(
r2s−12iπΛ2

qχ

)(
s−12iπΛ2

qχr
2
) (
−36iπΛ2

qχr
4s+r2

(
5s2−144π2Λ4

qχ

)
−36iπΛ2

qχs
)

(C.8)〈
qLq̄R|T 1

U |χLχ̄R
〉

= −
12πΛ2

qχr
2s

36iπΛ2
qχr

4s+r2
(
144π2Λ4

qχ−5s2
)
+36iπΛ2

qχs
(C.9)〈

qLq̄R|T 1
U |χRχ̄L

〉
=
〈
qLq̄R|T 1

U |χLχ̄R
〉

(C.10)〈
χLχ̄R|T 1

U |χLχ̄R
〉

=
〈
qLq̄R|T 1

U |qLq̄R
〉 [
r → 1

r

]
(C.11)

〈
χLχ̄R|T 1

U |χRχ̄L
〉

=
〈
qLq̄R|T 1

U |qRq̄L
〉 [
r → 1

r

]
. (C.12)

The fourth equation follows from the interaction being vector-like and the last two equations

follow from the symmetry q ↔ χ. The remaining matrix elements can be obtained from

time-reversal and parity symmetry: time reversal symmetry implies that T 1
U is symmetric,

i.e. T 1
U =

(
T 1
U

)T
. Parity conservation implies that matrix elements are invariant under

flipping all helicities, i.e.
〈
λ′1λ

′
2|T 1

U |λ1λ2

〉
=
〈
−λ′1 − λ′2|T 1

U | − λ1 − λ2

〉
.

D Effective SM-WIMP operators

We list the operators coupling the SM to Dirac fermion WIMPs [7] in table 1.

Name D1 D2 D3 D4 D5

Op. χ̄χq̄q χ̄γ5χq̄q χ̄χq̄γ5q χ̄γ5χq̄γ5q χ̄γµχq̄γµq

Name D6 D7 D8 D9 D10

Op χ̄γµγ5χq̄γµq χ̄γµχq̄γµγ
5q χ̄γµγ5χq̄γµγ

5q χ̄σµνχq̄σµνq χ̄σµνγ
5χq̄σαβq

Name D11 D12 D13 D14

Op χ̄χGµνG
µν χ̄γ5χGµνG

µν χ̄χGµνG̃
µν χ̄γ5χGµνG̃

µν

Table 1. Operators coupling SM to WIMPs first shown in ref. [7].
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