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A set function is a function whose domain is the power set of a set, which is
assumed to be finite in this paper. We treat a possibly nonadditive set function, i.e.,

Ž . Ž .a set function which does not satisfy necessarily additivity, w A q w B s
Ž .w A j B for A l B s B, as an element of the linear space on the power set.

Then some of the famous classes of set functions are polyhedral in that linear
space, i.e., expressed by a finite number of linear inequalities. We specify
the sets of the coefficients of the linear inequalities for some classes of set

Ž .functions. Then we consider the following three problems: a the domain
Ž .extension problem for nonadditive set functions, b the sandwich problem for

Ž .nonadditive set functions, and c the representation problem of a binary relation
by a nonadditive set function, i.e., the problem of nonadditive comparative
probabilities. Q 1997 Academic Press

1. INTRODUCTION

Set functions considered in this paper are normalized real functions
defined on the power set of a finite set. The theory of set functions is
developed in various fields, for example, fuzzy measure theory, utility

w x w xtheory 7 , coorperative game theory 27, 24 , and the theory of poly-
w xmatroids 4 . Various classes of set functions are known, for example,

probability measures, belief functions, plausibility functions, supermodular
functions, submodular functions, and lower and upper envelopes of proba-
bility measures. The relations among these classes were studied by

w x w x w xF. Delbaen 2 , M. Sugeno and T. Murofushi 29 , and J. Kindler 14 .
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The above examples of set functions are convex in the space of all set
functions; that is, by checking some linear inequalities, we can examine
whether a set function belongs to a given class. We pay attention to the
coefficients of these inequalities, especially, the set of the coefficients of
all valid inequalities to the polytope of a given class of set functions.

w xJ. Kindler 14 studied this from a similar view point.
Then, we discuss three problems for nonadditive set functions, say, the

domain extension problem, the sandwich problem, and the representation
problem of comparative probabilities.

Domain Extension Problem

When can a set function defined on a subset of the power set of a finite
set be extended to a set function defined on the whole power set so that it
belongs to a certain class of set functions? As for a probability measure,

Ž w xthe extension problem has been considered J. Łos and E. Marczewski 17 ,´
w x.K. P. S. Bhjaskara Rao and M. Bhaskara Rao 19 . A necessary and

sufficient condition for a real valued set function w defined on MM ; 2V to
be extended to a probability measure with the domain 2V is

l G w G G 0 for any l: MM ª ZŽ . Ž .Ý
Gg MM

such that l G G 0 for all v g V .Ž .Ý
G: vgG

Ž w x w x.See D. Schmeidler 24 and R. Giles 8 . We generalize this fact for other
convex classes of set functions.

Sandwich Problem

When does there exist a set function which belongs to a certain class of
set functions and which lies between two given set functions? The case
that given two functions are submodular and supermodular is important in

Ž w x.combinatorial optimization J. Edmonds and R. Giles 5 . As for probabil-
ity measures sandwiched by two set functions, a necessary and sufficient

Ž w x w x.condition is known J. Kindler 13 , P. Plappert 18 . We generalize it for a
polyhedral class of nonadditive set functions.

Representation Problem of Binary Relations

A binary relation # is said to be realizable by a probability measure if
there is a probability measure w such that

E # F if and only if w E G w F .Ž . Ž .
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It is known when a binary relation on the power set of a finite set is
Žrealizable by a probability measure C. H. Kraft, J. W. Pratt, and A.

w x w x.Seidenberg 15 , D. Scott 25 . We generalize this for a polyhedral class of
nonadditive set functions.

2. COEFFICIENTS OF LINEAR INEQUALITIES AND
THEIR DUALS

Let V be a finite set throughout this paper. The space of all set
functions on a finite set V can be regarded as a real vector space with a
finite dimension.

� V Ž . Ž . 4Notation 2.1. F s w : 2 ª R N w B s 0, w V s 1 .

Ž . Ž .By the assumptions w B s 0 and w V s 1, the dimension of the
linear space F is 2 < V < y 2. Many of the famous classes of set functions on
a finite set are convex and closed, moreover polyhedral, i.e., the intersec-
tion of closed halfspaces expressed by a finite number of linear inequalities
as proved in this section, for example, probability measures, belief func-
tions, upper envelopes of probability measures. For example, the space of

� 4probability measures on V s a, b is

w g F w a q w b y 1 G 0, yw a y w b q 1 G 0� Ž . Ž . Ž . Ž .
and w a , w b G 0 .4Ž . Ž .

We consider a set of coefficients of such inequalities.

� V Ž . 4Notation 2.2. L s l: 2 ª R N Ý l G s 0 .G ; V

If we replace the range R of l by Z, the discussions made in this paper
Ž .may be almost the same. Note that for l g L such that at least one l G

V � 4 � Ž . Ž . 4in all G g 2 y B, V is nonzero, w g F N Ý l G w G G 0 is aG ; V

closed halfspace in F.

DEFINITION 2.3. Given FF ; L, we denote

FF * s w g F l G w G G 0 for all l g FF .Ž . Ž .Ý½ 5
G;V

We call FF a set of determining coefficients of FF *.

That is, FF * is a convex and closed class of set functions determined by
the linear inequalities with the set FF of coefficients. The assumption

Ž . Ž .Ý l G s 0 in Notation 2.2 is not strong because we can set l BG ; V

Ž . Ž .arbitrarily without giving any effect to the value of Ý l G w G . But itG ; V

plays an important role when we consider the duality of set functions.
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DEFINITION 2.4. Given GG ; F, we denote

†GG s l g L l G w G G 0 for all w g GG .Ž . Ž .Ý½ 5
G;V

We call GG † the set of all valid coefficients of GG.

Obviously GG † is the maximum set of determining coefficients of GG. For
convex and closed GG ; F, the set of all valid coefficients GG † determines GG

w x20, Theorem 11.5 . It is clear that the set of all valid coefficients of GG

consists of all the inequalities whose nonnegative regions contain all the
extreme points of GG.

dŽ . Ž c.DEFINITION 2.5. For w g F, w G s 1 y w G is said to be the dual
d � d 4function of w. For GG ; F, GG s w N w g GG is said to be the dual class

of GG.
dŽ . Ž c.DEFINITION 2.6. For l g L, l G s yl G is said to be the dual

d � d 4coefficient of l. For FF ; L, FF s l N l g FF .

Note that ld g L for l g L.
The next theorem is very useful.

Ž .d Ž d.THEOREM 2.7. Let FF ; L. Then FF * s FF *.
Ž †.d Ž d.†Let GG ; F. Then GG s GG .

Proof.

ld G w d GŽ . Ž .Ý
G;V

s y l Gc 1 y w Gc s y l G 1 y w GŽ . Ž . Ž . Ž .Ž . Ž .Ý Ý
G;V G;V

s y l G q l G w G s l G w G .Ž . Ž . Ž . Ž . Ž .Ý Ý Ý
G;V G;V G;V

Ž .Note that Ý l G s 0 by the definition of L.G ; V

Note that, by this theorem, the dual of a polyhedral class is also
polyhedral.

3. VARIOUS CONVEX CLASSES OF SET FUNCTIONS

In this section, we want to find the set of all valid coefficients and the
set of determining coefficients of several classes of set functions.
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3.1. Probability Measures

The class of probability measures may be the most famous class of set
functions.

Ž .DEFINITION 3.1. A function w g F is a probability measure if w E q
Ž . Ž . Ž .w F s w E j F for all E, F ; V such that E l F s B, and w G G 0

for all G ; V.

That is, a probability measure is a normalized additive set function.
Obviously, the set of probability measures is convex and closed in F and
moreover polyhedral because the conditions which define probability mea-

Ž . Ž . Ž . Ž . Ž . Ž .sures like w E q w F G w E j F , w E q w F F w E j F , and
Ž .w G G 0 are linear inequalities in F and the number of them is finite.
The next theorem is well known.

THEOREM 3.2. The set of all ¨alid coefficients of the class of all probability
measures is

Vl: 2 ª R l G G 0 for all v g V .Ž .Ý½ 5
G: vgG

Proof. For v g V, define p asv

1 when v g Gp G sŽ .v ½ 0 when v f G.

� 4Then p is the set of extreme points of the set of probabilityv v g V

measures. In fact, for a probability measure p, we can write p s
Ž� 4.Ý p v p .v g V v

The set of all valid coefficients consists of l such that

p G l G G 0 for all v g V .Ž . Ž .Ý v
G;V

This is equivalent to

l G G 0 for all v g V .Ž .Ý
G: vgG

Obviously, the dual of the class of probability measures is itself.

3.2. Belief and Plausibility Functions

w xThe theory of belief functions is developed as a theory of evidence 26 .
V w xDEFINITION 3.3. A function m: 2 ª 0, 1 is a basic probability assign-

Ž . Ž .ment if Ý m G s 1 and m B s 0. A function w g F is a beliefG ; V
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Ž .function if there exists a basic probability assignment m such that w E s
Ž .Ý m G for E ; V. A function w g F is a plausibility function ifG ; E

Ž .there exists a basic probability assignment m such that w E s
Ž .Ý m G for E ; V.G l E /B

Obviously, the set of belief functions is convex and moreover polyhedral
in F because it is known that w is a belief function if and only if w
satisfies a finite number of linear inequalities

n
< <G q1

w E G y1 w EŽ .D Ý Fi iž /ž /
is1 � 4 igGG; 1, . . . , n

G/B

� 4for all sequences E .i
The basic probability assignment m is the Mobius inverse of belief¨

Ž . Ž . <GyF < Ž .function w, i.e., m F s Ý y1 w G . We can say that a beliefF ; G ; V

function is a set function which has nonnegative Mobius inverse.¨
THEOREM 3.4. The set of all ¨alid coefficients set of belief functions is

Vl: 2 ª R l G G 0 for all E ; V .Ž .Ý½ 5
G: E;G

Proof. Let w be a belief function. For G ; V, define Bel asG

1 when G ; F
Bel F sŽ .G ½ 0 otherwise.

� 4Then Bel is the set of extreme points of the set of belief functions.G G ; V

Ž . Ž . Ž .In fact, we can write w s Ý m G Bel because w F s Ý m G .G ; V G G ; F
The set of all valid coefficients consists of l such that

Bel F l F G 0 for all G ; V .Ž . Ž .Ý G
F;V

This is equivalent to

l F G 0 for all G ; V . BŽ .Ý
F : G;F

Obviously, the classes of belief functions and plausibility functions are
dual for each other.
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COROLLARY 3.5. The set of all ¨alid coefficients of plausibility functions is

l g L l G G 0 for all E ; V .Ž .Ý½ 5
G: GlE/B

Proof. By Theorem 2.7, the set of all valid coefficients of plausibility
functions is the set of the duals of the elements of the set of all valid
coefficients of belief functions. Let l g L be in the set of all valid

Ž .coefficients of belief functions, that is Ý l G G 0 for all E ; V byG: E ; G
Theorem 3.4.

l G s y ld Gc s y ld GŽ . Ž . Ž .Ý Ý Ý
cG: E;G G : E;G G : E;G

s y ld G q ld G s ld G .Ž . Ž . Ž .Ý Ý Ý
G;V G : ElG/B G : ElG/B

B

3.3. Submodular and Supermodular Functions

Ž . Ž .A set function w g F is said to be submodular if w A q w B G
Ž . Ž .w A j B q w A l B for all A, B ; V. By definition, this class of set

functions is expressed by linear inequalities. The class of submodular
Žfunctions is extensively studied in combinatorial optimization J. Edmonds

w x w x.4 , S. Fujishige 6 .

l g L l G G 0 for all v g VŽ .Ý½
G: vgG

and there exist E, F ; V such that l E - 0, l F - 0, E ; F ,Ž . Ž .
and l D G 0 for all D / E, F 4Ž .

Žis a set of determining coefficients of submodular set functions F.
w x.Delbaen 2 .

The dual of a submodular function is a supermodular function. A
supermodular function is called a convex game in cooperative game theory
Ž w x. w xL. S. Shapley 27, 28 . A. Chateauneuf and J. Y. Jaffray 1 consider the
Mobius inversion for supermodular functions. The Mobius inversion is an¨ ¨
isomorphism in the linear space. So the Mobius inverse of a convex closed¨
class of set functions is also convex and closed.

We have not obtained the explicit form to write the set of all valid
coefficients. For that purpose, we have to list the extreme points of
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Žsubmodular functions. The problem is only partially solved J. Rosenmuller¨
w x w x w x.21]23 , H. Q. Nguyen 16 , K. Kashiwabara and B. Nakano 12 .

The class of submodular function contains the class of plausibility
functions, and the class of supermodular functions contains the class of
belief functions.

3.4. Upper and Lower En¨elopes

The class of upper and lower envelopes is investigated in various fields,
w x w xfor example, game theory 24 , robust statistics 10 , and fuzzy measure

w xtheory 3 .

DEFINITION 3.6. Let GG ; F be a class of set functions. A function
w : 2V ª R is said to be an upper envelope of GG ; F if there exists a

� 4subset w ; GG with a finite set I such thati ig I

w E s max w E for all E ; V .Ž . Ž .i
igI

w x w xD. Schmeidler 24 and R. Giles 8 independently found a necessary and
sufficient condition for a set function to be an upper envelope of probabil-
ity measures.

THEOREM 3.7.

l g L l G G 0 for all v g VŽ .Ý½
G: vgG

V � 4and G g 2 y V , B : l G - 0 F 1� 4Ž . 5
is a set of determining coefficients of upper en¨elopes of probability measures.

Instead of proving the above theorem, we show the following general-
ized theorem.

THEOREM 3.8. Let GG ; F be a con¨ex closed class of set functions. Then

† V � 4GG l l g L : G g 2 y V , B : l G - 0 F 1� 4Ž .� 4

is a set of determining coefficients of upper en¨elopes of GG.

Ž .Proof. Let w be an upper envelope of GG. Then we can write w G s
Ž . Ž . Ž . V � 4Vmax w G such that w F s w F for all F g 2 y V, B .E g 2 y�V , B4 E F

† � <� V � 4 Ž . 4 < 4 <�Let l g GG l l g L: G g 2 y V, B : l G - 0 F 1 . When G g
V � 4 Ž . 4 < Ž .2 y V, B : l G - 0 s 1, take E with l E - 0; otherwise take E
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arbitrarily. Then

l G w G G l G w G G 0.Ž . Ž . Ž . Ž .Ý Ý E
G;V G;V

This means that w is contained in all closed halfspaces associated with the
above coefficients.

Next, let w satisfy

l G w G G 0Ž . Ž .Ý
G;V

† < V <� 4for all l g GG l l g L : G g 2 y V , B : l G - 0 F 1 . 1� 4Ž . Ž .� 4
If we can show

GG l w9 g F w9 G F w G for all G ; V and w9 E s w E� 4Ž . Ž . Ž . Ž .
V � 4is not empty for all E g 2 y V, B , by letting w be an element of thatE

Ž . Ž .set, we can write w G s max w G .E
Assume that the above set is empty. Then there exists a separating

hyperplane with a coefficient vector l such that

l G w0 G G 0 for all w0 g GGŽ . Ž .Ý
G;V

Ž . Ž . � Ž . Ž .and Ý l G w0 G - 0 for w0 g w9 g F N w9 G F w G for all G ;G ; V

Ž . Ž .4V and w9 E s w E .
Ž . VThen the second inequality implies that l G is nonnegative for G g 2

� 4 Ž .y V, B, E . This contradicts assumption 1 .

By this theorem we observe that the class of the envelopes of a
polyhedral class is also polyhedral.

COROLLARY 3.9. Let GG be a con¨ex closed class of set functions.

d† V � 4GG l l g L : G g 2 y V , B : l G ) 0 F 1� 4Ž . Ž .� 4
is a coefficient set of lower en¨elopes of GG.

Proof. This follows from Theorem 2.7, Theorem 3.8, and the fact that
lower envelopes are GG are the dual class of upper envelopes of GG.

3.5. Other Con¨ex Classes

There are many convex classes which are not already mentioned, for
example, subadditive set functions, superadditive set functions, balanced

w x w xset functions 28 , totally balanced set functions 11, 2 , and so on.
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4. DOMAIN EXTENSION PROBLEM

We consider a condition for the domain of a function which is partially
defined on 2V to be extended to 2V so that the function belongs to a given
class of set functions.

� 4 VNotation 4.1. Let MM satisfy V, B ; MM ; 2 . For GG ; F, we denote

< <� 4GG s w : w g GG ,MM MM

<where w is the restriction of w to MM.MM

<We can consider that GG is the projection of GG to MM in the linearMM

<space F. Note that when GG is convex and closed, GG is also convex andMM

closed in the projected linear space.
Obviously, w with the domain MM can be extended to w9 g GG ; F if and

<only if w g GG .MM

� 4 VNotation 4.2. Let MM satisfy V, B ; MM ; 2 . For FF ; L, we denote

< < VFF s l : l g FF ; l E s 0 for all E g 2 y MM .� 4Ž .MM MM

The next theorem is the main theorem in this section.

� 4 VTHEOREM 4.3. Let MM satisfy V, B ; MM ; 2 . For con¨ex and closed
GG ; F.

This theorem gives us a method to examine whether a partial function
can be extended to one which belongs to a given class of set functions. It
tells us that to be able to extend a function, it suffices to consider the
restriction of the set of all valid coefficients derived from a given convex
and closed class of set functions.

� † < 4 < <Proof. For the part GG * > GG , assume that w g GG . Then weMM MM MM
† Ž . Ž .can extend it to w9 g GG. By the definition of GG , Ý l G w9 G G 0G ; V

† Ž . Ž . †for all l g GG . Therefore Ý l G w9 G G 0 for any l g GG such thatG ; V

Ž . Ž . Ž . † <l G s 0 for all G / MM. Hence Ý l G w G G 0 for l g GG .MMG g MM

� † < 4Therefore w g GG *.MM

� † < 4 < < <For the part GG * ; GG , assume that w f GG . Since GGMM MM MM MM

is a convex and closed, there exists a hyperplane which separates w
<and GG .MM

Ž . Ž .Therefore there exists a l such that Ý l G w9 G G 0 for allG g MM

Ž . < Ž . Ž . † <w 9 G g GG and Ý l G w G - 0. So l g GG butMM MMG g MM
†Ž . Ž . � < 4Ý l G w G - 0. Therefore w f GG *MMG g MM

By this theorem, we can discuss extension problems for a probability
measure and a belief function.
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� 4 VCOROLLARY 4.4. Let MM satisfy V, B ; MM ; 2 . A function w : MM ª R
Ž . Ž .with w V s 1 and w B s 0 can be extended to a probability measure on V

Ž . Ž .if and only if Ý l G w G G 0 for any l: MM ª R such thatG g MM

Ž .Ý l G G 0 for all v g V.G: v g G g MM

Proof. This is by Theorem 3.2 and Theorem 4.3.

� 4 VCOROLLARY 4.5. Let MM satisfy V, B ; MM ; 2 . A function w : MM ª R
Ž . Ž .with w V s 1 and w B s 0 can be extended to a belief function on V if

Ž . Ž .and only if Ý l G w G G 0 for any l: MM ª R such thatG g MM

Ž .Ý l G G 0 for all E ; V.G: E ; G g MM

Proof. This is by Theorem 3.4 and Theorem 4.3.

Next, we consider the domain extension problem for an upper envelope.
Since the coefficient set of upper envelopes specified above is not maxi-
mum, we have to consider the domain extension problem in another way.

� 4 VTHEOREM 4.6. Let MM satisfy V, B ; MM ; 2 . Let w : MM ª R with
Ž . Ž .w V s 1 and w B s 0. We assume that if l: MM ª R satisfies

Ž . <� � 4 < Ž . 4 <Ý l G G 0 for all v g V, and G g MM y V, B l G - 0 FG: v g G g MM

Ž . Ž .1, then Ý l G w G G 0. Then there exists a set of probability measuresG g MM

� 4 Ž . Ž .p on V such that w G s max p G for all G g MM.i ig I ig I i

Proof. Necessity is obvious by Theorem 3.7. Sufficiency is proved by the
next lemma and Theorem 3.7 and mathematical induction.

� 4 VLEMMA 4.7. Let MM satisfy V, B ; MM ; 2 . Let w : MM ª R satisfy the
hypothesis of Theorem 4.6. Let M g 2V satisfy M f MM. Then we can extend

� 4the domain of w to MM j M so that it satisfies the hypothesis of Theorem 4.6
Ž . Ž . � 4again, that is, Ý l G w G G 0 for any l: MM j M ª R suchG g MM j �M 4

Ž . <� � 4that Ý l G G 0 for all v g V, and G g MM j M yG: v g G g MM j �M 4
� 4 Ž . 4 <V, B N l G - 0 F 1.

Ž .Proof. It suffices to show that we can define the value of w M such
Ž .that if l satisfies that Ý l G G 0 for all v g V, andG: v g G g MM j �M 4

<� � 4 � 4 Ž . 4 <G g MM j M y V, B : l G - 0 F 1, then it satisfies the inequality

l G w G G 0.Ž . Ž .Ý
� 4Gg MMj M

This condition is equivalent to the condition that if l satisfies that

l M Gy l G for any v g M , and l G G 0Ž . Ž . Ž .Ý Ý
G: vgGgMM G: vgGgMM

� 4 � 4for any v f M , and G g MM j M y V , B : l G - 0 F 1, 2� 4Ž . Ž .
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then

l M w N Gy l G w G . 3Ž . Ž . Ž . Ž . Ž .Ý
Gg MM

Ž .Note that condition 2 implies

l M G max y l G . 4Ž . Ž . Ž .Ý½ 5
vgM G : vgGg MM

Assuming that l satisfies the above hypothesis, we separate the four
Ž .cases according to the sign of l M and the sign of

max y l G .Ž .Ý½ 5
vgM G :vgGg MM

Ž .After that, we define w M so that it satisfies the conditions in all cases.

Ž . Ž .The Case l M s 0. In this case, Ý l G G 0 for any v g VG: v g G g MM

<� � 4 Ž . 4 <and G g MM y V, B : l G - 0 F 1. Therefore, by the assumption on
Ž . Ž . Ž . Ž .w, we have l M w M GyÝ l G w G regardless of the value ofG g MM

Ž .w M .

Ž . � Ž .4The Case l M ) 0 and max yÝ l G ) 0. We havev g M G: v g G g MM

Ž .to define w M G 0 such that

Ý l G w GŽ . Ž .G g MM
w M G y .Ž .

l MŽ .

Ž .By assumption 4 , in order that this inequality holds, it is sufficient that

Ý l G w GŽ . Ž .G g MM
w M G y and w M G 0.Ž . Ž .

max yÝ l G� 4Ž .v g M G : v g G g MM

<� � 4 Ž . 4 <Note that l satisfies G g MM y V, B : l G - 0 F 1 in this case.

Ž . � Ž .4The Case l M ) 0 and max yÝ l G F 0. By thev g M G: v g G g MM

� Ž .4 Ž .assumption that max yÝ l G F 0, Ý l G G 0v g MM G: v g G g MM G: v g G g MM

for all v g V. Therefore by the assumption on w,

l G w G G 0.Ž . Ž .Ý
GgMM

Ž . Ž . Ž .If we define w M such that w M G 0, inequality 3 holds by the above
inequality.
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Ž . Ž .The Case l M - 0. In this case, by inequality 4 ,

max y l G - 0.Ž .Ý½ 5
vg M G : vgGg MM

Ž .We have to define w M G 0 such that

Ý l G w GŽ . Ž .G g MM
w M FyŽ .

l MŽ .

The assumption

l G G 0 for all v g VŽ .Ý
� 4G : vgGgMMj M

implies

l G G 0 for all v g V .Ž .Ý
G: vgGgMM

Ž . Ž .By the hypothesis of Theorem 4.5, we obtain Ý l G w G G 0.G g MM

Ž .So if we define w M such that

Ý l G w GŽ . Ž .G g MM
w M Fy ,Ž .

max yÝ l G� 4Ž .v g M G : v g G g MM

Ž .inequality 3 holds by the above inequality.
Ž .To sum up, it is sufficient to define w M satisfying the following

conditions.

0 F w MŽ .
yÝ l G w GŽ . Ž .G g MM F w M for any l such thatŽ .

max yÝ l G� 4Ž .v g M G : v g G g MM

� 4max y l G ) 0 and G g MM y V , B : l G - 0 F 1;� 4Ž . Ž .Ý½ 5
vgM G : vgGgMM

yÝ l G w GŽ . Ž .G g MM
w M F for any l such thatŽ .

max yÝ l G� 4Ž .v g M G : v g G g MM

� 4max y l G - 0 and l G G 0 for all G g MM y V , B .Ž . Ž .Ý½ 5
vgM G : vgGg MM

It remains to show that this range is not empty.
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Ž .The discussion of the case l M - 0 leads you to know that the right
side in the last inequality is more than or equal to 0. So it suffices to show
that

yÝ l G w G yÝ l G w GŽ . Ž . Ž . Ž .G g MM G g MMy G 0
max yÝ l G max yÝ l9 G� 4 � 4Ž . Ž .v g M G : v g G g MM v g M G : v g G g MM

5Ž .

� Ž .4 Ž .for l and l9 such that max yÝ l G - 0 and l G G 0v g M G: v g G g MM

� 4 � Ž .4 <�for all G g MM y V, B and max yÝ l9 G ) 0 and G gv g M G: v g G g MM

� 4 Ž . 4 < Ž .MM y V, B : l9 G - 0 F 1 and l, l9 satisfy assumption 2 .
Ž .The left side of inequality 5 is equal to, by letting

a s max y l9 G ) 0Ž .Ý½ 5
vg M G : vgGg MM

and

b s max y l G - 0,Ž .Ý½ 5
vg M G : vgGg MM

1
l9 G b y l G a w G .Ž . Ž . Ž .Ž .Ý

ab Gg MM

Ž . Ž . Ž .Let l0 E s yl9 E b q l E a . Then the above formula is equal to
Ž . Ž . Ž .y1rab Ý l0 G w G .G g M

By the assumption on w, in order to prove that this is not negative, it
Ž .suffices to show that Ý l0 G G 0 for any v g V because ofG: v g G g MM

<� � 4 Ž . 4 <ab - 0. Note that it is easy to show G g MM y V, B : l0 G - 0 F 1
Ž . � 4 <� � 4 Ž .since l G G 0 for all G g MM y v, B and G g MM y V, B : l9 G -

4 <0 F 1.
So it suffices to show

1 Ý l9 G Ý l GŽ . Ž .G : v g G g MM G : v g G g MMy l0 G s y G 0.Ž .Ý
ab a bG: vgGg MM

In case of v g M,

y l9 G F a ) 0 and y l G F b - 0,Ž . Ž .Ý Ý
G: vgGg MM G: vgGg MM

Ý l9 G Ý l GŽ . Ž .G : v g G g MM G : v g G g MMG y1 and F y1.
a b

Ž .In the case of v f M, use assumption 2 .
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5. SANDWICH THEOREM

In this section, we consider so-called sandwich problems. When does
there exist a set function which belongs to a certain class of set functions

w xand which lies between two given set functions? J. Kindler 13 gave a
solution when a sandwiched set function is a probability measure. We
generalize his result for a polyhedral class of nonadditive set functions.

THEOREM 5.1. Let GG ; F be polyhedral. For m, n g F, there exists a set
Ž . Ž . Ž .function w g GG such that n G F w G F m G for all G ; V if and only if

l G m G y l9 G n G G 0Ž . Ž . Ž . Ž .Ý Ý
G;V G;V

† Ž . Ž .for all l, l9 g L such that l y l9 g GG and l G , l9 G G 0 for all
G ; V.

Proof. To prove necessity, let w satisfy the above conditions. Then

l G m G y l9 G n GŽ . Ž . Ž . Ž .Ý Ý
G;V G;V

G l G w G y l9 G w GŽ . Ž . Ž . Ž .Ý Ý
G;V G;V

s l G y l9 G w G .Ž . Ž . Ž .Ž .Ý
G;V

Since l y l9 g GG †, this is nonnegative.
To prove sufficiency, we prepare the notation that for E / V,

y1, G s E¡~m E , G s Vl G s Ž .Ž .E , m ¢
0, otherwise.

Then it suffices to show that there exists a set function w satisfying the
linear inequalities

l G w G G 0 for all l g GG †,Ž . Ž .Ý
G;V

V � 4l G w G G 0 for all E g 2 y V , B ,Ž . Ž .Ý E , m
G;V

and
V � 4yl G w G G 0 for all E g 2 y V , B .Ž . Ž .Ž .Ý E , n

G;V
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Ž wBy the well-known theorem of the alternatives for example, see 20,
x.Theorem 22.1 , these inequalities are consistent if the following condition

holds.
� 4 � X 4 � 4For all nonnegative sequences k , k , k , ifE E i

k l G y kX l G q k l G s 0Ž . Ž . Ž .Ý Ý ÝE E , m E E , n i i
V V i-n� 4 � 4Eg2 y V , B Eg2 y V , B

V � 4for all G g 2 y V, B , then

k l V y kX l V q k l V G 0.Ž . Ž . Ž .Ý Ý ÝE E , m E E , n i i
V V i-n� 4 � 4Eg2 y V , B Eg2 y V , B

By the definition of l , this condition is equivalent toE, m

X V � 4yk q k q k l G s 0 for all G g 2 y V , BŽ .ÝG G i i
i-n

which implies

k m E y kX n E q k l V G 0.Ž . Ž . Ž .Ý Ý ÝE E i i
V V i-n� 4 � 4Eg2 y V , B Eg2 y V , B

� Ž . 4 X � Ž . 4Let k s max Ý k l V , 0 , k s max yÝ k l V , 0 , k sV i- n i i V i- n i i B

� Ž . 4 X � Ž . 4max Ý k l B , 0 , and k s max yÝ k l B , 0 .i- n i i B i- n i i
Ž . X Ž .Then it suffices to prove that Ý k m E y Ý k n E G 0 whenE ; V E E ; V E

X Ž . Ž . †k y k s Ý k l G for all G ; V. Since Ý k l ? g GG , we haveG G i- n i i i- n i i
completed the proof.

6. COMPARATIVE PROBABILITIES

Ž .In this section, we consider nonadditive comparative subjective proba-
bilities. It is known when a binary relation on the power set of a finite set

Žcan be represented by a probability measure C. H. Kraft, J. W. Pratt, and
w x w x.A. Seidenberg 15 , D. Scott 25 . We generalize this fact for polyhedral

classes of set functions, which are represented by a finite number of
hyperplanes.

Let # be a binary relation on 2V , where E % F means that the event
E is more probable than the event F in some subjective sense. We shall
write E % F for not F # E.

DEFINITION 6.1. Let # be a binary relation on 2V. A binary relation
# is said to be realizable by a class of set functions GG ; F if there is a set
function w g GG such that for all E, F ; V,

E # F if and only if w E G w F .Ž . Ž .
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Before we give nonadditive versions of conditions for the realizability of
a binary relation, we prove a lemma similar to Theorem 1.1 in D. Scott
w x25 .

DEFINITION 6.2. Let L be a finite-dimensional real linear vector space.
� 4A subset X ; L is symmetric if X s yX s yx N x g X . A subset N ; X

is called realizable in X with respect to Y ; L if there is a linear
functional w on L satisfying the following two conditions.

Ž . Ž .a w x G 0 for all x g Y,
Ž . Ž .b x g N if and only if w x G 0.

We shall employ a more suggestive notation writing x # 0 to mean
x g N. Further we write x U 0 to mean yx g N, and x % 0 for not x U 0.

LEMMA 6.3. Let X be a finite symmetric subset of L, and let Y be a finite
� 4subset of L. For a subset x g X N x # 0 to be realiable in X with respect to Y

it is necessary and sufficient that the conditions

Ž .a x # 0 or x U 0,
Ž . Xb Ý k x q Ý k y s 0 implies x U 0i- n i i i- m i i 0

hold for all sequences x , . . . , x g X and y , . . . , y g Y, and for all0 ny1 0 my1
positï e scalars k , . . . , k and kX , . . . , kX , where x # 0 for all i - n;0 ny1 0 my1 i
n ) 0, and m G 0.

Proof. To prove the necessity, let w be the realizing functional. Then
Ž . Ž . Ž .the necessity of a is clear since w x G 0 or w x F 0 must hold. The

Ž .necessity of b becomes at once clear when it is considered

0 s w 0 s w k x q kX y s k w x q kX w yŽ . Ž . Ž .Ý Ý Ý Ýi i i i i i i iž /
i-n i-m i-n i-m

X Ž . Ž .because k and k are positive and w x and w y are nonnegative, andi i i i
Ž .since the vector sum is actually 0, w x cannot be strictly positive.i

To prove the sufficiency, assume that the two conditions hold. Let Q be
� 4 Ž .the convex polyhedral cone generated by the set x g X N x U 0 j yY .

Ž .Let P be the convex polyhedron generated by the convex closure of the
� 4set x g X N x % 0 . We can assume P is nonempty, since otherwise x U 0

Ž .holds for all x g X by condition a ; and therefore x # 0 would hold for
all x g X, because X is symmetric. If we can show that P and Q are

Ždisjoint, it follows at once see Theorem 2 in the book by Kuhn and Tucker
w x.9, p. 50 that there is a linear functional w on L such that for all x g L,

x g P implies w x ) 0,Ž .
x g Q implies w x F 0.Ž .
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Ž . Ž .Thus if x g X and x # 0, then yx U 0, yx g Q, w yx F 0, and w x G 0.
Ž . Ž .If w x G 0, then w yx s 0, so yx f P, and yx U 0 and x # 0. More-

Ž . Ž .over if x g Y, then yx g Q, w yx F 0, and w x G 0. Hence, w is the
required functional.

Let us then suppose that there is a vector z g P l Q. Now we write

z s k x s kX xX y kY y ,Ý Ý Ýi i i i i i
i-n i-m i-l

where k G 0 and x g X with x % 0 for i - n, and Ý k s 1, wherei i i i- n i
kX G 0, xX g X with xX U 0, for i - m, and where y g Y, and kY G 0, fori i i i i

Ž .i - l. By condition a , x # 0 holds for i - n. Thusi

k x q kX yxX q kY y s 0.Ž .Ý Ý Ýi i i i i i
i-n i-m i-l

We can assume that all the scalars are strictly positive, and because
X Ž .Ý k s 1, we know n ) 0. Since yx % 0 for i - m, we can apply b toi- n i i

conclude that x U 0. But this contradicts the assumption that x % 0.0 0

Notation 6.4. For distinct E, F ; V denote

1, G s E
l G sŽ . y1, G s FE , F ½ 0, otherwise.

Ž .Denote l G s 0 for E ; V.E, E

� Ž . 4THEOREM 6.5. Let GG ; w g F N w G G 0 for all G ; V be a poly-
hedral class of set functions and let # be a binary relation on 2V. For # to
be realizable by GG it is necessary and sufficient that the conditions

Ž .a V % B,
Ž .b G # B for all G ; V,
Ž .c E # F or F # E for all E, F ; V,
Ž . Ž . Ž . V � 4d Ý k l G q kl G s 0 for all G g 2 y B impliesi- n i E , Fi i

E U F0 0

hold for all sequences k , . . . , k of positï e real numbers and for E , F g0 ny1 i i
V � 4 †2 y B such that E # F , for i - n where n ) 0, and for all l g GG andi i

k G 0.

Ž . Ž .Proof. The necessity of a follows from the assumptions that w V s 1
Ž . Ž .and w B s 0. The necessity of b follows from the hypothesis that
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Ž .w G G 0 for all G ; V.

0 s w G k l G q kl GŽ . Ž . Ž .Ý Ý i E , Fž /i i
G;V i-n

s k w G l G q k w G l GŽ . Ž . Ž . Ž .Ý Ý Ýi E , Fi iž / ž /
i-n G;V G;V

s k w E y w F q k w G l G .Ž . Ž . Ž . Ž .Ž .Ý Ýi i i ž /
i-n G;V

Ž Ž . Ž .. Ž . Ž .Since k Ý w G l G G 0, w E s w F for all i - n. So we com-G ; V i i
Ž .plete the proof of the necessity of d .

Now we prove the sufficiency. To apply Lemma 6.3, we take L s 2V y
� 4 � 4 � 4B , X s l N E, F g L , and N s l g X N E # F . Then X is sym-E, F E, F

† <metric. Let Y be generators of the polyhedral cone GG . Then Y is finiteL

since GG is polyhedral class. Thus, by Lemma 6.3, there will be a linear
Ž . Ž . Ž .functional w on L such that e Ý l G w G G 0 if and only ifG g L E, F
Ž . Ž . Ž .E # F for E, F g L; and f Ý w G l G G 0 for all l g Y.G g L

Ž . V Ž .Letting w B s 0, w is a linear functional on 2 such that e9
Ž . Ž . Ž . Ž . Ž .Ý l G w G G 0 if and only if E # F; and f9 Ý w G l G GG ; V E, F G ; V

Ž . Ž . � Ž .0 for l g Y by the assumptions a , b , and GG ; w g F N w G G 0 for
4 Ž . Ž . Ž . Ž .all G ; V . Let w9 G s w G rw V . Then w9 g F. Note that w V )

Ž . Ž . Ž . †w B s 0. Since Ý l G w9 G G 0 for all l g GG if and only ifG ; V

Ž . Ž . Ž . Ž .w9 g GG, and since w9 E G w9 F if and only if Ý l G w9 G G 0,G ; V E, F
w9 is a desired set function.

You can show the theorem for probability measures a little weaker than
w xone in 25, Theorem 1.1 as a corollary of the above theorem and Theorem

3.2 since the set of probability measures is polyhedral.

COROLLARY 6.6. Let # be a binary relation on 2V. For # to be
realizable by probability measures it is necessary and sufficient that the
conditions

Ž .a V % B,
Ž .b G # B for all G ; V,
Ž .c E # F or F # E for all E, F ; V,
Ž . Ž .d Ý Ý k l G F 0 for all v g V implies E U FG: v g G i- n i E F 0 0i i

hold for all sequences k , . . . , k of positï e real numbers and for E , F g0 ny1 i i
V � 42 y B such that E # F for i - n where n ) 0.i i

Proof. The necessity of this corollary is easy to show directly. To prove
Ž .sufficiency, it suffices to show that condition d of this corollary implies
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Ž .condition d of Theorem 6.5. To prove this, it suffices to show that the
Ž .premise part of condition d of Theorem 6.5 implies the premise part of

Ž .condition d of this corollary. It follows from Theorem 3.2.
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