Weak and Strong Extensions of First-Order Differential Operators in R^m

H. O. FATTORINI*

Department of Mathematics, University of California, Los Angeles, California 90024

Received October 18, 1978

1. INTRODUCTION

Let *L* be the differential operator

$$L = \sum_{k=1}^{m} A_{k}(x) D^{k} + B(x), \qquad (1.1)$$

where $x = (x_1, ..., x_m)$, $D^k = \partial/\partial x_k$, $A_1, ..., A_m$ are $\nu \times \nu$ continuously differentiable matrices in \mathbb{R}^m , and B is a continuous $\nu \times \nu$ matrix; naturally, Lacts on ν -dimensional vector functions. (We assume that all entities involved are real valued, although the results hold equally well for complex-valued functions and matrices.) The *minimal operator* A_0 associated with L is defined by $A_0u = Lu$ with domain $D(A_0) = \mathcal{D}^v$ (\mathcal{D} = the space of Schwartz test functions in \mathbb{R}^m), while the *maximal operator* A associated with L (or the *weak extension* of A_0 in $L^p(\mathbb{R}^m)^v = L^p(\mathbb{R}^m, \mathbb{R}^v)$ $(1) is the adjoint <math>(A'_0)^*$ of At, the formal adjoint of A_0 , in $L^{p'}(\mathbb{R}^m)^v$, $p'^{-1} + p^{-1} = 1$ (A'_0 is defined as the minimal operator associated with the formal adjoint $L'u = -\sum D^k(A^*_k u) +$ B^*u , where * indicates matrix adjoint). Finally, the strong extension of A_0 in $L^p(\mathbb{R}^m)^v$ is $Cl(A_0)$. A classical result of Friedrichs [1] establishes that the weak and strong extensions of L coincide, i.e.,

$$Cl(A_0) = A \tag{1.2}$$

for p = 2 assuming that A_k , $D^j A_k$, and B are all bounded in \mathbb{R}^m , and the proof is easily seen to work just as well for 1 . Although this result has beenextended in many directions (see, for example [3]) I have been unable to findin the literature any results on whether (1.2) holds under weaker assumptions $on <math>A_k$, B at infinity. The object of this note is to show that the boundedness

^{*} This work was supported in part by the National Science Foundation under Grants MPS71-02656 and MCS76-05862.

conditions on the $D^{j}A_{k}$ and B can be entirely discarded; as for the A_{k} we need only assume that

$$|A_k(x)| \leq \rho(|x|) \qquad (x \in \mathbb{R}^m) \tag{1.3}$$

for k = 1, 2, ..., m, where ρ is a positive continuous function growing so slowly at infinity that

$$\int^{\infty} \frac{dr}{\rho(r)} = \infty.$$
 (1.4)

The proof of this result (Theorem 2.1) is no more than a simple modification of Friedrichs' method of mollifiers via a "reduction to compact support" that has been employed many times (see, for instance, [6]). What makes condition (1.3)–(1.4) interesting, however, is that it is best possible in the following sense: Given a positive nondecreasing continuous ρ which does not satisfy (1.4) there exists an L (with m = 2, $\nu = 1$) satisfying (1.3) but not (1.2). It is not by chance, incidentally, that (1.4) is Wintner's condition in [9] for existence in the large of solutions of the ordinary differential system

$$X'(t) = a(X(t)),$$
 (1.5)

where $a = (a_1, ..., a_m)$, is a suitably smooth map from \mathbb{R}^m into itself satisfying $|a(x)| \leq \rho(|x|)$, since there exists a close relation among (1.5) and the hyperbolic equation

$$D_t u = a_1 D^1 u + \cdots + a_m D^m u;$$

namely, solutions of (1.6) are constant along curves (X(t), t) in (m + 1)-dimensional space. This relation is in fact used in the construction of the counterexample (Theorem 3.1).

We point in Section 4 an application of Theorem 2.1 to symmetric hyperbolic systems.

2. The MAIN RESULT

THEOREM 2.1. Let L be as in Section 1, and assume the coefficients $A_1, ..., A_m$ satisfy (1.3)-(1.4). Then (1.2) holds, i.e., $Cl A_0 = A$ for 1 .

Proof. We recall briefly the definition and some properties of Friedrichs' mollifiers [1, 2, 4]. Let ψ be a nonnegative function in \mathscr{D} with integral 1 and vanishing (say) in $|x| \ge 1$; the operators $J_n (n \ge 1)$ are defined by $J_n = \psi_n *$, where $\psi_n(x) = n^m \psi(nx)$. Each J_n is a bounded operator in $L^p(\mathbb{R}^m)^v$ $(1 \le p \le \infty)$ with norm ≤ 1 ; if $1 \le p < \infty$, $J_n u \to u$ in the L^p -norm as $n \to \infty$ (see [4] for proofs). In the following result the only hypotheses on $A_1, ..., A_m$, B are those at the beginning of Section 1; i.e., no growth conditions at infinity are prescribed.

354

LEMMA 2.2. Let $u \in D(A)$ have compact support. Then

$$|| J_n A u - A J_n u || \to 0 \qquad (n \to \infty).$$
(2.1)

Proof. Lemma 2.2 is a well-known result of Friedrichs [1] (see also [4]) when A_k , $D^j A_k$, and B are bounded in \mathbb{R}^m , with no restrictions on the support of u. We only have to apply this theorem to the operator $\tilde{L} = \sum \tilde{A}_k D^k + \tilde{B}$, where the \tilde{A}_k (resp. \tilde{B}) are, say, continuously differentiable (resp. continuous) matrix functions defined in all of \mathbb{R}^m , having compact support and coinciding with A_k (resp. B) in the set of all those $x \in \mathbb{R}^m$ with $dist(x, K) \ge 1$; in fact, if \tilde{A} is the maximal operator of \tilde{L} we obviously have $AJ_nu = \tilde{A}J_nu$, $J_nAu = J_n\tilde{A}u$.

Proof of Theorem 2.1. We may obviously assume that ρ is infinitely differentiable. Let φ be another infinitely differentiable function of r with $\varphi(r) = 0$ if $r \leq 0$, $\varphi(r) = 1$ if $r \geq 1$. Given $0 < r < \infty$ define

$$\begin{array}{ll} = 1 \\ f_r(s) = 1 - \int_r^s \frac{d\sigma}{\rho(\sigma)} & \text{if } \sigma \leqslant s \leqslant r \\ = 0 & \text{if } r \leqslant s \leqslant s_r \\ \text{if } s_r \leqslant s, \end{array}$$
(2.2)

where s_r is such that $\int_r^{s_r} \rho(s)^{-1} ds = 1$. The function

$$\chi_r(x) = \varphi(f_r(|x|)) \tag{2.3}$$

belongs to \mathscr{D} , its support being contained in $|x| \leq S_r$; its first partials have support in the ring $r \leq |x| \leq s_r$ and

$$|D^{k}\chi_{r}(x)| \leq C/\rho(|x|) \qquad (x \in R^{m}).$$

$$(2.4)$$

If $u \in L^p(\mathbb{R}^m)^{\nu}$ it is clear that

$$\chi_r u \to u$$
 (2.5)

as $r \to \infty$. On the other hand, if $u \in D(A)$ a simple computation with adjoints shows that

$$A(\chi_r u) = \left(\sum_{k=1}^m A_k D^k \chi_r\right) u + \chi_r A u.$$
 (2.6)

In view of (1.3) and (2.4) we obtain, taking into account that the $D^k \chi_r$ vanish for $|x| \leq r$,

$$||(A_kD^k\chi_r)u|| \leqslant C \int_{|x|>r} |u|^p dx,$$

which tends to zero as $r \rightarrow \infty$; accordingly,

$$A(\chi_r u) \to A u,$$

H. O. FATTORINI

which, combined with (2.5), shows that $Cl(A_C) = A$, A_C the restriction of A to elements of D(A) having compact support. Hence we only have to prove that, given $u \in D(A_C)$ there exists a sequence $\{u_n\}$ in $D(A_0)$ with $u_n \to u$, $A_0u_n \to Au$. In view of (2.2), $\{J_nu\}$ is such a sequence. This ends the proof.

3. A COUNTEREXAMPLE

Throughout this section ρ is a positive, nondecreasing differentiable function in $r \ge 0$ with $\rho'(0) = 0$, and

$$\int_0^\infty \frac{dr}{\rho(r)} < \infty \tag{3.1}$$

and

$$L = \rho(x_2)D^1 + \rho(x_1)D^2, \qquad (3.2)$$

where ρ is extended to r < 0 by setting $\rho(r) = \rho(0)$. The operator L is a particular case of that in (1.1) (here $m = 2, \nu = 1$).

THEOREM 3.1. Let A_0 (resp. A) be the minimal (resp. maximal) operator associated with L. Then, for p = 2

$$Cl(A_0) \neq A.$$
 (3.3)

Proof. Since $D^1\rho(x_2) + D^2\rho(x_1) = 0$, the operator $A'_0 = -A_0$ is dissipative (in fact, conservative, since $(A'_0w, w) = 0$ for $w \in D(A'_0)$) thus it follows from standard duality arguments ([4]) that

$$(I \pm A) D(A) = L^2(\mathbb{R}^2).$$

If $Cl(A_0) = A$ then A itself is conservative; hence it generates a group S(t), $-\infty < t < \infty$ of isometric operators in $L^2(R^2)$. Consider now the ordinary differential system

$$X'_1(t) = \rho(X_2(t)), \qquad X'_2(t) = \rho(X_1(t)).$$
 (3.4)

Its trajectories can be described as follows. Solutions starting (say, at t = 0) in the negative quadrant $\pi_{--}(x_1, x_2 < 0)$ are straight lines

$$X_1(t) = X_1(0) + t\rho(0), \qquad X_2(t) = X_2(0) + t\rho(0)$$

until they leave π_{--} . If $(X_1(0), X_2(0)) \in \pi_{+-}$ $(x_1 \ge 0, x_2 < 0)$, the corresponding trajectory is

$$X_1(t) = X_1(0) + t\rho(0),$$

 $X_2(t) = X_2(0) + \int_0^t \rho(X_1(0) + s\rho(0)) ds$

until it leaves π_{+-} (which it will eventually do, since its slope is > 1). An entirely symmetric expression holds in π_{-+} . Finally, if $(X_1(0), X_2(0))$ belongs to the positive quadrant π_{++} , $X_1(t)$ is obtained inverting the function

$$t(X_1) = \int_0^{X_1} \frac{dr}{\rho(R^{-1}(R(r) + C_1))} + C_2$$
(3.5)

and setting

$$X_2(t) = R^{-1}(R(X_1(t)) + C_1),$$

where

$$R(r) = \int_0^r \rho(s) \, ds \qquad (s \ge 0),$$

 R^{-1} is the functional inverse of R, and C_1 , C_2 are constants determined by the initial conditions

$$C_1 = R(X_2(0)) - R(X_1(0)),$$

$$C_2 = -\int_0^{X_1(0)} \frac{dr}{\rho(R^{-1}(R(r) + C_1))}.$$

If $C_1 \ge 0$, $R^{-1}(R(r) + C_1) \ge r$, and thus $\rho(R^{-1}(R(r) + C_1)) \ge \rho(r)$. Hence, t tends to a finite limit as X_1 (thus X_2) tends to infinity; consequently, solutions with $X_1(0) \ge X_2(0)$ cease to exist at a time $t = t(X_1(0), X_2(0))$ given by

$$t = \int_{x_1(0)}^{\infty} \frac{dr}{\rho(R^{-1}(R(r) + C_1))} \leq \int_{x_1(0)}^{\infty} \frac{dr}{\rho(r)}.$$
 (3.6)

(Since we can argue in the same way interchanging X_1 and X_2 , *all* solutions starting in π_{++} have a finite life expectancy.) Putting together all these observations we conclude that an arbitrary trajectory of (2.4) will eventually enter π_{++} and it will blow itself up in finite time; on the hand, if time is run backward, the trajectory will enter π_{--} and will then exist forever (see Fig. 1).

Let T > 0, u_0 be a vector function in \mathscr{D}^{ν} . Given $(x_1, x_2) \in \mathbb{R}^2$ denote by $X_1(x_1, x_2, t), X_2(x_1, x_2, t)$ the solution of (3.5) with initial conditions

$$X_1(x_1, x_2, 0) = x_1, \qquad X_2(x_1, x_2, t) = x_2,$$
 (3.7)

and let $u(x_1, x_2, t)$ be defined by

$$u(x_1, x_2, t) = u_0(X_1(x_1, X_2, T-t), X_2(x_1, x_2, T-t))$$

for $(x_1, x_2) \in \mathbb{R}^2$, $0 \leq t \leq T$ ($u(x_1, x_2, t) = 0$ if $(X_1(x_1, x_2, s), X(x_1, x_2, s))$ blows up before T - t). It follows from standard theorems on dependence on initial data (see [5]) and from our previous observations on the trajectories of

(3.4) that u is continuously differentiable in $\mathbb{R}^2 \times [0, T]$ and has compact support there. It is obvious that u is constant on trajectories of (3.4), thus $D_t u = \rho(x_2) D^1 u + \rho(x_1) D^2 u$, and it is easy to see that the $L^2(\mathbb{R}^2)$ -valued function $u(t) = u(\cdot, \cdot, t)$ is a solution of u'(t) = Au(t) in $0 \le t \le T$ with $u(T) = u_0$; thus

$$u(0) = S(-T)u_0.$$
 (3.8)

It follows from (3.6) and the comments preceding and following this inequality that

$$u(x_1, x_2, 0) = 0$$
 $((x_1, x_2) \in \Omega),$ (3.9)

where Ω is the quadrant x_1 , $x_2 \ge \omega$ with ω so large that

$$\int_{\omega}^{\infty}\frac{dr}{\rho(r)}\leqslant T.$$

We end the proof as follows. Let u be an arbitrary element of $L^2(\mathbb{R}^2)$; choose a sequence $\{u_n\}$ in \mathcal{D}^p with $u_n \to u$, write (3.8) for u_n , and take limits. We obtain using (3.9) that S(-T)u = 0 a.e. in Ω , which contradicts the fact that $S(\cdot)$ is a group. We must then conclude that (3.3) holds.

4. AN APPLICATION

Consider the symmetric hyperbolic system

$$D_t u = \sum_{k=1}^m A_k D^k u + B u, \qquad (4.1)$$

where $A_1, ..., A_m$, B satisfy the smoothness assumptions at the beginning of Section 2; moreover, each A_k is symmetric. Under the customary assumption that A_k , $D^k A_k$, and B are bounded in \mathbb{R}^m it is known that the Cauchy problem for (4.1) is properly posed in $L^2(\mathbb{R}^m)^p$; precisely, $A - \omega I$ is maximal dissipative there for some ω . This is proved by showing that $A_0 - \omega I$ is dissipative (by integration by parts) and extending this property to $A - \omega I$ using (1.2). We can then obtain the same conclusion under weaker hypotheses, namely,

$$B(x) - \frac{1}{2} \sum_{k=1}^{m} D^{k} A_{k}(x) \leqslant \omega I \qquad (x \in \mathbb{R}^{m}), \qquad (4.2)$$

which suffices to ensure dissipativity of $A_0 - \omega I$ and (1.3)-(1.4), which yields (1.2) via Theorem 2.1.

The example in Theorem 3.1 has some intriguing features. It is not difficult to see that the operator A there, although not a group generator, is maximal dissipative, and thus generates a contraction semigroup S(t) $(t \ge 0)$ in $L^2(\mathbb{R}^2)$ which is explicitly given by the formula

$$S(t)u(x_1, x_2) = u(X_1(x_1, x_2, -t), X_2(x_1, x_2, -t)), \quad (x_1, x_2) \in \mathbb{R}^2.$$

However, the equation u'(t) = Au(t) does not possess the "finite-domain-ofdependence" properties usually expected of hyperbolic equations; in other words, perturbations arbitrarily far away in space at time t = 0 may reach a given point all at (or near) the same time T > 0. To see this, let $(X_1(t), X_2(t))$ be an arbitrary trajectory of (3.4), T its escape time (we may assume, translating time if necessary that T > 0), and φ a function in \mathcal{D} with $\varphi(0) \neq 0$. If

$$u_n(x_1, x_2) = \varphi(x_1 - X_1(T - 1/n), x_2 - X_2(T - 1/n))$$

the supports of the u_n wander off to infinity; however, $S(t)u_n(x_1, x_2) = \varphi(x_1 - X_1(-1/n), x_2 - X_2(-1/n))$, whose support lies arbitrarily near that of φ .

References

1. K. O. FRIEDRICHS, The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132-151.

H. O. FATTORINI

- 2. K. O. FRIEDRICHS, Symmetric hyperbolic partial differential equations, Comm. Pure Appl. Math. 7 (1954), 345-392.
- 3. L. HÖRMANDER, Weak and strong extensions of differential operators, Comm. Pure Appl. Math. 14 (1961), 371-379.
- 4. S. MIZOHATA, "The Theory of Partial Differential Equations," Cambridge Univ. Press, Cambridge, 1973.
- 5. V. V. NEMITZKII AND V. V. STEPANOV, "Qualitative Theory of Differential Equations," Princeton Univ. Press, Princeton, N.J., 1960.
- 6. R. S. PHILLIPS, Dissipative hyperbolic systems, Trans. Amer. Math. Soc. 86 (1957), 109-173.
- 7. J. V. RALSTON, On the propagation of singularities of solutions of symmetric hyperbolic partial differential equations, *Comm. Partial Differential Equations* 1 (1976), 87-133.
- 8. M. SCHECHTER, "Spectra of Partial Differential Operators," North-Holland, Amsterdam, 1971.
- 9. A. WINTNER, The non-local existence problem of ordinary differential equations, Amer. J. Math. 67 (1945), 277-284.