Weak and Strong Extensions of First-Order Differential Operators in R^{m}

H. O. Fattorini*
Department of Mathematics, University of California, Los Angeles, California 90024

Received October 18, 1978

1. Introduction

Let L be the differential operator

$$
\begin{equation*}
L=\sum_{k=1}^{m} A_{k k}(x) D^{k}+B(x) \tag{1.1}
\end{equation*}
$$

where $x=\left(x_{1}, \ldots, x_{m}\right), D^{k}=\delta / \partial x_{k}, A_{1}, \ldots, A_{m}$ are $\nu \times \nu$ continuously differentiable matrices in R^{m}, and B is a continuous $v \times v$ matrix; naturally, L acts on ν-dimensional vector functions. (We assume that all entities involved are real valued, although the results hold equally well for complex-valued functions and matrices.) The minimal operator A_{0} associated with L is defined by $A_{0} u=L u$ with domain $D\left(A_{0}\right)=\mathscr{D}^{\prime \prime}(\mathscr{D}=$ the space of Schwartz test functions in R^{m}), while the maximal operator A associated with L (or the weak extension of A_{0} in $\left.L^{p}\left(R^{m}\right)^{v}=L^{p}\left(R^{m}, R^{v}\right)(1<p<\infty)\right)$ is the adjoint $\left(A_{0}^{\prime}\right)^{*}$ of $A \mathrm{t}$, the formal adjoint of A_{0}, in $L^{p^{\prime}}\left(R^{m}\right)^{\nu}, p^{\prime-1}+p^{-1}=1\left(A_{0}^{\prime}\right.$ is defined as the minimal operator associated with the formal adjoint $L^{\prime} u=-\sum D^{k}\left(A_{k}^{*} u\right)+$ $B^{*} u$, where ${ }^{*}$ indicates matrix adjoint). Finally, the strong extension of A_{0} in $L^{p}\left(R^{m}\right)^{\nu}$ is $C l\left(A_{0}\right)$. A classical result of Friedrichs [1] establishes that the weak and strong extensions of L coincide, i.e.,

$$
\begin{equation*}
C l\left(A_{0}\right)=A \tag{1.2}
\end{equation*}
$$

for $p=2$ assuming that $A_{k}, D^{j} A_{k}$, and B are all bounded in R^{m}, and the proof is easily seen to work just as well for $1<p<\infty$. Although this result has been extended in many directions (see, for example [3]) I have been unable to find in the literature any results on whether (1.2) holds under weaker assumptions on A_{k}, B at infinity. The object of this note is to show that the boundedness

[^0]conditions on the $D^{j} A_{k}$ and B can be entirely discarded; as for the A_{k} we need only assume that
\[

$$
\begin{equation*}
\left|A_{k}(x)\right| \leqslant \rho(|x|) \quad\left(x \in R^{i n}\right) \tag{1.3}
\end{equation*}
$$

\]

for $k=1,2, \ldots, m$, where ρ is a positive continuous function growing so slowly at infinity that

$$
\begin{equation*}
\int^{\infty} \frac{d r}{\rho(r)}=\infty \tag{1.4}
\end{equation*}
$$

The proof of this result (Theorem 2.1) is no more than a simple modification of Friedrichs' method of mollifiers via a "reduction to compact support' that has been employed many times (see, for instance, [6]). What makes condition (1.3)(1.4) interesting, however, is that it is best possible in the following sense: Given a positive nondecreasing continuous ρ which does not satisfy (1.4) there exists an L (with $m=2, v=1$) satisfying (1.3) but not (1.2). It is not by chance, incidentally, that (1.4) is Wintner's condition in [9] for existence in the large of solutions of the ordinary differential system

$$
\begin{equation*}
X^{\prime}(t)=a(X(t)) \tag{1.5}
\end{equation*}
$$

where $a=\left(a_{1}, \ldots, a_{m}\right)$, is a suitably smooth map from R^{m} into itself satisfying $|a(x)| \leqslant \rho(|x|)$, since there exists a close relation among (1.5) and the hyperbolic equation

$$
D_{t} u=a_{1} D^{1} u+\cdots+a_{m} D^{m} u
$$

namely, solutions of (1.6) are constant along curves ($X(t), t)$ in ($m+1$)dimensional space. This relation is in fact used in the construction of the counterexample (Theorem 3.1).

We point in Section 4 an application of Theorem 2.1 to symmetric hyperbolic systems.

2. The Main Result

Theorem 2.1. Let L be as in Section 1, and assume the coefficients A_{1}, \ldots, A_{m} satisfy (1.3)-(1.4). Then (1.2) holds, i.e., Cl $A_{0}=A$ for $1<p<\infty$.

Proof. We recall briefly the definition and some properties of Friedrichs' mollifiers [1,2,4]. Let ψ be a nonnegative function in \mathscr{D} with integral 1 and vanishing (say) in $|x| \geqslant 1$; the operators $J_{n}(n \geqslant 1)$ are defined by $J_{n}=\psi_{n} *$, where $\psi_{n}(x)=n^{m} \psi(n x)$. Each J_{n} is a bounded operator in $L^{p}\left(R^{m}\right)^{\nu}(1 \leqslant p \leqslant \infty)$ with norm $\leqslant 1$; if $1 \leqslant p<\infty, J_{n} u \rightarrow u$ in the L^{p}-norm as $n \rightarrow \infty$ (see [4] for proofs). In the following result the only hypotheses on A_{1}, \ldots, A_{m}, B are those at the beginning of Section 1; i.e., no growth conditions at infinity are prescribed.

Lemma 2.2. Let $u \in D(A)$ have compact support. Then

$$
\begin{equation*}
\left\|J_{n} A u-A J_{n} u\right\| \rightarrow 0 \quad(n \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

Proof. Lemma 2.2 is a well-known result of Friedrichs [1] (see also [4]) when $A_{k}, D^{i} A_{k}$, and B are bounded in R^{m}, with no restrictions on the support of u. We only have to apply this theorem to the operator $\tilde{L}=\sum \widetilde{A}_{k} D^{k}+\widetilde{B}$, where the \tilde{A}_{k} (resp. \tilde{B}) are, say, continuously differentiable (resp. continuous) matrix functions defined in all of $R^{n t}$, having compact support and coinciding with $A_{k}($ resp. $B)$ in the set of all those $x \in R^{m}$ with $\operatorname{dist}(x, K) \geqslant 1$; in fact, if \tilde{A} is the maximal operator of \tilde{L} we obviously have $A J_{n} u=\tilde{A} J_{n} u, J_{n} A u=J_{n} \tilde{A} u$.

Proof of Theorem 2.1. We may obviously assume that ρ is infinitely differentiable. Let φ be another infinitely differentiable function of r with $\varphi(r)=0$ if $r \leqslant 0, \varphi(r)=1$ if $r \geqslant 1$. Given $0<r<\infty$ define

$$
\begin{array}{rlrl}
f_{1}(s) & =1-\int_{r}^{s} \frac{d \sigma}{\rho(\sigma)} & & \tag{2.2}\\
& \text { if } & 0 \leqslant s \leqslant r & r \leqslant s \leqslant s_{r} \\
& =0 & \text { if } \quad s_{r} \leqslant s
\end{array}
$$

where s_{r} is such that $\int_{r}^{s_{r}} \rho(s)^{-1} d s=1$. The function

$$
\begin{equation*}
\chi_{r}(x)=\varphi\left(f_{r}(|x|)\right) \tag{2.3}
\end{equation*}
$$

belongs to \mathscr{D}, its support being contained in $|x| \leqslant S_{r}$; its first partials have support in the ring $r \leqslant|x| \leqslant s_{r}$ and

$$
\begin{equation*}
\left|D^{k} \chi_{r}(x)\right| \leqslant C / \rho(|x|) \quad\left(x \in R^{n n}\right) \tag{2.4}
\end{equation*}
$$

If $u \in L^{p}\left(R^{m}\right)^{v}$ it is clear that

$$
\begin{equation*}
\chi_{r} u \rightarrow u \tag{2.5}
\end{equation*}
$$

as $r \rightarrow \infty$. On the other hand, if $u \in D(A)$ a simple computation with adjoints shows that

$$
\begin{equation*}
A\left(\chi_{r} u\right)=\left(\sum_{k=1}^{m} A_{k} D^{k} \chi_{r}\right) u+\chi_{r} A u \tag{2.6}
\end{equation*}
$$

In view of (1.3) and (2.4) we obtain, taking into account that the $D^{k} \chi_{r}$ vanish for $|x| \leqslant r$,

$$
\|\left(A_{k} D^{k} \chi_{r}\right) u_{\|}^{| |} \leqslant C \int_{|x| \geqslant r}|u|^{p} d x
$$

which tends to zero as $r \rightarrow \infty$; accordingly,

$$
A\left(x_{r} u\right)->A u
$$

which, combined with (2.5), shows that $C l\left(A_{C}\right)=A, A_{C}$ the restriction of A to elements of $D(A)$ having compact support. Hence we only have to prove that, given $u \in D\left(A_{C}\right)$ there exists a sequence $\left\{u_{n}\right\}$ in $D\left(A_{0}\right)$ with $u_{n} \rightarrow u, A_{0} u_{n} \rightarrow A u$. In view of (2.2), $\left\{J_{n} u\right\}$ is such a sequence. This ends the proof.

3. A Counterexample

Throughout this section ρ is a positive, nondecreasing differentiable function in $r \geqslant 0$ with $\rho^{\prime}(0)=0$, and
and

$$
\begin{equation*}
\int_{0}^{x} \frac{d r}{\rho(r)}<\infty \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
L=\rho\left(x_{2}\right) D^{1}+\rho\left(x_{1}\right) D^{2} \tag{3.2}
\end{equation*}
$$

where ρ is extended to $r<0$ by setting $\rho(r)=\rho(0)$. The operator L is a particular case of that in (1.1) (here $m=2, \nu=1$).

Theorem 3.1. Let A_{0} (resp. A) be the minimal (resp. maximal) operator associated with L. Then, for $p=2$

$$
\begin{equation*}
C l\left(A_{0}\right) \neq A \tag{3.3}
\end{equation*}
$$

Proof. Since $D^{1} \rho\left(x_{2}\right)+D^{2} \rho\left(x_{1}\right)=0$, the operator $A_{0}^{\prime}=-A_{0}$ is dissipative (in fact, conservative, since $\left(A_{0}^{\prime} w, w\right)=0$ for $w \in D\left(A_{0}^{\prime}\right)$) thus it follows from standard duality arguments ([4]) that

$$
(I \pm A) D(A)=L^{2}\left(R^{2}\right)
$$

If $C l\left(A_{0}\right)=A$ then A itself is conservative; hence it generates a group $S(t)$, $-\infty<t<\infty$ of isometric operators in $L^{2}\left(R^{2}\right)$. Consider now the ordinary differential system

$$
\begin{equation*}
X_{1}^{\prime}(t)=\rho\left(X_{2}(t)\right), \quad X_{2}^{\prime}(t)=\rho\left(X_{1}(t)\right) \tag{3.4}
\end{equation*}
$$

Its trajectories can be described as follows. Solutions starting (say, at $t=0$) in the negative quadrant $\pi_{-}\left(x_{1}, x_{2}<0\right)$ are straight lines

$$
X_{1}(t)=X_{1}(0)+t \rho(0), \quad X_{2}(t)=X_{2}(0)+t \rho(0)
$$

until they leave π_{--}. If $\left(X_{1}(0), X_{2}(0)\right) \in \pi_{+-}\left(x_{1} \geqslant 0, x_{2}<0\right)$, the corresponding trajectory is

$$
\begin{aligned}
& X_{1}(t)=X_{1}(0)+t \rho(0) \\
& X_{2}(t)=X_{2}(0)+\int_{0}^{t} \rho\left(X_{1}(0)+s \rho(0)\right) d s
\end{aligned}
$$

until it leaves π_{+-}(which it will eventually do, since its slope is >1). An entirely symmetric expression holds in π_{-+}. Finally, if ($\left.X_{1}(0), X_{2}(0)\right)$ belongs to the positive quadrant $\pi_{++}, X_{1}(t)$ is obtained inverting the function

$$
\begin{equation*}
t\left(X_{1}\right)=\int_{0}^{X_{1}} \frac{d r}{\rho\left(R^{-1}\left(R(r)+C_{1}\right)\right.}+C_{2} \tag{3.5}
\end{equation*}
$$

and setting

$$
X_{2}(t)-R^{-1}\left(R\left(X_{1}(t)\right)+C_{1}\right)
$$

where

$$
R(r)=\int_{0}^{r} \rho(s) d s \quad(s \geqslant 0)
$$

R^{-1} is the functional inverse of R, and C_{1}, C_{2} are constants determined by the initial conditions

$$
\begin{aligned}
& C_{1}=R\left(X_{2}(0)\right)-R\left(X_{1}(0)\right) \\
& C_{2}=-\int_{0}^{X_{1}(0)} \frac{d r}{\rho\left(R^{-1}\left(R(r)+C_{1}\right)\right)} .
\end{aligned}
$$

If $C_{1} \geqslant 0, R^{-1}\left(R(r)+C_{1}\right) \geqslant r$, and thus $\rho\left(R^{-1}\left(R(r)+C_{1}\right)\right) \geqslant \rho(r)$. Hence, t tends to a finite limit as X_{1} (thus X_{2}) tends to infinity; consequently, solutions with $X_{1}(0) \geqslant X_{2}(0)$ cease to exist at a time $t=t\left(X_{1}(0), X_{2}(0)\right)$ given by

$$
\begin{equation*}
t=\int_{X_{1}(0)}^{\infty} \frac{d r}{\rho\left(R^{-1}\left(R(r)+C_{1}\right)\right)} \leqslant \int_{X_{1}(0)}^{\infty} \frac{d r}{\rho(r)} . \tag{3.6}
\end{equation*}
$$

(Since we can argue in the same way interchanging X_{1} and X_{2}, all solutions starting in π_{++}have a finite life expectancy.) Putting together all these observations we conclude that an arbitrary trajectory of (2.4) will eventually enter π_{++} and it will blow itself up in finite time; on the hand, if time is run backward, the trajectory will enter π_{-}and will then exist forever (see Fig. 1).

Let $T>0, u_{0}$ be a vector function in \mathscr{P}^{ν}. Given $\left(x_{1}, x_{2}\right) \in R^{2}$ denote by $X_{1}\left(x_{1}, x_{2}, t\right), X_{2}\left(x_{1}, x_{2}, t\right)$ the solution of (3.5) with initial conditions

$$
\begin{equation*}
X_{1}\left(x_{1}, x_{2}, 0\right)=x_{1}, \quad X_{2}\left(x_{1}, x_{2}, t\right)=x_{2} \tag{3.7}
\end{equation*}
$$

and let $u\left(x_{1}, x_{2}, t\right)$ be defined by

$$
u\left(x_{1}, x_{2}, t\right)=u_{0}\left(X_{1}\left(x_{1}, X_{2}, T-t\right), X_{2}\left(x_{1}, x_{2}, T-t\right)\right)
$$

for $\left(x_{1}, x_{2}\right) \in R^{2}, 0 \leqslant t \leqslant T\left(u\left(x_{1}, x_{2}, t\right)=0\right.$ if $\left(X_{1}\left(x_{1}, x_{2}, s\right), X\left(x_{1}, x_{2}, s\right)\right)$ blows up before $T-t$). It follows from standard theorems on dependence on initial data (see [5]) and from our previous observations on the trajectories of

Figure 1
(3.4) that u is continuously differentiable in $R^{2} \times[0, T]$ and has compact support there. It is obvious that u is constant on trajectories of (3.4), thus $D_{t} u=\rho\left(x_{2}\right) D^{1} u+\rho\left(x_{1}\right) D^{2} u$, and it is easy to see that the $L^{2}\left(R^{2}\right)$-valued function $u(t)=u(\cdot, \cdot, t)$ is a solution of $u^{\prime}(t)=A u(t)$ in $0 \leqslant t \leqslant T$ with $u(T)=u_{0}$; thus

$$
\begin{equation*}
u(0)=S(-T) u_{0} \tag{3.8}
\end{equation*}
$$

It follows from (3.6) and the comments preceding and following this inequality that

$$
\begin{equation*}
u\left(x_{1}, x_{2}, 0\right)=0 \quad\left(\left(x_{1}, x_{2}\right) \in \Omega\right) \tag{3.9}
\end{equation*}
$$

where Ω is the quadrant $x_{1}, x_{2} \geqslant \omega$ with ω so large that

$$
\int_{\omega}^{\infty} \frac{d r}{\rho(r)} \leqslant T
$$

We end the proof as follows. Let u be an arbitrary element of $L^{2}\left(R^{2}\right)$; choose a sequence $\left\{u_{n}\right\}$ in \mathscr{D}^{v} with $u_{n} \rightarrow u$, write (3.8) for u_{n}, and take limits. We obtain using (3.9) that $S(-T) u=0$ a.e. in Ω, which contradicts the fact that $S(\cdot)$ is a group. We must then conclude that (3.3) holds.

4. An Application

Consider the symmetric hyperbolic system

$$
\begin{equation*}
D_{t} u=\sum_{k=1}^{m} A_{k} D^{k} u+B u \tag{4.1}
\end{equation*}
$$

where A_{1}, \ldots, A_{m}, B satisfy the smoothness assumptions at the beginning of Section 2; moreover, each A_{k} is symmetric. Under the customary assumption that $A_{k}, D^{k} A_{k}$, and B are bounded in R^{m} it is known that the Cauchy problem for (4.1) is properly posed in $L^{2}\left(R^{m}\right)^{\nu}$; precisely, $A-\omega I$ is maximal dissipative there for some ω. This is proved by showing that $A_{0}-\omega I$ is dissipative (by integration by parts) and extending this property to $A-\omega I$ using (1.2). We can then obtain the same conclusion under weaker hypotheses, namely,

$$
\begin{equation*}
B(x)-\frac{1}{2} \sum_{k=1}^{m} D^{k} A_{k}(x) \leqslant \omega I \quad\left(x \in R^{m}\right) \tag{4.2}
\end{equation*}
$$

which suffices to ensure dissipativity of $A_{0}-\omega I$ and (1.3)-(1.4), which yields (1.2) via Theorem 2.1.

The example in Theorem 3.1 has some intriguing features. It is not difficult to see that the operator A there, although not a group generator, is maximal dissipative, and thus generates a contraction semigroup $S(t)(t \geqslant 0)$ in $L^{2}\left(R^{2}\right)$ which is explicitly given by the formula

$$
S(t) u\left(x_{1}, x_{2}\right)=u\left(X_{1}\left(x_{1}, x_{2},-t\right), X_{2}\left(x_{1}, x_{2},-t\right)\right), \quad\left(x_{1}, x_{2}\right) \in R^{2}
$$

However, the equation $u^{\prime}(t)=A u(t)$ does not possess the "finite-domain-ofdependence" properties usually expected of hyperbolic equations; in other words, perturbations arbitrarily far away in space at time $t=0$ may reach a given point all at (or near) the same time $T>0$. To see this, let $\left(X_{1}(t), X_{2}(t)\right)$ be an arbitrary trajectory of (3.4), T its escape time (we may assume, translating time if necessary that $T>0$), and φ a function in \mathscr{D} with $\varphi(0) \neq 0$. If

$$
u_{n}\left(x_{1}, x_{2}\right)=\varphi\left(x_{1}-X_{1}(T-1 / n), x_{2}-X_{2}(T-1 / n)\right)
$$

the supports of the u_{n} wander off to infinity; however, $S(t) u_{n}\left(x_{1}, x_{2}\right)=$ $\varphi\left(x_{1}-X_{1}(-1 / n), x_{2}-X_{2}(-1 / n)\right)$, whose support lies arbitrarily near that of φ.

References

1. K. O. Friedrichs, The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132-151.
2. K. O. Friedrichs, Symmetric hyperbolic partial differential equations, Comm. Pure Appl. Math. 7 (1954), 345-392.
3. L. Hörmander, Weak and strong extensions of differential operators, Comm. Pure Appl. Math. 14 (1961), 371-379.
4. S. Mizohata, "The Theory of Partial Differential Equations," Cambridge Univ. Press, Cambridge, 1973.
5. V. V. Nemitzkir and V. V. Stepanov, "Qualitative Theory of Differential Equations," Princeton Univ. Press, Princeton, N.J., 1960.
6. R. S. Phillips, Dissipative hyperbolic systems, Trans. Amer. Math. Soc. 86 (1957), 109-173.
7. J. V. Ralston, On the propagation of singularities of solutions of symmetric hyperbolic partial differential equations, Comm. Partial Differential Equations 1 (1976), 87-133.
8. M. Schechter, "Spectra of Partial Differential Operators," North-Holland, Amsterdam, 1971.
9. A. Wintner, The non-local existence problem of ordinary differential equations, Amer. J. Math. 67 (1945), 277-284.

[^0]: * This work was supported in part by the National Science Foundation under Grants MPS71-02656 and MCS76-05862.

