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1. INTRODUCTION 

Let L be the differential operator 

L = f de(x) D” + B(x), 
h-1 

(1.1) 

where x = (x1 ,..., x,~), D’; = a/&~, , A, ,..., A, are v x v continuously dif- 
ferentiable matrices in Rnk, and B is a continuous v x v matrix; naturally, L 
acts on v-dimensional vector functions. (We assume that all entities involved 
are real valued, although the results hold equally well for complex-valued 
functions and matrices.) The minimal operator A, associated with L is defined 
by ,4,u = Lu with domain D(A,) = 9 (9 = the space of Schwartz test 
functions in R”), while the maximal operator A associated with L (or the weak 
extension of A, in Lp(R”)V = L”(Rm, RY) (1 < p < co)) is the adjoint (A$* 
of 9t , the formal adjoint of A, , in LP’(RrrL)Y, p’-l + p-l = 1 (Ai is defined as 
the minimal operator associated with the formal adjoint L’u = -x D”(4$) + 
B*u, where * indicates matrix adjoint). Finally, the strong extension of A, in 
LP(R”‘)Y is CZ(A,). A classical result of Friedrichs [l] establishes that the weak 
and strong extensions of L coincide, i.e., 

CZ(A,) = A (1.2) 

forp = 2 assuming that Ak , DjA, , and B are all bounded in R”, and the proof 
is easily seen to work just as well for 1 < p < CO. Although this result has been 
extended in many directions (see, for example [3]) I have been unable to find 
in the literature any results on whether (1.2) holds under weaker assumptions 
on A, , B at infinity. The object of this note is to show that the boundedness 
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conditions on the Dj,4, and B can be entirely discarded; as for the An we need 
only assume that 

I 4w G P(I x I) (x E RFiz) (1.3) 

for R = 1, 2,..., rlt, where p is a positive continuous function growing so slowly 
at infinity that 

s n dr 
p(y) = O”. (1.4) 

The proof of this result (Theorem 2.1) is no more than a simple modification of 
Friedrichs’ method of mollifiers via a “reduction to compact support” that has 
been employed many times (see, for instance, [6]). What makes condition (1.3)- 
(1.4) interesting, however, is that it is best possible in the following sense: 
Given a positive nondecreasing continuous p which does not satisfy (1.4) there 
exists an L (with m = 2, v = 1) satisfying (1.3) but not (1.2). It is not by chance, 
incidentally, that (1.4) is Wintner’s condition in [9] for existence in the large 
of solutions of the ordinary differential system 

x’(t) = 4X(t)), (1.5) 

where a = (c~i ,..., a,,), is a suitably smooth map from Rm into itself satisfying 
/ a(x)1 ,( p( / x I), since there exists a close relation among (1 S) and the hyperbolic 
equation 

D,u = a,D% + ‘.. + a,D%; 

namely, solutions of (1.6) are constant along curves (X(t), t) in (nz + l)- 
dimensional space. This relation is in fact used in the construction of the 
counterexample (Theorem 3.1). 

We point in Section 4 an application of Theorem 2.1 to symmetric hyperbolic 
systems. 

2. THE MAIN RESULT 

THEOREM 2.1. Let L be as in Section 1, and assume the coefficients A, , . . . , A,, 
satisfy (1.3)-(1.4). Then (1.2) h o Id s, i.e., Cl A,, = A for 1 <p < co. 

Proof. We recall briefly the definition and some properties of Friedrichs’ 
mollifiers [I, 2, 41. Let # be a nonnegative function in ZB with integral 1 and 
vanishing (say) in / N 1 3 1; the operators Jn (n 3 1) are defined by Jn = 4, + , 
where I&(X) = n?/(n~). Each J,, is a bounded operator in Lp(R”)” (1 < p < co) 
with norm ,( 1; if 1 <p < ~13, Jnu - II in the L*-norm as n + co (see [4] for 
proofs). In the following result the only hypotheses on -4, ,..., A,,, , B are those 
at the beginning of Section 1; i.e., no growth conditions at infinity are prescribed. 
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LEMMA 2.2. Let u E D(A) have compact support. Then 

II J,& - ~~1,~ II - 0 (n + co). (2.1) 

Proof. Lemma 2.2 is a well-known result of Friedrichs [l] (see also [4]) 
when A,, DjA, , and B are bounded in Rtn, with no restrictions on the support 
of u. We only have to apply this theorem to the operator t = x &D” + B, 
where the a, (resp. 8) are, say, continuously differentiable (resp. continuous) 
matrix functions defined in all of Rnb, having compact support and coinciding 
with A, (resp. B) in the set of all those x E RnE with dist(x, K) ‘9 1; in fact, 
if A is the maximal operator ofe we obviously have A Jnu = -Jnu, J,Au = J,/k. 

Proof of Theorem 2. I . We may obviously assume that p is infinitely dif- 
ferentiable. Let y be another infinitely differentiable function of r with p)(r) = 0 
ifr<O,~(r)=lifr>l.GivenO<r<codefine 

where s, is such that j:’ p(s)-’ ds = 1. The function 

x44 = dfi(l x IN (2.3) 

belongs to 9, its support being contained in 1 .r 1 < S, ; its first partials have 
support in the ring Y < 1 N 1 < s, and 

I D”xrW G CM s I) (x E R**). (2.4) 

If u E Lp(R”‘)Y it is clear that 

XrU - u (2.5) 

as Y - co. On the other hand, if u E D(A) a simple computation with adjoints 
shows that 

A(x,u) = ( f A,Dkxr) u + xlAu. (2.6) 
I:=1 

In view of (1.3) and (2.4) we obtain, taking into account that the Dkxr vanish 
for 1 x 1 < r, 

which tends to zero as r - co; accordingly, 

-4(&U) -+ r2u, 
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which, combined with (2.5), shows that CZ(A,) = A, A, the restriction of A 
to elements of D(A) having compact support. Hence we only have to prove that, 
given u E D(A,) there exists a sequence (un} in D(A,) with u, --f u, A,,u, -+ Au. 
In view of (2.2), {flu} is such a sequence. This ends the proof. 

3. A COUNTEREXAMPLE 

Throughout this section p is a positive, nondecreasing differentiable function 
in Y 3 0 with p’(0) = 0, and 

and 

-= dr 
I- P(Y) < O” ‘0 

L = p&J@ + &)D”, 

(3.1) 

(3.2) 

where p is extended to r < 0 by setting p(r) = p(0). The operator L is a particular 
case of that in (1.1) (here m = 2, v = 1). 

THEOREM 3.1. Let A, (resp. A) be the minimal (resp. maximal) operator 
associated with L. Then, for p = 2 

CI(A,) # A. (3.3) 

Proof. Since Dp(x,) + D’p(x,) = 0, the operator A; = -A, is dissipative 
(in fact, conservative, since (AAw, w) = 0 for w E D(AJ) thus it follows from 
standard duality arguments ([4]) that 

(I i A) D(A) = LZ(R2). 

If CZ(A,) = A then A itself is conservative; hence it generates a group 5’(t), 
---CO < t < EI of isometric operators in L*(F). Consider now the ordinary 
differential system 

K(t) = Pow)), Xi(t) = p(&(t)). (3.4) 

Its trajectories can be described as follows. Solutions starting (say, at t = 0) in 
the negative quadrant r--(x1 , x2 < 0) are straight lines 

X1(t) = Xl(O) + tP(% X*(t) = -Y*(O) + qJ(O) 

until they leave n-- . If (X,(O), X,(O)) E ntP (.vr > 0, ZEN < 0), the corresponding 
trajectory is 

%(t) = Xl(O) + tp(O), 

X*(t) = X*(O) + Jf P(-:;(O) + SP(O)) ds 
0 
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until it leaves T+- (which it will eventually do, since its slope is > 1). An entirely 
symmetric expression holds in T-+ . Finally, if (X,(O), X,(O)) belongs to the 
positive quadrant T++ , Xi(t) is obtained inverting the function 

t(xl) = JoX’ @‘(RT) + Cl) + c2 
and setting 

X2(t) = R--‘(R(X,(t)) + Cl), 

where 

R-1 is the functional inverse of R, and C, , C, are constants determined by the 
initial conditions 

Cl = R(X,(O)) - WW)), 

f-, = _sX’(0) dy 

0 P(R-YW) + Cd ’ 

If C, > 0, R-l(R(r) + C,) > Y, and thus p(R-l(R(r) + C,)) >, p(r). Hence, 
t tends to a finite limit as X1 (thus X,) tends to infinity; consequently, solutions 
with X,(O) 3 X,(O) cease to exist at a time t = t(X,(O), X,(O)) given by 

dr m dy 
t = i x:(o) /WYR(y) + Cd) ’ s Xl(O) p(r) - 

(Since we can argue in the same way interchanging X, and X, , all solutions 
starting in T++ have a finite life expectancy.) Putting together all these observa- 
tions we conclude that an arbitrary trajectory of (2.4) will eventually enter r++ 
and it will blow itself up in finite time; on the hand, if time is run backward, 
the trajectory will enter ?r-- and will then exist forever (see Fig. 1). 

Let T > 0, u. be a vector function in 9. Given (xi , x2) E R2 denote by 
X,(x, , x2 , t>, X2(% , x2 9 t) the solution of (3.5) with initial conditions 

&(x1 3 x2 , 0) = Xl , X,(x, , x2 1 q = x‘p , (3.7) 

and let u(xi , x2 , t) be defined by 

4% , x2 , t) = uo(X,(x, , X2 , T - t), X,(x, , x2 , T - t)) 

for (x1 , x2) E R2, 0 < t < T (4x1 , x2, t) = 0 if (X,(x,, x2 , s), X (xi , x2, s)) 
blows UP before T - t). It follows from standard theorems on dependence on 
initial data (see [5]) and from our previous observations on the trajectories of 
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FIGURE I 

(3.4) that u is continuously differentiable in R” x [0, T] and has compact 
support there. It is obvious that u is constant on trajectories of (3.4), thus 
D,u = p(x2) D1u + p(xi) D*u, and it is easy to see that the L”(P)-valued 
function u(t) = U(., ‘, t) is a solution of u’(t) = 14~(t) in 0 < t < T with 
u(T) = U, ; thus 

u(O) = S( - T)u, . (3.8) 

It follows from (3.6) and the comments preceding and following this inequality 
that 

4x1 , x2, 0) = 0 ((.q , X2) E Q), (3.9) 

where Sz is the quadrant x1 , x2 > w with w so large that 

m dr 
s- 

< T. 
w P(Y) 

We end the proof as follows. Let u be an arbitrary element of L2(R’?); choose 
a sequence {u,,> in 2?’ with u, - u, write (3.8) for u, , and take limits. We obtain 
using (3.9) that S(-T)u = 0 a.e. in 52, which contradicts the fact that S(.) is a 
group. We must then conclude that (3.3) holds. 
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4. AN APPLICATION 

Consider the symmetric hyperbolic system 

D,u == x A,Dku J- Bu, (4.1) 
I.‘=1 

where A, ,..., A,,, , B satisfy the smoothness assumptions at the beginning of 
Section 2; moreover, each A, is symmetric. Under the customary assumption that 
A, , DkA, , and B are bounded in R” it is known that the Cauchy problem for 
(4.1) is properly posed inL2(R”)Y; precisely, A - wl is maximal dissipative there 
for some O. This is proved by showing that A, - ~1 is dissipative (by integration 
by parts) and extending this property to A - wl using (1.2). We can then obtain 
the same conclusion under weaker hypotheses, namely, 

B(x) - 4 c D”A,(.x) < WI (x E R”‘), 
k=l 

(4.2) 

which suffices to ensure dissipativity of A, - w1 and (1.3)-(1.4), which yields 
(1.2) via Theorem 2.1. 

The example in Theorem 3.1 has some intriguing features. It is not difficult 
to see that the operator A there, although not a group generator, is maximal 
dissipative, and thus generates a contraction semigroup s(t) (t >, 0) in L”(F) 
which is explicitly given by the formula 

However, the equation u’(t) = Au(t) does not possess the “finite-domain-of- 
dependence” properties usually expected of hyperbolic equations; in other words, 
perturbations arbitrarily far away in space at time t = 0 may reach a given point 
all at (or near) the same time T > 0. To see this, let (Xl(t), X2(t)) be an arbitrary 
trajectory of (3.4), Tits escape time (we may assume, translating time if necessary 
that T > 0), and v a function in 9 with ~(0) f 0. If 

u,(xl , x2) = &x1 - X1( T - l/n), x2 - X,( T - l/n)) 

the supports of the u,,, wander off to infinity; however, S(t)u,(s, , x2) = 
d”1 - X1( - 1 In), xe - X,( - 1 in)), whose support lies arbitrarily near that of p7. 
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