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1. INTRODUCTION

Let L be the differential operator

m

L =Y A D* + B(x), (1.1)

k=1

where x = (xy,..., ¥y,), D¥ = 0féxy,, A, ,..., 4, are v X v continuously dif-
ferentiable matrices in R™, and B is a continuous v X v matrix; naturally, L
acts on v-dimensional vector functions. (We assume that all entities involved
are real valued, although the results hold equally well for complex-valued
~ functions and matrices.) The minimal operator A, associated with L is defined
by Au = Lu with domain D(4,) = 2* (Z = the space of Schwartz test
functions in R™), while the maximal operator A associated with L (or the weak
extension of A, in LP(R™y = L*(R™, R*) (1 < p < 0)) is the adjoint (4g)*
of 4t , the formal adjoint of 4, , in L¥'(R™y, p"~' 4 p! = 1 (4, is defined as
the minimal operator associated with the formal adjoint L'u = —Y D¥(A%u) +
B*u, where * indicates matrix adjoint). Finally, the strong extension of A, in
LP(R™Y is Cl{A,). A classical result of Friedrichs [1] establishes that the weak
and strong extensions of L coincide, i.e.,

Cl(d,) = A (1.2)

for p = 2 assuming that A, , DV 4, , and B are all bounded in R™, and the proof
is easily seen to work just as well for 1 << p <C co. Although this result has been
extended in many directions (see, for example [3]) I have been unable to find
in the literature any results on whether (1.2) holds under weaker assumptions
on A, , B at infinity. The object of this note is to show that the boundedness
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conditions on the D4, and B can be entirely discarded; as for the A4, we need
only assume that

[ Ax) <p(lx])  (xeR™) (1.3)

for £ = 1, 2,..., m, where p is a positive continuous function growing so slowly
at infinity that

f”?‘(’:—)zoo. (1.4)

The proof of this result {Theorem 2.1) is no more than a simple modification of
Friedrichs’ method of mollifiers via a “reduction to compact support’’ that has
been employed many times (see, for instance, [6]). What makes condition (1.3)-
(1.4) interesting, however, is that it is best possible in the following sense:
Given a positive nondecreasing continuous p which does not satisfy (1.4) there
exists an L (with m = 2, v = 1) satisfying (1.3) but not (1.2). It is not by chance,
incidentally, that (1.4) is Wintner's condition in [9] for existence in the large
of solutions of the ordinary differential system

X'(t) = a(X(1)) (15)

where ¢ = (a, ,-.., a,,), is 2 suitably smooth map from R™ into itself satisfying
| a(x)] < p(] « |), since there exists a close relation among (1.5) and the hyperbolic
equation

Du = aD'u + - + a,D"u;

namely, solutions of (1.6) are constant along curves (X(f), ¢) in (m + 1)-
dimensional space. This relation is in fact used in the construction of the
counterexample (Theorem 3.1).

We point in Section 4 an application of Theorem 2.1 to symmetric hyperbolic
systems.

2. THE MAIN REesuLT

TuEOREM 2.1. Let L be as in Section 1, and assume the coefficients A4, ,..., 4,,
satisfy (1.3)~(1.4). Then (1.2) holds, i.e., Cl Ay = A for 1 < p < 0.

Proof. We recall briefly the definition and some properties of Friedrichs’
mollifiers [1, 2, 4]. Let 4 be a nonnegative function in & with integral 1 and
vanishing (say) in | x | 2= 1; the operators [, (rn >> 1) are defined by J, =4, *,
where ,(x) = n™(nx). Each ], is a bounded operator in L?(R™) (1 << p < o)
with norm < 1;if 1 < p < o0, J,u — u in the LP-norm as n — oo (see [4] for
proofs). In the following result the only hypotheses on 4, ,..., 4,, , B are those
at the beginning of Section 1; i.e., no growth conditions at infinity are prescribed.
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Lemma 2.2. Let u € D(A) have compact support. Then
| Jodu — Al >0 (n— o). (2.1)

Proof. Lemma 2.2 is a well-known result of Friedrichs [1] (see also [4])
when A4, , Di4, , and B are bounded in R™, with no restrictions on the support
of u. We only have to apply this theorem to the operator L = ¥ A, D* - B,
where the 4, (resp. B) are, say, continuously differentiable (resp. continuous)
matrix functions defined in all of R™, having compact support and coinciding
with A4, (resp. B) in the set of all those x € R™ with dist(x, K) = 1; in fact,
if A is the maximal operator of L we obviously have A J,u = 4 J,u, J,4u = J,4u.

Proof of Theorem 2.1. We may obviously assume that p is infinitely dif-
ferentiable. Let ¢ be another infinitely differentiable function of » with ¢(r) = 0
ifr <O, @(r)y=1ifr = 1. Given 0 < r < o0 define

=] if 0<s<r

fis)=1— (3% if r<s<s, (2.2)
=0 if

s <s,
where s, is such that fﬁ' p(s)* ds = 1. The function

x(*) = @(f(| x 1)) (23)

belongs to &, its support being contained in | x | < S, ; its first partials have
support in the ring r < | x| < s, and

D@ < Clp(Ix]) (xR 24)
If u e LP(R™Y it is clear that
XU — U (2.5)

as 7 — 0. On the other hand, if u € D(A4) a simple computation with adjoints
shows that

¥ _Jkax,) u + y,du. (2.6)

k=1 .

A(x) = (
In view of (1.3) and (2.4) we obtain, taking into account that the D*¥y, vanish
for | x| <,

WA Dy Jul < C | u|? dx,

lel>r
which tends to zero as r — o0; accordingly,

A(xu) — Au,
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which, combined with (2.5), shows that Cl(4.) = A, A the restriction of 4
to elements of D(A) having compact support. Hence we only have to prove that,
given u € D(A4.) there exists a sequence {u,,} in D(A4,) with u, — u, Agu, — Au.
In view of (2.2), {J,u} is such a sequence. This ends the proof.

3. A COUNTEREXAMPLE

Throughout this section p is a positive, nondecreasing differentiable function
in 7 > 0 with p’(0) = 0, and
" = dr

A ';(r_)— < 0 (31)

L = p(xy)D* + p(x,)D?, 32

and

where p is extended to r < 0 by setting p(r) = p(0). The operator L is a particular
case of that in (1.1) (here m = 2, v = 1).

Treorem 3.1. Let A, (resp. A) be the minimal (resp. maximal) operator
associated with L. Then, for p = 2
Ci(4,) # A. (3.3)

Proof. Since D'p(x,) + D?*(x;) = 0, the operator Ay = — A4, is dissipative
(in fact, conservative, since (4w, w) = 0 for we D(A)) thus it follows from
standard duality arguments ([4]) that

(I + A) D(A) = L¥(R?).

If Ci(4,) = A then A itself is conservative; hence it generates a group S(f),
—o0 <<t < o of isometric operators in L} R?). Consider now the ordinary
differential system

Xi(1) = p(Xolt),  Xx(t) — p(X(2)). (3.4)

Its trajectories can be described as follows. Solutions starting (say, at t = 0) in
the negative quadrant 7__(x, , x, <C Q) are straight lines

X(t) = X,0) -+ 16(0),  Xu(t) = X(0) + 1p(0)

until they leave w__ . If (X,(0), X,(0)) € m._ (x; = 0, x, < 0), the corresponding
trajectory is

X,(1) = X,(0) + 16(0),

X,0) = X0) + [ oX:(0) + 5p(0) ds
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until it leaves 7, _ (which it will eventually do, since its slope is > 1). An entirely
symmetric expression holds in #_, . Finally, if (X,(0), X,(0)) belongs to the
positive quadrant 7, , X(Z) is obtained inverting the function

X dr

X = || e Ty

Cy (3.5)

and setting
Xo(t) = RYR(X,() + ),

where

Rm:ﬂmm (s > 0),

R-1 is the functional inverse of R, and C,, C, are constants determined by the
initial conditions

C; = R(Xy(0)) — R(X,(0)),

J.Xl(()) dr
o PRMRE)+C)) -

If C;, =0, RYR(r)+ C)) =r, and thus p(R-YR(r) + C})) = p(r). Hence,
¢ tends to a finite limit as X, (thus X,) tends to infinity; consequently, solutions
with X;(0) 2> X,(0) cease to exist at a time ¢t = #(X,(0), X,(0)) given by

C, = —

* dr ® dr
' fxl(o) P(RH(R(r) + Cy)) < fxl(o) olr) (3.6)

(Since we can argue in the same way interchanging X, and X, , all solutions
starting in 7, have a finite life expectancy.) Putting together all these observa-
tions we conclude that an arbitrary trajectory of (2.4) will eventually enter =,
and it will blow itself up in finite time; on the hand, if time is run backward,
the trajectory will enter #»__ and will then exist forever (see Fig. 1).

Let T >0, u, be a vector function in &”. Given (x,, x,) € R* denote by
Xi(%y , x5, 2), Xo(%y, x5, t) the solution of (3.5) with initial conditions

Xi(xy, x5, 0) = %, Xo(%y 5 %5, 8) = 25, 3.7
and let u(x, , x,, t) be defined by
u(xy, %9, 1) = u(Xy(2y, Xp, T — 1), Xoy, x5, T — 1))
for (x;, 2) € R%, 0 <2 << T (0, , x5, ) = 0 if (Xy(%,, x5, 8), X (%, %5, 5))

blows up before T" — t). It follows from standard theorems on dependence on
initial data (see [5]) and from our previous observations on the trajectories of
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yd

Figure 1

(3.4) that u is continuously differentiable in R* x [0, '] and has compact
support there. It is obvious that # is constant on trajectories of (3.4), thus
D = p(x,) D'u + p(x,) D*, and it is easy to see that the L%(R?)-valued
function #(#) = u(-, -, 1) is a solution of #'(t) = Au(?) in 0 <t < T with
w(T) = u, ; thus

u(0) = S(—T)u, - (3.8)

It follows from (3.6) and the comments preceding and following this inequality
that
u(x; , x,,0) =0 ((x, , ) € ), 3.9

where Q is the quadrant x; , x, > w with w so large that

f““ p((i:) =7

w

We end the proof as follows. Let u be an arbitrary element of L*(R?); choose
a sequence {,} in 2” with u, — u, write (3.8) for u,, , and take limits. We obtain
using (3.9) that S(— T)u = 0 a.e. in 2, which contradicts the fact that S(*) is a
group. We must then conclude that (3.3) holds.
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4. AN APPLICATION

Consider the symmetric hyperbolic system

Du =) A,D*u - Bu, 4.1

k=1

where A4, ..., A, , B satisfy the smoothness assumptions at the beginning of
Section 2; moreover, each 4; is symmetric. Under the customary assumption that
A, , D*4, , and B are bounded in R™ it is known that the Cauchy problem for
(4.1) is properly posed in L2(R™Y; precisely, 4 — wl is maximal dissipative there
for some w. This is proved by showing that 4, — wI is dissipative (by integration
by parts) and extending this property to A — wl using (1.2). We can then obtain
the same conclusion under weaker hypotheses, namely,

B~ 13 DA <ol (veRe) &

which suffices to ensure dissipativity of 4, — I and (1.3)-(1.4), which yields
(1.2) via Theorem 2.1.

The example in Theorem 3.1 has some intriguing features. It is not difficult
to see that the operator A there, although not a group generator, is maximal
dissipative, and thus generates a contraction semigroup S(¢) (¢ > 0) in L¥(R?)
which is explicitly given by the formula

S(yu(xy , x5) = w(Xy(xy, x5, —1), X%y, ¥, —1)), (%, %) € R2

However, the equation #'(t) = Au(t) does not possess the “finite-domain-of-
dependence’’ properties usually expected of hyperbolic equations; in other words,
perturbations arbitrarily far away in space at time ¢ = O may reach a given point
all at (or near) the same time T > (. To see this, let (X (), X,(?)) be an arbitrary
trajectory of (3.4), T its escape time (we may assume, translating time if necessary
that 7> 0), and ¢ a function in & with ¢(0) == 0. If

Un(%y 5 x3) = @2, — Xy(T — 1/n), x, — Xy(T — 1/n))

the supports of the u, wander off to infinity; however, S(t)u,(x,, x,) =
o(x; — Xy(—1/n), x, — X,(—1/n)), whose support lies arbitrarily near that of ¢.
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