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In this work we calculate the four-point correlation function of vector quark currents of QCD via
holographic QCD model. Computing the correlator we take into account the exchange of vector and axial
vector bosons and dilaton in the bulk. The result is used for calculation of the two-point correlator
of electromagnetic currents in external magnetic field at zero momentum, related to RHIC experiments,
chiral magnetic effect and lattice study. At zero temperature we find this quantity to be loosely connected
with chiral symmetry breaking and strongly dependent on the confinement properties. Some features of
the AdS/QCD models are also discussed.
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1. Introduction

Nowadays the holographic approach to QCD is a common tool
for exploring the strong interaction properties at nonperturbative
region. There is a number of models either based on the pure
phenomenological approach [1–5], or built of the full superstring
theory [6], which can reproduce meson decay constants, Regge tra-
jectories of meson masses, phenomena of spontaneous symmetry
breaking and chiral anomaly, confinement of quarks etc. At the
same time the model which would incorporate all these features
simultaneously, does not exist. Although holographic models can-
not yet provide a precise calculation tool, they can give some new
hints about the nature of the considered phenomena and reveal
the connection between different features of the theory. Moreover,
the features of the model should be studied to clarify the further
modifications.

The Letter concerns the calculation of the 4-point correlator
of vector currents of QCD in the framework of the holographic
model containing the vector, axial vector, scalar and dilaton dy-
namical fields. Similar strong coupling calculations were made in
different models, where the photon correlators in supersymmet-
ric Yang–Mills or conformal QCD [7–9] and various features of low
energy QCD [10–12] were studied. We assume that scalar and dila-
ton field have some arbitrary background profiles, moreover we
incorporate an arbitrary deformation function of the metric in the
infrared region. Thus we get the result, applicable to a large class
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of particular holographic models which appear in the literature.
For the perturbative calculation we adopt a convenient Witten di-
agram technique to represent the action on the classical solutions
as the sum of tree diagrams.

The second goal of this work is to study the electric cur-
rent magnetic susceptibility, namely the electric current two-point
function in the external magnetic field at vanishing momentum.
This entity may be related to the measured charge asymmetry in
heavy ion collisions at RHIC experiment [13], and is studied ex-
tensively. According to [13], the susceptibility is generated in the
moment of collision by the chiral magnetic effect and the chiral
chemical potential. The other input is produced by the nonzero
temperature of the fireball. We study this object at zero tempera-
ture and zero chiral chemical potential. Though this setting is not
sufficient to study the phenomena in the ion collision, we try to
find out if any other origins of current susceptibility are present in
nonperturbative QCD. We see that the susceptibility in the holo-
graphic model is nonzero at quadratic order in the field, and it is
directly related to the 4-point correlator computed in the first part.

As the main result we make some conclusions about the be-
haviour of the quantity of interest. It turns out that the suscepti-
bility at zero temperature behaves as Q 4 at small Q . It is not very
sensitive to the pattern of chiral symmetry breaking present in the
model, namely it is nonzero even when the quark mass and con-
densate are taken as zero, but depends strongly on the way the
conformal symmetry is violated, or of the confinement properties.

As to the perturbation theory in the bulk space of AdS/QCD, we
find that usually the exchange of the dilaton makes no difference
being suppressed by the factor of Nc . Also we find that the ex-
ponential growth of the bulk-to-bulk propagators in the soft wall
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model with positive dilaton makes the perturbation theory there
inconsistent.

In Section 2 we present the setting we are working in, describe
the principles of the diagram technique and calculate the four-
point function of the electromagnetic currents. In Section 3 we use
this result to compute the electric current susceptibility in various
models and investigate its dependence on the parameters. The last
section is devoted to the discussion of the results obtained.

2. The vector current four-point function

2.1. The setting

The AdS/QCD model used in this work contains vector (V a
μ)

and axial vector (Aa
μ) fields in the adjoint representation of the

gauge group, which is dual to vector currents of QCD (〈q̄taγμq〉
and 〈q̄taγ5γμq〉, respectively), the bifundamental scalar field (Xαβ )
representing the scalar quark current 〈q̄αqβ〉, and a dilaton, which
corresponds to the trace of the gluon field strength tensor squared
(Tr(G2)). The gauge group is the flavor group U (N f ) of QCD and
the model is non-Abelian. Generators of U (N f ) are normalized the
standard way:

[
ta, tb] = i f abctc,

〈
tatb〉 = 1

2
δab.

The model is built in 5-dimensional space, which has an AdS
metric with equal to unity curvature radius and some arbitrary
warp factor W (z). It can be cut at some infrared brane, located
at z = zm . W (z) tends to zero at the boundary, in order the space
to be asymptotically AdS

d2s = e−2W (z)

z2

(−dz2 + dxμ dxμ

)
, z � zm.

The action is a sum of Yang–Mills and Chern–Simons parts. We
study the dynamics of the fluctuations of scalar field around its
vacuum profile X0(z) = 1

2 χ(z), represented by the pseudoscalar
field π , X = X0eiπ . By the standard AdS/CFT prescription [17], the
normalizable in the ultraviolet mode of the field vacuum profile is
proportional to the vacuum expectation value of the corresponding
operator, while the non-normalizable mode describes its source.
Namely, in the UV the asymptotics of χ is χ(z)|z→0 = mz + σ z3,
where m is proportional to the quark mass and σ corresponds to
the chiral condensate 〈q̄q〉. The chiral symmetry breaking is re-
alised by the fact that only axial vector field interacts with this
background, leaving the SUV (2) symmetry unbroken. The dilaton
field can have a vacuum profile as well. We will denote it by Φ(z)
and consider the fluctuations φ(Q , z) with 4D Euclidean momen-
tum Q . In the following it is convenient to introduce the sum of
the warp factor and dilaton vacuum profile: Φ̃(z) = W (z) + Φ(z).
The pure Yang–Mills part is symmetrical with respect to the ex-
change of left and right currents, the CS part is anti-symmetrical.

S =
∫

d4x dz
√

ge−(Φ+φ)

(
− Nc

24π2

)

× 〈
F 2

V + F 2
A + 6χ(z)2(A − ∂π)2 + A2(∂φ)2 + M(φ)

〉

+
(

Nc

12π2

)
〈V ∧F V ∧F A + V ∧F A∧F V + A∧F V ∧F V 〉. (1)

Here the trace is taken over the gauge group U (N f ), A is a nor-
malization constant of dilaton field, which should be fixed. M(φ)

is a possible potential for dilaton, which is not essential in our
calculation, as long as we are not interested in the gluon conden-
sate corrections. All the other constants in the action are fixed by
matching with QCD sum rules (see [1,2,14,15]). The normalization
of the field X is chosen such a way that m is the quark mass in
QCD precisely. In the action we have omitted all terms with inter-
actions unnecessary for our calculation. These are interactions of
the second order in axial field in the Yang–Mills part and terms of
fourth and higher order in fields in the Chern–Simons part.

Our main task will be the computation of the solutions to
classical equations of motion. Their boundary conditions on the
AdS boundary are fixed by the AdS/CFT prescription. Namely the
boundary value of the field is proportional to the source of the
corresponding operator. The boundary conditions in the IR region
depend on the particular model, but usually are taken such a way
that the action remains regular and finite in the IR.

Before we proceed, we have to fix the constant A in the action.
This can be done by matching with QCD sum rule result for the
gluon correlator [16]

∫
d4x

〈
G2(0)G2(x)

〉
ei Q x = − N2

c − 1

4π2
Q 4 ln

(
Q 2

μ2

)
. (2)

In order to compute this correlator in the holographic model it is
enough to solve the linearized equation of motion for the dilaton
near the boundary of AdS

∂2
z φ − 3

z
∂zφ + Q 2φ = 0.

The solution (bulk-to-boundary propagator) is

φ(1)(z) = Q 2

2

[
φ̂z2 K2(Q z) + C2z2 I2(Q z)

]
,

where I and K are the modified Bessel functions, and φ̂ is a
boundary value of dilaton field, which should be associated with
the source of corresponding operator in the generating functional
of 4D theory, namely Tr(G2). The final step is to insert this solution
into the action and take the second variation with respect to the
source φ̂(Q ). We get the two-point function at large momenta Q :

∂ S

∂φ̂(Q )∂φ̂(−Q )
= −A2

(
Nc

24π2

)
1

8
Q 4ln

(
Q 2ε2).

Comparing this with sum rule (2) we see:

A2 = 48(N2
c − 1)

Nc
. (3)

2.2. The variation of classical action

We proceed to our main task, the calculation of four-point func-
tion of vector currents. According with the general AdS/CFT recipe
[17] we take the variation of classical action with respect to four
boundary values of vector fields. In what fallows we allways use
the gauge V z = Az = 0, so that the boundary value is a 4D vector
and can be easily matched with a vector source. In addition, the
gauge ∂μVμ = 0 is used to make the conservation of the vector
current in QCD explicit. For the variation we can write:

〈
J a
α(k1) J b

β(k2) J c
γ (k3) Jd

δ (k4)
〉

= δ4

δ V̂ a
α(k1)δ V̂ b

β(k2)δ V̂ c
γ (k3)δ V̂ d

δ (k4)
Scl

(
V̂ 4).

So we need to calculate the classical action up to the fourth or-
der in boundary values, which involves the calculation of classical
solutions up to the third order in sources. The calculation can be
done perturbatively. Let’s make a Fourier transformation over four
coordinates and rewrite the action (1) in a more explicit form:
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S = S V + Sφ + S A,(
24π2

Nc

)
S V

=
∫

d4q1 d4q2 δ4(q1+q2)
e−Φ̃

z
(−)V a

μ(q1, z)

× ∂z V a
μ(q2, z)

∣∣∣∣
z=0

(4)

+
∫

d4q1 d4q2 dz δ4(q1+q2)V a
α(q1, z)

e−Φ̃

z

×
[
− z

e−Φ̃
∂z

e−Φ̃

z
∂z gαμ − q2

2 gαμ + q2αq2μ

]
V a

μ(q2, z) (5)

+
∫

d4q1 d4q2 d4q3 dz
e−Φ̃

z
(2i)Tabc

αβγ

× V a
α(q1, z)V b

β(q2, z)V c
γ (q3, z) (6)

+
∫

d4q1 d4q2 d4q3 d4q4 dz
e−Φ̃

z
(−)

1

2
Qabcd

αβγ δ

× V a
α(q1, z)V b

β(q2, z)V c
γ (q3, z)V d

δ (q4, z). (7)

In this term the partial integration has been used in the kinetic
term, and we use the notation for the triple and quartic vertex
functionals:

Tabc
αβγ = δ4(q1+q2+q3) f abc(gαβq1γ + gβγ q2α + gαγ q3β), (8)

Qabcd
αβγ δ = δ4(q1+q2+q3+q4) f abe f ecd gαγ gβδ. (9)

Similarly, the partial integration is made in the dilaton part of the
action, but due to the absence of the dilaton source in the problem,
the boundary term vanishes, and only kinetic and interaction terms
survive(

24π2

Nc

)
Sφ

=
∫

d4q1 d4q2 dz
48(N2

c − 1)

Nc
φ(q1, z)

e−Φ̃−2W

z3

×
[
− z3

e−Φ̃−2W
∂z

e−Φ̃−2W

z3
∂z − q2

2

]
φ(q2, z) (10)

+
∫

d4q1 d4q2 d4q3 dz
e−Φ̃

z
Dab

αβφ(q3, z)

× V a
α(q1, z)V b

β(q2, z). (11)

The notation for dilaton vertex functional is

Dab
αβ = δ4(q1+q2+q3)

× {−δab∂1
z ∂2

z gαβ + δab(−(q1q2)gαβ + q1βq2α

)}
, (12)

where by definition momenta (q1,q2,q3,q4) and differentials
∂1

z , ∂2
z , . . . correspond to fields with flavor indices (a,b, c,d) re-

spectively.
The CS term warrants more careful study. Its explicit form in

the coordinate space is

SCS =
∫

d4x dz
Nc

12π2
4
〈
tatbtc 〉εμνρσ

(
∂z Ac

μ

[
∂σ V a

ν V b
ρ − V a

ν∂σ V b
ρ

]

+ Ac
μ

[
∂z V a

ν∂σ V b
ρ − ∂σ V a

ν∂z V b
ρ

]
+ ∂σ Ac

μ

[
V a

ν∂z V b
ρ − ∂z V a

ν V b
ρ

])
.

We perform the integration by parts in z coordinate and we omit
the boundary value, because the axial source is not present. So in
the momentum space the part S A looks like(

24π2

Nc

)
S A

=
∫

d4q1 d4q2 dz δ4(q1+q2)

×
{

Aa
α(q1, z)

[
−∂z

e−Φ̃

z
∂z gαμ − e−Φ̃

z

(
q2

2 gαμ − q2αq2μ

)]

× Aa
μ(q2, z) (13)

+ 3
e−Φ̃−2W

z3
χ(z)2[(Aa

μ(q1, z) − q1μπ(q1, z)
)

× (
Aa

μ(q2, z) − q2μπ(q2, z)
) + (

∂zπ(q, z)
)2]}

+
∫

d4q1 d4q2 d4q3 dz (24i)Aabc
αβγ V a

α(z1,q1)

× V b
β(z2,q2)Ac

γ (z3,q3), (14)

where we’ve introduced the notation for the axial vertex functional

Aabc
αβγ = δ4(q1+q2+q3)

〈
tatbtc 〉εαβγ σ

(
∂1

z q2
σ − ∂2

z q1
σ

)
. (15)

Now we should insert classical solutions calculated order-by-
order in vector field sources: V = V (1) + V (2) + V (3); A = A(2); φ =
φ(2) . One can check, that the term with V (1)V (3) in (5) cancels the
boundary term (4). So we are left with the four different diagrams
of Fig. 1(a) comes from the connection of two V (2) via kinetic term
in (5) and connection of two V (1) and one V (2) by the triple vertex
in (6). The connection of two A(2) in the quadratic term of (13)
and the vertex of (14) with two V (1) and one A(2) contribute to
Fig. 1(b). Similarly Fig. 1(c) is made of two φ(2) in (10) and two
V (1) and φ(2) in (11). Fig. 1(d) is the connection of four V (1) via
the quartic vertex in (7).

We proceed to the calculation of classical solutions. Let’s start
with the vector field V a

α(Q , z). Its equation of motion is

[
∂z

e−Φ̃

z
∂z gαμ + e−Φ̃

z

(
q2

1 gαμ − q1αq1μ

)]
V a

μ(−q1, z)

= e−Φ̃

z

∫
d4q2 d4q3 iTabc

αβγ V b
β(q2, z)V c

γ (q3, z).

As we are interested in V (1) and V (2) only, we’ve dropped unnec-
essary interaction terms. The solution, which is linear in source, is
obtained by means of bulk-to-boundary propagator v(Q , z), which
is the solution to the linearized equation of motion with unit
boundary condition at z → 0, v(Q ,0) = 1. Using this, we write
out the expression for the classical solution:

V (1)a
α (q, z) = V̂ a

α(q)v(q, z). (16)

The second order solution can be found perturbatively with the
use of the Green function of the equation. Due to the nontrivial
vector structure of the equation, we introduce two Green functions,
the transverse G⊥(Q , z) and the longitudinal one G‖(Q , z) with
respect to the momentum Q . They are solutions to the following
equations:

[
∂z

e−Φ̃

z
∂z + e−Φ̃

z
q2

1

]
G⊥(

q1, z, z′) = δ
(
z, z′),

∂z
e−Φ̃

∂zG‖(q1, z, z′) = δ
(
z, z′), (17)
z
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Fig. 1. Tree diagrams, corresponding to the classical action of the fourth order in vector sources: (a) vector intermediate boson, (b) axial intermediate boson, (c) exchange of
dilaton, (d) quartic vector vertex.
and govern the iteration procedure. For short we will denote their
sum by G V

λλ′ = [gλλ′ − Q λ Q λ′
Q 2 ]G⊥ + Q λ Q λ′

Q 2 G‖ . Now we can straight-

forwardly find the second order solution V (2):

V (2)a
α(−q1, z)

=
∫

d4q2 d4q3 iTabc
α′βγ V̂ b

β(q2)V̂ c
γ (q3)

×
∫

dz′ e−Φ̃

z′ G V
αα′

(
q1, z, z′)v

(
q1, z′)v

(
q2, z′). (18)

The equation of motion of dilaton field is

[
∂z

e−Φ̃−2W

z3
∂z + e−Φ̃−2W

z3
q2

3

]
ϕ(−q3, z)

= 1

2A2

e−Φ̃

z
Dab

αβ V a
α(q1, z)V b

β(q2, z).

As only sources for vector fields are present, we calculate the sec-
ond order solution immediately. We use the Green function de-
fined by the equation

[
∂z

e−Φ̃−2W

z3
∂z + e−Φ̃−2W

z3
q2

3

]
Gϕ

(
q3, z, z′) = δ

(
z, z′)

and get the solution:

ϕ(2)(−q3, z) =
∫

d4q1 d4q2
1

2A2

∫
dz′ e−Φ̃

z′ Gϕ
(
q3, z, z′)Dab

αβ

× v
(
q1, z′)v

(
q2, z′)V̂ a

α(q1)V̂ b
β(q2). (19)

The last part is to compute the solution for axial vector field
from the equation

[
∂z

e−Φ̃

∂z gγμ + e−Φ̃ (
q2

3 gγμ − q3γ q3μ

)]
Ac

μ(−q3, z)

z z
+ 6
e−Φ̃−2W

z3
χ(z)2(Ac

γ (−q3, z) + q3γ π(−q3, z)
)

= 12i

∫
d4q1 d4q2 Aabc

αβγ V a
α(z,q1)V b

β(z,q2). (20)

This equation is more complicated than in the vector case, due to
the interaction with a scalar profile. We will compute the explicit
form of the Green function later. Nevertheless we can use the same
notation for its longitudinal and transverse parts as for the vector
field and denote it G A

γ γ ′ . The solution is

A(2)c
γ (−q3, z) =

∫
dz′ d4q1 d4q2 (12i)Aabc

αβγ ′ V̂ a
α(q1)V̂ b

β(q2)

× G A
γ γ ′

(
z, z′,q3

)
v
(
z′,q1

)
v
(
z′,q2

)
. (21)

Having the solutions (18), (19) and (21) at hand, we are able to
write out the classical action of the fourth order in sources. It is

S(4) =
∫

d4q1 d4q2 d4q3 d4q4 d4q5 δ4(q1+q2+q5)δ
4(q5−q3−q4)

× V̂ a
α(q1)V̂ b

β(q2)V̂ c
γ (q3)V̂ d

δ (q4)

{
(−1)

Nc

24π2
Tabe

αβεTecd
ε′γ δ

×
∫

dz dz′ e−Φ̃

z

e−Φ̃

z′ G V
εε′

(
q5, z, z′)v(q1, z)

× v(q2, z)v
(
q3, z′)v

(
q4, z′) (22)

+ 1

4

Nc

24π2

Nc

48(N2
c − 1)

∫
dz dz′ Dab

αβDcd
γ δ

× e−Φ̃

z

e−Φ̃

z′ Gϕ
(
q5, z, z′)v(q1, z)v(q2, z)

× v
(
q3, z′)v

(
q4, z′) (23)

− 6
Nc

π2

∫
dz dz′ Aabe

αβλAecd
λ′γ δ

× G A ′
(
z, z′,q3

)
v
(
z′,q1

)
v
(
z′,q2

)
v(z,q3)v(z,q4) (24)
λλ
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2

Nc

24π2
Qabcd

αβγ δ ×
∫

dz
e−Φ̃

z
v(q1, z)v(q2, z)

× v(q3, z)v(q4, z)

}
, (25)

where the following structures appear (we omit here delta-
functions, moved to the action):

Tabe
αβεTecd

ε′γ δ = f abe f ecd(gαβq1ε + gβεq2α + gαεq5β)

× (gε′γ q5δ + gγ δq3ε′ + gεδq4γ ); (26)

Dab
αβDcd

γ δ = δabδcd{∂z1∂z2 gαβ + (q1q2)gαβ − q1βq2α

}
× {

∂z3∂z4 gγ δ + (q3q4)gγ δ − q3δq4γ

}; (27)

Aabe
μνλAecd

ρτλ′ = 〈
tatbte〉〈tctdte〉εμνλσ ερτλ′π (

∂1
z q2

σ − ∂2
z q1

σ

)
× (

∂3
z q4

π − ∂4
z q3

π

); (28)

Qabcd
αβγ δ = f abe f ecd gαγ gβδ. (29)

Now taking the variation with respect to four sources resolves into
the summation of all 24 permutations of indexes and correspond-
ing momenta in the above structures. Taking the variation with
respect to the transverse source will result in the transverse struc-
ture in the correlator. We will not write these projectors explicitly
and will imply, that the result is transverse with respect to mo-
menta of the corresponding external sources. There is no point in
doing the variation in general case, so we will make it for the par-
ticular application.

3. Electric current susceptibility

3.1. Kinematics

One of the interesting problems is the calculation of the two-
point function of vector currents in the external magnetic field at
vanishing momentum Q . In the first order of magnetic field it is
related to the correlator of three vector currents, which is zero in
our model. To the second order in the magnetic field it can be
expressed as

〈
Jα(Q ) Jβ(−Q )

〉
B

= 〈
Jα(Q ) Jβ(−Q ) Jγ (k1) Jδ(k2)

〉
e1
γ e2

δ

∣∣
k1,k2→0, (30)

where e1
γ , e2

δ are polarizations of the real photons. We encounter
the 4-point correlator, which we can now calculate. As it involves
only electromagnetic currents ( J em = 1

2 J 0 + 1
6 J 1) two terms in

the variation vanish immediately. These are (22) and (25), because
they contain structure constants f abc , which are zero if one of the
indices is zero or if any two are identical. Moreover, we see, that
the term, that contains intermediate dilaton (23) is suppressed by
the factor of Nc , comparing to the others. So it is also negligible.

The main input to the correlator is from the axial boson inter-
change (24). Let’s take the sum over all permutations of sources
V̂ a

α(Q ), V̂ b
β(−Q ), V̂ c

γ (k1), V̂ d
δ (k2) in the structure (28). Due to the

symmetry properties of this structure all 24 terms form 3 groups
of 8, corresponding to S-, T- and U- channels:

S-channel,

2
〈{

tatb}te〉〈{tctd}te〉εαβλσ εγ δλ′π (
∂

Q 1
z Q 2σ − ∂

Q 2
z Q 1σ

)
× (

∂
k1
z′ k2π − ∂

k2
z′ k1π

)
,

T-channel,

2
〈{

tatc}te〉〈{tbtd}te〉εαγ λσ εβδλ′π (
∂

Q 1
z k1σ − ∂

k1
z Q 1σ

)

× (
∂

Q 2
z′ k2π − ∂

k2
z′ Q 2π

)
,

U-channel,

2
〈{

tatd}te〉〈{tbtc}te〉εαδλσ εγ βλ′π (
∂

Q 1
z k2σ − ∂

k2
z Q 1σ

)
× (

∂
k1
z′ Q 2π − ∂

Q 2
z′ k1π

)
.

Here the superscript of the differential ∂
Q
z denotes the particular

bulk-to-boundary propagator v(Q , z) that should be differentiated.
In these expressions we keep only terms linear in k1,k2 to study
the dependence on the magnetic field. Consequently, the S-channel
contribution vanishes. We multiply the result by the polarizations
of real photons and figure out the dual strength tensor of the ex-
ternal field εμνρτ kρeτ = 1

2 F̃ μν . Finally, we get

T-channel,

2
〈{

tatc}te〉〈{tbtd}te〉(1

4
F̃ αλ(k1) F̃ βλ′

(k2)

)
∂

Q 1
z ∂

Q 2
z′ ,

U-channel,

2
〈{

tatd}te〉〈{tbtc}te〉(1

4
F̃ αλ(k2) F̃ βλ′

(k1)

)
∂

Q 1
z ∂

Q 2
z′ .

Our main task is to compute the correlator of electromagnetic
currents ( J em = 1

2 J 0 + 1
6 J 1). We can express it via our obtained

four-point function:
〈

J em(Q ) J em(Q ) J em(k) J em(k)
〉

= 1

24

〈
J 0 J 0 J 0 J 0〉 + 2

1

23

1

6

[〈
J 1 J 0 J 0 J 0〉 + 〈

J 0 J 0 J 1 J 0〉]

+ 1

22

1

62

[
4
〈

J 1 J 0 J 1 J 0〉 + 〈
J 1 J 1 J 0 J 0〉 + 〈

J 0 J 0 J 1 J 1〉]

+ 2
1

2

1

63

[〈
J 0 J 1 J 1 J 1〉 + 〈

J 1 J 1 J 0 J 1〉] + 1

64

〈
J 1 J 1 J 1 J 1〉.

Having this structure, we can sum up U- and T- channels and get
the expression for two-point function of electromagnetic current
in the magnetic field.
〈

J em(Q ) J em(Q )
〉
B

=
[

1

24
+ 6

1

22

1

62
+ 1

64

](
1

4
F̃ αλ(k2) F̃ βλ′

(k1)

)

× (−6)
Nc

π2

∫
dz dz′ G A

λλ′
(
z, z′, Q

)
∂z′ v

(
z′, Q

)

× ∂z v(z, Q ).v(z,0)v
(
z′,0

)
. (31)

The number in square brackets comes from the charges calculation
and hereafter will be denoted by C .

3.2. The calculation of the coefficient

To proceed, we have to specify the model we are working in.
The simplest choice is a “hard-wall” model proposed in [1,2]. Other
possible choices will be discussed further. In the “hard-wall” model
there isn’t any background dilaton profile or warp factor in the
metric, so we put Φ̃ as zero. The chiral symmetry breaking is de-
scribed by the scalar profile

χ(z) = mz + σ z3

in the whole bulk space up to the IR boundary zm . In the limit
of Q → 0 the equations of motion for transverse and longitudinal
parts of axial vector field coincide, so the bulk-to-bulk propagator
can be expressed as
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G A
λλ′(Q , z) = gλλ′ G(z) + O (Q ),

where G(z) is defined by the equation[
∂z

1

z
∂z − 6

1

z3
χ(z)2

]
G
(
z, z′) = δ

(
z, z′),

with usual hard-wall boundary conditions:

G(0, z) = 0, ∂ ′
zG

(
z, z′)∣∣

z′=zm
= 0.

The vector bulk-to-boundary propagator can be found explicitly, it’s
revealed as:

v(Q , z) = K0(Q zm)

I0(Q zm)
Q zI1(Q z) + Q zK1(Q z),

where I and K are modified Bessel functions. One can check, that
at Q → 0 limit v(Q , z) = 1 and ∂z v(Q , z) ∼ Q 2, so in the in-
tegral (31) only differentials of propagators remain, which result
in the overall factor of Q 4. Now we can calculate the integral
numerically. For the parameters zm = (323 Mev)−1, m = 10 Mev,
σ = (460 Mev)3 (see appendix of [15]) we obtain:
〈

J em(Q ) J em(Q )
〉
B

∣∣
H W

= C
(

1

4
F̃ αλ(k2) F̃ β

λ (k1)

)
× (−6)

Nc

π2
Q 4(−1.22 Gev−6).

The value of the integral here is computed numerically, it is dimen-
sionful and warrants some more study. In the hard wall model we
have 3 dimensionful parameters: m, σ and zm . One can check, that
the quark mass has very little influence on the result, so we can
freely take the chiral limit (m = 0) with the change of about 1%.
The σ plays a bigger part, but it is also not crucial for the result.
Taking it equal to zero gives the value 2.93 GeV−6 and larger σ
decreases this number until at very large σ ∼ 10 GeV3 the integral
practically vanishes. Important for us is that the current correla-
tor in the external field is nonzero even in the chiral limit and
at zero chiral condensate. This indicates, that its origin is not the
chiral symmetry breaking. In the case of m = σ = 0 the result ob-
viously behaves as z6

m , or Λ−6
QCD , so taking the scale parameter to

infinity kills the result as well. But concerning the limit ΛQCD → 0
we do not find such a smooth behaviour as in the case of con-
densate. In this limit the integral diverges strongly, which is a sign
of qualitative dependence on the ΛQCD . This lets us conclude that
the feature of the holographic model, the most important for the
considered value, is the IR cut-off of the AdS space, related to con-
finement in 4D theory.

According to this issue it is interesting to study the “soft-wall”
model, because it has an improved behaviour in the IR which in-
cludes the proper description of the meson masses [3,5]. Moreover,
we are not very interested in chiral symmetry braking, which is
problematic in the considered framework (see [4]). In this model
one has an exponential factor ecz2

in the action, due to the non-
trivial dilaton profile Φ [3] or to the deformation of the metric W
[5]. In our case this makes no difference, because it is their sum Φ̃

which appears in equations of motion. The most popular version
of the “soft-wall” model has negative c [3,4], so that the action
has a rapidly falling prefactor e−γ 2 z2

. This gives rise to the strong
problem in our calculation, because the bulk-to-bulk propagator,
being the inverse of the kinetic term in the action, acquires a fac-
tor eγ 2z2

and diverges extremely fast at large z. This makes the
diagram under consideration (24) diverge too, because the vertices
coming from the Chern–Simons term do not have any exponential
suppression, due to the independence of metric and dilaton. As a
consequence, one cannot use the perturbation theory here. This
problem is not surprising, since the model with negative c does
not express confinement (namely the proper heavy quark poten-
tial) crucial for our computation [18,19].

In order to incorporate confinement, one has to use the model
with positive c [18–20]. Then all the solutions to equations of mo-
tion decay in IR as well as the bulk-to-bulk propagator. So the
perturbative calculation converges and we can get the striking re-
sult:
〈

J em(Q ) J em(Q )
〉
B

∣∣
SW

= C
(

1

4
F̃ αλ(k2) F̃ β

λ (k1)

)
× (−6)

Nc

π2
(0.7 GeV)−2.

It is nonzero at Q = 0, what seems to be quite unphysical in the
framework of zero temperature and absence of any chemical po-
tentials, because it leads to the effective nonzero photon mass. The
reason is the presence of the unphysical massless mode in the vec-
tor sector in the model with positive c, which has been observed
in [3] and discussed in [20]. This feature prevents us from trusting
the answer above, until the nature of this mode is clarified.

4. Conclusion

In this work we’ve performed a perturbative 5D calculation of
the vector current four-point function of QCD via the holographic
model. The generality of the used setting allows us to study some
common features of such calculations in various AdS/QCD mod-
els. Namely we find, that due to the normalisation of dilaton field,
the exchange of dilaton in the bulk is suppressed by the factor of
Nc . Even though the form of the dilaton field and its features in
holography are still subjects of investigation, we claim, that this
behaviour has to remain in all the models. The obtained result is
applicable to a large class of commonly used holographic mod-
els and can be used in various problems, as it includes the chiral
symmetry breaking term, the anomaly term, the arbitrary number
of quark flavors, the arbitrary dilaton and scalar potentials and the
arbitrary warp factor in the metric.

We use the vector current four-point function to calculate the
two-point correlator of electromagnetic currents in the external
magnetic field. This quantity turns out to be weakly dependent on
the chiral symmetry breaking in the model and is sensitive to its
infrared behaviour, namely to the way the conformal symmetry is
broken. Studying this calculation in the hard wall AdS/QCD model
and soft wall models with different dilaton behaviour, we find that
the perturbation theory is divergent in the soft wall model with
falling exponent in the action. This problem is not visible until
every term of the action, including interactions, is multiplied by
the same factor. But considering the Chern–Simons action, which
is free of metric as well as dilaton input, we get the exponentially
growing bulk-to-bulk propagator, not suppressed by the interac-
tion vertices and leading to the strong divergence of the result.
This turns to a handicap for calculating diagrams with bulk-to-
bulk propagators and Chern–Simons vertices in such a framework.
In the model with growing exponent in the action we obtain the
value, finite in the limit of small Q , which is unphysical at zero
temperature. This results from the presence of the massless pole
in the vector two-point function, which leads to the violation of
charge conservation and is forbidden in QCD. We hope, that the
nature of this pole and the solution of this defect will allow more
accurate calculations in this model.

In the end of the day we obtain the best result in the frame-
work of the “hard-wall” model. The value of the correlator in the
magnetic field is proportional to B2 at small B , where B is the
field strength. This behaviour is in agreement with usual pertur-
bative calculations at small fields, based on the Euler–Heisenberg
effective action of QED (see [21] for example). But the study of
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the dependence of this quantity on QCD parameters in nonpertur-
bative regime is a new result. At small Q the correlator goes to
zero as Q 4. This is quite natural, because the nonzero value would
give an effective mass to the photon (Debye mass), what would be
inconsistent at zero temperature. As to the large Nc phenomenol-
ogy, our result is of order N1

c , what is a proper behaviour of the
correlator of quark currents.

Our calculation confirms that the holographic model, featur-
ing chiral symmetry breaking and chiral anomaly, does not au-
tonomously develop the chiral chemical potential, needed for
the nonzero current correlator at zero momentum (see [13]).
Some other components are obviously necessary to describe
the phenomena of heavy ion collisions. Constructing a holo-
graphic model which would feature nonzero temperature and
topological charge of QCD could shed more light on this prob-
lem.
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