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Abstract

Background: The development of robust methods for chemical named entity recognition, a challenging natural
language processing task, was previously hindered by the lack of publicly available, large-scale, gold standard
corpora. The recent public release of a large chemical entity-annotated corpus as a resource for the CHEMDNER
track of the Fourth BioCreative Challenge Evaluation (BioCreative IV) workshop greatly alleviated this problem and
allowed us to develop a conditional random fields-based chemical entity recogniser. In order to optimise its
performance, we introduced customisations in various aspects of our solution. These include the selection of
specialised pre-processing analytics, the incorporation of chemistry knowledge-rich features in the training and
application of the statistical model, and the addition of post-processing rules.

Results: Our evaluation shows that optimal performance is obtained when our customisations are integrated into
the chemical entity recogniser. When its performance is compared with that of state-of-the-art methods, under
comparable experimental settings, our solution achieves competitive advantage. We also show that our recogniser
that uses a model trained on the CHEMDNER corpus is suitable for recognising names in a wide range of corpora,
consistently outperforming two popular chemical NER tools.

Conclusion: The contributions resulting from this work are two-fold. Firstly, we present the details of a chemical
entity recognition methodology that has demonstrated performance at a competitive, if not superior, level as that
of state-of-the-art methods. Secondly, the developed suite of solutions has been made publicly available as a
configurable workflow in the interoperable text mining workbench Argo. This allows interested users to
conveniently apply and evaluate our solutions in the context of other chemical text mining tasks.

Background
In carrying out scientific work, most researchers rely on
published information in order to keep abreast of recent
developments in the field, to avoid repetition of work and
to guide the direction of current studies. This is especially
true in the field of chemistry where endeavours such as
drug discovery and development are largely driven by
information screened from the copious amounts of data
available. Whilst databases storing structured chemical
information have proliferated in the last few years, pub-
lished scientific articles, technical reports, patent

documents and other forms of unstructured data remain
to be the richest source of the most current information.
Text mining facilitates the efficient distillation of infor-

mation from the plethora of scientific literature. Whilst
most of the scientific text mining efforts in the last decade
have focussed on the identification of biomedical entities
such as genes, their products and the interactions between
them, the community has recently begun to appreciate the
need for automatically extracting chemical information
from text. Applications in chemoinformatics, drug discov-
ery and systems biology such as automatic database cura-
tion [1], compound screening [2], detection of adverse
drug reactions [3], drug repurposing [4] and metabolic
pathway curation [5] are facilitated and informed by the
outcomes of chemical text mining, a fundamental task of
which is the recognition of chemical named entities.
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Chemical named entity recognition (NER), the automatic
demarcation of expressions pertaining to chemical entities
within text, is considered a challenging task for a number
of reasons. First, chemical names may appear in various
forms, ranging from the popular and human-readable tri-
vial and brand names to the more obscure abbreviations,
molecular formulas and database identifiers, to long
nomenclature-conforming expressions, e.g., International
Union of Pure and Applied Chemistry (IUPAC) names and
Simplified Molecular-Input Line-Entry System (SMILES)
strings [6-8]. Moreover, researchers working on lead com-
pound identification and discovery sometimes tend to
report their results using their own arbitrarily assigned
abbreviations, further aggravating the proliferation of che-
mical names. Also considered a barrier to the development
of chemical named entity recognisers is the relatively small
number of available supporting corpora, compared to
those developed for biological, such as gene and protein,
name recognition [9]. Whilst a few notable data sets
containing chemical named entity annotations have
been developed, there was a lack of publicly available,
wide-coverage, large-scale gold standard corpora of scienti-
fic publications. Although the SciBorg corpus [10,11] con-
tains a substantial number of manually annotated chemical
names in its 42 full-text articles, it had not been publicly
available until very recently. In contrast, the large-scale
CALBC corpus [12] is publicly available, but is considered
“silver standard” as it contains annotations resulting from
the harmonisation of the outputs of five different automatic
tools, rather than manual annotations. The similarly pub-
licly available SCAI pilot corpus [13,14] contains gold stan-
dard annotations for various types of chemical names but
is relatively small with only 100 MEDLINE abstracts.
This limited number of resources has influenced the

means by which the state-of-the-art chemical named entity
recognisers have been developed and evaluated. Built as a
pipeline of several Markov model-based classifiers, the
publicly available OSCAR tool [15] was tuned to recognise
the annotation types defined in the SciBorg corpus. The
system was evaluated by means of three-fold cross valida-
tion on this corpus as well as on a bespoke data set of 500
annotated MEDLINE abstracts. ChemSpot [16], another
publicly available chemical named entity recogniser, is a
hybrid between methods for dictionary matching and
machine learning. For capturing brand names, this tool
uses a lexicon-based approach for matching expressions
against the Joint Chemical Dictionary [17]. For recognising
nomenclature-based expressions, however, it employs a
conditional random fields (CRF) [18] model trained on the
SCAI corpus subset that contains annotations for only
IUPAC names. The developers carried out a comparative
evaluation of ChemSpot and OSCAR on the SCAI pilot
corpus, in which the former was reported to have

outperformed the latter by a margin of 10.8 percentage
points. It is worth noting, however, that both of these tools
have not been comparatively evaluated nor benchmarked
against any large-scale, gold standard corpora.
In aiming to alleviate these issues, the Critical Assess-

ment of Information Extraction in Biology (BioCreative)
initiative organised a track in the Fourth BioCreative Chal-
lenge Evaluation workshop to encourage the text mining
community to develop methods for chemical named entity
recognition, and enable the benchmarking of these meth-
ods against substantial gold standard data [19]. Known as
CHEMDNER, this track publicly released a large corpus of
documents containing manually annotated chemical
named entities. The 10,000 MEDLINE abstracts in the
CHEMDNER corpus [20], which were grouped into dispa-
rate sets for training (3,500), development (3,500) and test-
ing (3,000), came from various chemical subdomains
including pharmacology, medicinal chemistry, pharmacy,
toxicology and organic chemistry. Each annotated chemi-
cal name was labelled with one of the following mention
types: systematic, trivial, family, abbreviation, formula,
identifier, coordination and a catch-all category. The
corpus served as the primary resource for the two
CHEMDNER subtasks, namely, chemical entity mention
recogniton (CEM) and chemical document indexing
(CDI). Whilst the former required participating systems to
return the locations of all chemical mention instances
found within a given document, the latter expects a ranked
listing of unique mentions without any location
information.
Having participated in the CHEMDNER challenge, we

have developed our own chemical named entity recogniser
that obtained top-ranking performance in both the CDI
(1st) and CEM (3rd) tasks. Extending that work, we
describe in this paper the details of our proposed methods
for optimising chemical NER performance. In the next
section, we compare the performance of our methods with
the state of the art and present results of our evaluation
on several corpora. Furthermore, we share details on how
our contributions, publicly available as a service, can be
accessed and utilised by the community. The Experiments
section contains a detailed discussion of our proposed
methods and the experiments we have performed in order
to identify the optimal solution on each of the data sets
considered. We summarise the results of our work in the
Conclusions section. Lastly, we provide some technical
background on the techniques and evaluation metrics we
have used in this study in the Methods section.

Results and discussion
We developed a conditional random fields (CRF)-based
method for chemical named entity recognition whose per-
formance was optimised by (a) the selection of best-suited
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pre-processing components, (b) the incorporation of CRF
features capturing chemistry-specific information, and
(c) the application of post-processing heuristics.
We begin with describing the results from the evaluation

of our method under the settings of the CHEMDNER
challenge. Next, we demonstrate that our method obtains
competitive performance compared to the state of the art.
We then show that a statistical model trained on a large-
scale, gold standard corpus such as CHEMDNER is suita-
ble for recognising chemical names in a wider range of
corpora, on which it consistently outperforms two known
chemical NER tools. Finally, we describe the availability of
our approach as a configurable workflow in the interoper-
able text mining platform Argo [21]. Hereafter, we refer to
our suite of solutions collectively as Chemical Entity
Recogniser, or ChER.

Performance evaluation under the CHEMDNER challenge
settings
The first set of experiments was performed based on the
specifications of the BioCreative IV CHEMDNER track
[19], which our research team participated in. The micro-
averaged results on the CHEMDNER test set obtained by
our solutions using specialised pre-processing analytics
(i.e., Cafetiere Sentence Splitter and OSCAR4 Tokeniser)
are presented in Table 1. These closely approximate the
results which were reported for our submissions during
the official BioCreative challenge evaluation [22], in which
the variant employing knowledge-rich features and abbre-
viation recognition achieved the best performance in both
the CEM and CDI subtasks.

Performance comparison against state-of-the-art methods
We conducted a performance-wise comparison of our
solution, ChER, against previously reported machine learn-
ing-based chemical NER methods, namely, that of Corbett
et al. [15], Rocktäschel et al. [16] and Nobata et al. [23].
To facilitate a fair comparison, we performed a series of
benchmarking tasks under the same experimental settings
used in their previously reported work.
Following Corbett et al. [15], we performed three-fold

cross validation on the SciBorg corpus, taking into

consideration only annotations for mentions of chemical
molecules. As summarised in Table 2, the F1 score
obtained by our methods (79.66%) is slightly lower than
that reported by Corbett et al. (81.20%). We cannot
remark on precision and recall, however, as the authors
did not report them. It is worth noting that their work
became the foundation of what is now known as the
OSCAR chemical NER tool. Although the software is
freely available [24], we have not been able to replicate
their reported results on the SciBorg corpus as the mod-
els bundled with the downloadable release were trained
on documents from the same data set.
Following the experimental setup employed by Rock-

täschel et al. [16] in evaluating their ChemSpot tool, we
trained a CRF model on the SCAI training corpus con-
taining annotations for systematic names. Consequently,
the version of ChER driven by this particular model can
recognise only systematic names, and was thus evaluated
only against the gold standard systematic name annota-
tions in the SCAI pilot corpus of 100 abstracts (SCAI-
100). The results shown in Table 2 indicate that whilst
ChER and the CRF-based component of ChemSpot
achieve similar recall (67.50% and 67.70%, respectively),
the former obtains far more superior precision and F1
score (86.70% and 75.90%) over the latter (57.47% and
62.17%). We note that in conducting this comparison,
we ran ChemSpot [25] on the SCAI-100 corpus our-
selves, enabling its capability to recognise multiple che-
mical name subtypes, in order to segregate recognised
systematic names.
Last in this series of evaluations is the performance-

wise comparison of ChER with MetaboliNER [23], a tool
based on a CRF model that utilised the Chemical
Entities of Biological Interest (ChEBI) [26] and Human
Metabolome (HMDB) [27] databases as dictionaries.
The tools were evaluated on the NaCTeM Metabolites
corpus [28] in a 10-fold cross validation manner [23].
The obtained results, presented in Table 3, indicate that
MetaboliNER achieves higher precision (83.02% vs.
81.42%); however, it is outperformed by our method in
terms of recall and F1 score (79.66% and 80.53% vs.
74.42% and 78.49%).
We surmise that our solution’s superior performance

over the similarly CRF-based ChemSpot and MetaboliNER
tools can be explained by the richer feature set we

Table 1 Performance of ChER under the BioCreative IV
CHEMDNER track setting.

Custom
Features

Post-
processing

CEM CDI

Abbr. Comp. P R F1 P R F1

✓ ✗ ✗ 92.76 81.02 86.49 91.39 85.29 88.23

✓ ✓ ✗ 92.76 81.30 86.65 91.37 85.45 88.31

✓ ✗ ✓ 92.14 81.41 86.44 90.55 85.72 88.07

✓ ✓ ✓ 92.14 81.69 86.60 90.53 85.88 88.14

Key: Abbr. = Abbreviation recognition, Comp. = Chemical composition-based
token relabelling

Table 2 Comparative evaluation of ChER against state-of-
the-art chemical name recognition methods.

SciBorg (chemical molecules) SCAI-100 (systematic names)

P R F1 P R F1

ChER 85.96 74.22 79.66 ChER 86.70 67.50 75.90

OSCAR - - 81.20 ChemSpot 57.47 67.70 62.17

OSCAR’s F1 score was taken from the paper of Corbett et al. [15].
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employed in developing ChER. As described in the Experi-
ments section below, ChER utilises a comprehensive set of
character and word n-grams as well as orthographic
features, which were then augmented with ones which
capture chemical knowledge, e.g., number of chemical
basic segments, dictionary and chemical symbol matches.
Meanwhile, ChemSpot employs only size-two affixes, a
check for leading or trailing whitespace, a quite limited set
of orthographic features and bag-of-words [16]. Metaboli-
NER uses a similar feature set, with the addition of word
shape, part-of-speech tags and dictionary features [23].
Based on the evaluation presented, ChER’s rich feature set
proved to be more informative and powerful over that of
ChemSpot and MetaboliNER.

Performance evaluation on a variety of chemical corpora
As stipulated earlier, one of the barriers to the develop-
ment of chemical named entity recognisers was the lack
of publicly available, wide-coverage, large-scale gold
standard corpora. The public release of the CHEMD-
NER corpus directly alleviates this issue, allowing us to
train our CRF model on a massive number and variety
of learning examples. We argue that a model trained on
the CHEMDNER corpus produces satisfactory NER per-
formance even on documents of different types (e.g.,
patents, DrugBank descriptions) and from various spe-
cialised subject domains (e.g., pharmacology, metabolo-
mics). In validating this, we utilised the CHEMDNER
training and development sets to train CRF models
under the various configurations detailed in the Experi-
ments section. Taking the best performing variant, we
compared its performance with that of OSCAR and
ChemSpot by also running their latest versions
(OSCAR4.1 and ChemSpot 2.0) on each corpus of inter-
est. Across all five corpora we used, ChER consistently
outperformed the other two NER tools, often with a
noticeable margin.
Presented in Table 4 are results of this evaluation

scheme on general chemical corpora. On the SCAI-100
corpus, with all chemical name types taken into consid-
eration, ChER achieved a good balance between precision
and recall, giving an F1 score of 78.27% which is almost
four percentage points higher than that of the second-
best performing ChemSpot. An even larger margin of
about 12 percentage points (also in terms of F1 score)
was obtained by ChER over ChemSpot on the Patents

corpus [29,30]. The relatively low F1 score on this corpus
(64.75%) can be explained by the difference in document
types between the corpus for model training (i.e., scienti-
fic abstracts) and evaluation (i.e., patent applications).
We note that an evaluation on a third chemical corpus,
SciBorg, was not carried out under this scheme. Since
OSCAR was trained on the SciBorg corpus, a compara-
tive evaluation of ChER, OSCAR and ChemSpot on this
data would not have given fair results.
The model trained on CHEMDNER data was proven

suitable even for recognising mentions of drugs, which
comprise a more specific chemical type (Table 5). When
evaluated on each of the Drug-Drug Interaction (DDI)
test [31,32] and Pharmacokinetics (PK) [33,34] corpora,
more than satisfactory F1 scores (≈83%) were obtained.
ChemSpot’s F1 score on the DDI test corpus trails behind
by only two percentage points, but is significantly lower
than ChER’s on the PK corpus with a margin of almost
10 percentage points. Applying the same model to the
NaCTeM Metabolites corpus, however, did not yield
results as satisfactory as those on the drug corpora, with
the highest F1 score being 73.07% (Table 6). This, never-
theless, still indicates a significant advantage over Chem-
Spot, whose F1 score is 8 percentage points behind.
Whilst the model obtained balanced precision and recall

on the chemical corpus SCAI-100 (P = 77.85% vs. R =
78.69%), the suboptimal precision values on the DDI (P =
75.88% vs. R = 92.05%), PK (P = 79.83% vs. R = 88.34%)
and Metabolites (P = 65.08% vs. R = 83.29%) corpora are
noticeable. This drop in precision is to be expected, and
can be explained by the differences between the annota-
tion scopes of the training data, CHEMDNER, and of each
of the latter three evaluation corpora. Both of the DDI and
PK corpora contain only drug name annotations, whilst
only metabolite mentions were annotated in the Metabo-
lites corpus. Whereas the model was trained to recognise

Table 3 Comparative evaluation of ChER against a
state-of-the-art metabolite name recognition method.

NaCTeM Metabolites

P R F1

ChER 81.42 79.66 80.53

MetaboliNER 83.02 74.42 78.49

Table 4 Applicability of ChER with the CHEMDNER model
to other chemical corpora.

SCAI-100 (all names) Patents

P R F1 P R F1

ChER 77.85 78.69 78.27 73.43 57.91 64.75

ChemSpot 76.35 72.55 74.41 67.79 41.97 51.84

OSCAR4 50.88 81.34 62.60 49.90 60.73 54.79

Table 5 Applicability of ChER with the CHEMDNER model
to drug corpora.

DDI test PK

P R F1 P R F1

ChER 75.88 92.05 83.18 79.83 88.34 83.87

ChemSpot 73.09 89.49 80.46 65.29 86.07 74.25

OSCAR4 60.20 85.51 70.66 42.65 81.71 56.04
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all chemical mentions, each of the DDI, PK and Metabo-
lites corpora considers only a subset of them as correct,
leading to an increase in the number of false positives.

Configurable chemical entity recognition workflows in
Argo
In order to facilitate the reproduction of results and
further experimentation, we have made the presented
named entity recognition methods available in our publicly
accessible, Web-based, text mining workbench Argo [35].
The workbench aims to bring text mining to non-techni-
cal audiences by providing a graphical user interface for
building and running custom text-processing applications.
Applications are built in Argo visually as block diagrams
forming processing pipelines, or more generally, work-
flows. Individual blocks in a diagram correspond to
elementary processing components that are selected by
users from the available, ever-growing library of analytics.
The components in the library range from simple data
(de)serialisers to syntactic and semantic analytics to
user-interactive components.
The proposed recogniser is available as a single compo-

nent and exposes multiple configurations to choose from.
Users may select one of chemical, drug or metabolite, as
the model that will be used for the recognition. Additional
options include the disabling of post-processing steps dis-
cussed in the next section.
Figure 1 shows how the chemical entity recogniser

component can be used in Argo workflows. Both work-
flows shown in the figure contain components that
proved to yield the best performance on the CHEMD-
NER corpus. The left-hand-side workflow is set up to
process PubMed articles (supplied by specifying abstract
identifiers in the reader’s configuration) and save the
result of processing (recognised chemical names) in an
RDF file. The right-hand-side workflow is a sample set
up for experimenting with components available in
Argo. The ultimate component in this workflow, Refer-
ence Evaluator, reports evaluation metrics based on two
inputs: the reference input, which in this workflow
comes directly from the CHEMDNER corpus reader
and contains golden annotations, and the other branch
in the workflow that attempts to reproduce the annota-
tions in the input corpus. Users may experiment with
this workflow by replacing the components (specifically

the preprocessing components) with other, similar-
purpose analytics available in Argo.

Experiments
The following is a detailed description of our proposed
methods and the experiments carried out to facilitate
the identification of the most optimal chemical NER
solutions.

Selection of pre-processing analytics
Coming from a specialised domain, chemical literature
exhibits unique properties, e.g., unusually long names,
which are not typically encountered in documents from
other subject domains. Whilst pre-processing steps to
text mining have not been given much attention, we
argue that the selection of suitable analytics for prepro-
cessing chemical documents brings about a significant
impact on NER performance, inspired by the findings of
a prior exploratory work [36]. This is especially relevant
in our case where features employed in training our
CRF models were extracted at the basic level of tokens.
In this work, we focus on the two pre-processing tasks
of sentence boundary detection and tokenisation. For
each of these, specialised and non-specialised implemen-
tations were explored.

Table 6 Applicability of ChER with the CHEMDNER model
to the NaCTeM Metabolites corpus.

NaCTeM Metabolites

P R F1

ChER 65.08 83.29 73.07

ChemSpot 58.02 73.99 65.04

OSCAR4 35.37 84.18 49.81

Figure 1 The chemical entity recogniser in Argo. The proposed
chemical entity recogniser is available as a processing component
in the Web-based, text mining workbench Argo. The component is
shown here as part of two individual workflows. The left-hand-side
workflow produces an RDF file containing annotated chemicals in
user-specified PubMed abstracts. The right-hand-side workflow
reports effectiveness metrics for the CHEMDNER corpus.
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Sentence splitters
In segmenting documents into sentences, two heuristics-
based tools, i.e., the LingPipe Indo-European sentence
model [37] and NaCTeM’s Cafetiere sentence splitter [38],
were individually employed in our experiments. Whilst the
former was tuned for documents written in general lan-
guage, the latter was designed specifically for scientific
text, having been enriched with specialised rules that, for
instance, account for the possibility of sentences beginning
with lower-case characters, as with protein names,
e.g., p53.
Tokenisers
For the decomposition of each sentence into tokens, we
explored each of the tokenisers built into the GENIA
tagger [39] and the OSCAR4 NER tool [40]. The former
employs a statistical model trained on biomedical docu-
ments, whilst the latter applies segmentation rules speci-
fically tuned for chemical texts. The OSCAR 4 tokeniser,
for example, is capable of keeping intact long chemical
names (e.g., 4,9-Diazadodecane-1,12-diamine).

Model training using a chemical knowledge-rich feature
set
In building a model, we employed NERsuite, a combina-
tion of tools that include a CRF implementation [41]
and utilities for embedding custom dictionary features.
The following sections describe the features we used
with this tool. They include basic, weakly chemical-indi-
cative features and chemical-specific features.
Weakly chemical-indicative features
By default, NERsuite extracts the character and word
n-gram features presented in Table 7. To exemplify, we
provide the tokenised sentence in Table 8 as sample
input, with GSK214a as the active token, i.e., the token
currently under consideration. We note that the extrac-
tion of the word n-grams was done within a distance of
two from the active token. Aside from these features, a

token’s symbol-level composition is also captured by
means of the orthographic features listed in Table 9.
We have augmented this set with the following:
Occurrence of Greek characters. This feature reflects

an observation that several chemical names contain
Greek characters, e.g., (S)-a,ε-diaminohexonoic acid.
Word shape. The active token is transformed to a

representation in which numericals are converted to the
‘0’ characters, uppercase letters to the ‘A’ characters,
lowercase letters to the ‘a’ characters and everything else
to the ‘_’ characters. Full and brief word shape variants
were extracted for each token. In the former, each char-
acter in the resulting representation is retained, whereas
consecutive similar character types are collapsed into
one in the latter. For example, the name 10-amino-20
(S)-camptothecin would have 00_aaaaa_00_A_ _aaaaaa
aaaaaa and 0_a_0_A_a as its full and brief word shapes,
respectively.
Chemical dictionary matches
Recognising that the occurrence of a token in an expert-
curated dictionary indicates a high likelihood of it being
a chemical name constituent, we utilised matches
between token surface forms in text and entries in well-
known chemical resources. Five dictionaries were com-
piled based on the chemical names and synonyms avail-
able in the Chemical Entities of Biological Interest
(ChEBI) database [26], DrugBank [42], the Comparative
Toxicogenomics Database (CTD) [43], PubChem Com-
pound [44] and the Joint Chemical Dictionary (Jochem)
[17]. The dictionary tools available in the NERsuite
package were employed in the compilation and subse-
quent application of these dictionaries. We configured
the compiler utility to generate a compiled dictionary
whose entries were normalised by the conversion of
alphabetic characters to their lower-case equivalents,
numericals to the ‘0’ characters and special characters/
punctuation to the ‘_’ characters. In the matching phase,

Table 7 Character and word n-gram features extracted by NERsuite by default.

Feature Brief description Sample features (bigrams)

Character
n-grams

the set of all possible combinations of a token’s consecutive characters, taken n at a
time (n = 2, 3, 4)

{GS}, {SK}, {K2}, {21}, {14}, {4a}

Token n-
grams

unigrams and bigrams of surface forms; unigrams and bigrams of normalised surface
forms where numbers numbers are replaced with ‘0’s, the consecutive instances of
which are compressed

{It, attenuated}, {attenuated, GSK214a}; {Aa,
aaaaaaaaaa}, {aaaaaaaaaa, AAA000a}

Lemma n-
grams

unigrams and bigrams of lemmatised surface forms {It, attenuate}, {attenuate, GSK214a}

POS tag n-
grams

unigrams and bigrams of part-of-speech (POS) tags {PRP, VBD}, {VBD, NN},

Lemma &
POS tag
n-grams

unigrams and bigrams of lemmatised forms combined with POS tags {It:PRP, attenuate:VBD}, {attenuate:VBD, GSK214a:
NN}

Chunk
information

chunk tag of current token; surface form of the enclosing chunk’s {B-NP}; {gestation}
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the dictionary tagging tool performs the same conver-
sion step on input text and then captures longest possi-
ble matches between the normalised token sequences
and dictionary entries. The dictionary tagging results,
exemplified in Table 10, were encoded in the begin-
inside-outside (BIO) format. For an active token, uni-
grams and bigrams formed based on the BIO labels
(within a distance of 2), as well as their combination
with the corresponding surface forms, were generated as
features. The token starch, for instance, would have the
following as some of its CTD dictionary features: {on:O,
hydroxyethyl:B}, {hydroxyethyl:B, starch:I} as surface
form and dictionary label bigrams, and {O, B}, {B, I} as
dictionary label bigrams.

Chemical affix matches
Many of the chemical names, especially nomenclature-
based ones, contain chemical affixes (i.e., prefixes and
suffixes). We attempt to capture this property by match-
ing tokens in text against lists of commonly used chemi-
cal prefixes and suffixes whose lengths range from two
to four. Shown in Table 11 is a sequence of tokens
matched against our compiled affix lists, which are pro-
vided in an additional file (see Additional file 1). The
feature set is augmented with the resulting affix
matches.
Number of chemical basic segments
Nomenclature-based chemical expressions, e.g., systema-
tic and semi-systematic names, are formed from combi-
nations of chemical segments. These segments are
documented in the American Chemical Society’s Regis-
try File Basic Name Segment Dictionary, which contains
a total of 3,307 entries as well as a description of
the procedure for decomposing a name into its basic
segments [45]. Following this algorithm, we process the
surface form of each token to determine the number of
constituent chemical basic segments. Table 12 lists the
basic chemical segments found within the given expres-
sions. We note that the number of basic segments also
includes fragments which remain unmatched against the
segment dictionary. For instance, only the fragments
methyl, ergo and novi in the name methylergonovine can
be found by the procedure; however, the remaining
fragment ne was also counted as a basic segment.
Chemical symbol matches
In order to account for chemical element symbols,
which are not always covered by our five chosen dic-
tionaries, we matched tokens in text against a list of
symbols which occur in the periodic table of elements.
This list has been provided in an additional file (see
Additional file 2).

Heuristics-based post-processing
Two CRF models were initially learned from the
CHEMDNER training corpus: one with only the default
features and another with our engineered ones. For each
input sentence, each of the models automatically gener-
ates a label sequence in BIO format, together with the
confidence values with which the labels were assigned.
Upon individually applying the models on the CHEMD-
NER development set, we obtained the results presented
in Table 13. Whilst the performance boost brought
about by our customised features was encouraging, the
suboptimal recall prompted us to introduce post-proces-
sing steps for reducing the number of false negatives.
By inspecting the distribution of false negatives accord-

ing to chemical mention types (provided in Table 14), we
identified the most prevalent problematic cases which we
addressed with two rule-based post-processing steps.

Table 8 Example of a sentence tokenised and labelled
with part-of-speech and chunk tags.

Surface form Lemma Part-of-speech tag Chunk tag

It It PRP B-NP

attenuated attenuate VBD B-VP

GSK214a GSK214a NN B-NP

-induced -induced JJ I-NP

gestation gestation NN I-NP

in in IN B-PP

rats rat NN B-NP

. . . O

Table 9 Orthographic features extracted by NERsuite by
default.

Feature Example

Initial letter is in uppercase Boc-L-leucine

Contains only digits 206553

Contains digits 5-HTP

Contains only alphanumeric characters HClO4

Contains only uppercase letters and digits AFB1

Contains only uppercase letters NO

Does not contain any lowercase letters SKF81297

Contains non-initial uppercase letters PbS

Contains two consecutive uppercase letters PAHs

Has a Greek letter name as a substring alpha-ketoacid

Contains a comma 3,14-dibromo

Contains a full stop In(0.2)Ga(0.8)As

Contains a hyphen HP-b-CD
Contains a forward slash (E/Z)-Goniothalamin

Contains an opening square bracket [(14)C]pazopanib

Contains a closing square bracket pyrido[3,2-d]pyrimidines

Contains an opening parenthesis I3 (-)

Contains a closing parenthesis Fe(C10 H15)2

Contains a semi-colon R = Me, Et; X = O, S;

Contains a percentage symbol 85%

Contains an apostrophe 5-methyl-2’-deoxycytidine
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Abbreviation recognition
To alleviate the problem of missed abbreviations which
account for about 30% of the false negatives, we intro-
duced an abbreviation recognition step which performs
the following checks given the last token ti of a named
entity e recognised by the CRF model:

• ti+1 is the opening parenthesis ‘(’,
• ti+3 is the closing parenthesis ‘)’, and
• ti+2 was recognised as a non-chemical token by the
CRF model.

Token ti+2 becomes a candidate abbreviation for e if
all three conditions hold true. As a verification step, a
procedure [46] for checking the sequential occurrence
of each character in ti+2 within the entity e is performed.
Upon successful verification, all instances of token ti+2
within the document are relabelled as chemical tokens.
In this manner, for instance, the chemical abbreviation
STMP missed by the CRF model will be captured from
the phrase, “... was phosphorylated with sodium

trimetaphosphate (STMP) at ambient temperature...”
assuming that sodium trimetaphosphate was recognised
by the model as a chemical entity.
Chemical composition-based token relabelling
About 42% of the false negatives correspond to missed
family, trivial and systematic names, all of which typi-
cally contain chemical segments. In attempting to
increase recall for these mention types, we developed a
procedure that analyses tokens which were labelled by
the CRF model as non-chemical with confidence values
lower than a chosen threshold t1. These tokens are of
interest as the relatively low confidence values attached
to them indicate their likelihood of being chemical
name constituents. This likelihood was further verified
by the computation of a token’s chemical segment com-
position, given by the ratio of the number of characters
comprising segments matched against the chemical
basic segment dictionary to the total number of charac-
ters in the token. Sample tokens and the ratios calcu-
lated for them are provided in Table 15. The procedure
relabels a token of interest as chemical if its chemical
segment composition is greater than a chosen thresh-
old t2.
Different combinations of the thresholds t1 and t2 were

investigated to establish the most optimal values. After a
few exploratory runs, we decided to restrict our search

Table 10 Example of a token sequence tagged with matches against chemical dictionaries.

Token Normal form ChEBI DrugBank CTD PubChem Jochem

For for O O O O O

the the O O O O O

preparation preparation O O O O O

of of O O O O O

hydrogel hydrogel O O B O B

microspheres microsphere O O O O O

based base O O O O O

on on O O O O O

hydroxyethyl hydroxyethyl O O B O B

starch starch B O I O I

- _ B O O O O

hydroxyethyl hydroxyethyl I O B O B

methacrylate methacrylate I O I B I

_ O O O O O

(HES-HEMA) hes_hema O O O O O

_ O O O O O

Table 11 Example of a token sequence tagged with
matches against our affix lists.

Prefixes Suffixes

Token size 2 size 3 size 4 size 2 size 3 size 4

Incubation O O O O O O

with O O O O O O

diisopropyl di O O yl O O

fluorophosphate O O fluo O ate O

and O O O O O O

bis-(4-nitrophenyl) O O O O O O

phosphate O O O O ate O

Table 12 Examples of chemical names with
corresponding basic segments.

Token Basic segments No. of basic segments

10-acetoxyactinidine 10, acet, oxy, actin, idine 5

methylergonovine methyl, ergo, novi, ne 4

interleukin-2 interleukin, 2 2
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space to the range [0.91, 0.99] for t1 and to [0.5, 0.9] for
t2. These were exhaustively probed in increments of 0.01
and 0.1 for t1 and t2, respectively, by means of evaluation
on the CHEMDNER development data set. Results
showed that recall is optimal with t1 = 0.96 and t2 = 0.5,
and that optimal precision and F1 scores are obtained
with t1 = 0.93 and t2 = 0.9. In the rest of the experiments
presented in this paper, we used the latter threshold
settings.

Evaluation
With the proposed extensions presented above, chemical
NER can be optimised according to the following five
dimensions:

1 Pre-processing: Sentence splitting (LingPipe Indo-
European model or Cafetiere)
2 Pre-processing: Tokenisation (GENIA or OSCAR4)
3 Model training: Knowledge-rich features (include
or exclude)

4 Post-processing: Abbreviation recognition (enable
or disable)
5 Post-processing: Chemical composition-based
token relabelling (enable or disable)

Out of the possible combinations from these five dimen-
sions, we selected 20 for each of our experiments, enabling
abbreviation recognition and chemical composition-based
token relabelling only when knowledge-rich features were
employed in model training. This comprehensive evalua-
tion was carried out with the utilisation of the CHEMD-
NER, SCAI and SciBorg corpora, as well as the following
document collections:
Patents [30]. This corpus is the outcome of the colla-

borative effort of curators from the European Patent
Office and the ChEBI project who annotated all men-
tions of chemical entities in 40 patent application
documents [29].
Drug-Drug Interaction (DDI) [32]. Consisting of 233

MEDLINE abstracts and 792 textual descriptions from
the DrugBank database, this corpus contains annotated
drug mentions pertaining to generic names, brands,
groups (e.g., antibiotic) and non-human applications (e.
g., pesticide) [31]. Released as a resource for the SemE-
val 2013 DDI Extraction task [47], the corpus is divided
into subsets for training and testing.
Pharmacokinetics (PK) [34]. Also containing drug

name annotations, this corpus is comprised of a selec-
tion of 541 MEDLINE abstracts on the topics of clinical
pharmacokinetics and phamacogenetics as well as in
vitro and in vivo drug-drug interactions [33].
NaCTeM Metabolites [28]. This document collection

contains 296 MEDLINE abstracts with annotations for
metabolite and enzyme names [23]. For our evaluation,
only metabolite name annotations were taken into
consideration.
Table 16 summarises the results of the best perform-

ing ChER combination in each of the experiments we
conducted. For the purpose of comparison, we have also
provided results obtained by our baseline, i.e., the var-
iant of the named entity recogniser that employs non-
specialised pre-processing analytics (i.e., the LingPipe
Indo-European sentence model and the GENIA tokeni-
ser) and none of the knowledge-rich features and post-
processing heuristics. It can be observed that in majority
of the nine sets of experiments in this table, the optimal
combination for ChER incorporates the use of specia-
lised pre-processing tools, feature set enrichment and
abbreviation recognition. The lack of a unique combina-
tion yielding optimal results across all evaluation data
sets can be explained by the differences of the corpora
in terms of the guidelines which were adhered to during
their annotation. Enabling chemical composition-based
token relabelling brought about improved F1 scores on

Table 13 Performance of models learned from the
CHEMDNER training set when evaluated on the
development set.

Macro Micro

P R F1 P R F1

Default features 86.66 79.01 80.89 88.55 76.82 82.27

Enriched features 88.26 81.11 82.86 89.87 78.99 84.07

Margin +1.6 +2.1 +1.97 +1.32 +2.17 +1.8

Table 14 Distribution (according to chemical subtype) of
the instances incorrectly rejected by the model trained
with enriched features.

Subtype Frequency Percentage

Abbreviation 1,882 30.32%

Formula 1,291 20.80%

Family 979 15.77%

Trivial 926 14.92%

Systematic 693 11.16%

Identifier 293 4.72%

Multiple 118 1.90%

No class 25 0.40%

Table 15 Sample tokens and their chemical segment
composition.

Token initially recognised as non-
chemical

Chemical basic
segments

Ratio

polycalcium poly, calcium 1.0

2-methoxyestradiol meth, oxy, estra, di, ol 0.89

palytoxin toxin 0.56
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the SciBorg, Patents, Metabolites and DDI corpora
(owing to increased recall), but resulted in lower values
of F1 on the CHEMDNER, SCAI and PK corpora (due
to decreased precision). This post-processing step, for
example, captured mentions of anions which were con-
sidered as chemical names in the SciBorg and Metabo-
lites corpora (e.g., silicate, glutamate, succinate) but
were counted as false positives by the SCAI corpus.
Similarly, some chemical umbrella terms, such as esters
and nucleotides, captured by this step were treated as
true positives under evaluation against the Patents cor-
pus, but stand for false positives in the CHEMDNER,
SCAI and PK corpora. Another source of discrepancy
are chemical named entities which have ambiguous
meanings, that this rule-based step is oblivious to. Iron
as a metallic element, for example, was not annotated in
CHEMDNER and SCAI, but is considered a drug (i.e., a
vitamin) in the DDI corpus. Meanwhile, abbreviation
recognition boosted ChER’s performance on all corpora
except for the DDI corpus, where no impact was
observed due to it not having been annotated with
abbreviation information.
The results of all 20 combinations, in each of the nine

experimental set-ups described in Table 16, are provided
in Additional file 3. The impact on performance of indi-
vidually selecting a particular pre-processing analytic or
enabling a specific post-processing heuristic can be
easily observed from this file. For example, on the

CHEMDNER test data, the ChER variant that employs
Cafetiere Sentence Splitter, OSCAR4 Tokeniser, knowl-
edge-rich features and abbreviation recognition for the
CEM task obtains an F1 score of 86.65%. Replacing
OSCAR4 Tokeniser with GENIA Tokeniser, however,
leads to a 6-percentage point drop in F1 score (80.1%).

Conclusions
The exhaustive evaluation of our proposed tool ChER
shows that in majority of cases the most optimal variant
incorporates specialised pre-processing analytics (specifi-
cally, the Cafetiere sentence splitter and OSCAR4 toke-
niser), knowledge-rich machine-learning features and a
post-processing step for abbreviation recognition. In
each experiment that we performed, comparison of the
optimal combination with the baseline (i.e., the variant
of the NER without any of our proposed additions) indi-
cates noticeably better performance of the former over
the latter. When compared to state-of-the-art methods,
our solutions obtain competitive, if not superior,
performance.
ChER with a statistical model learned from the training

and development sets of the CHEMDNER corpus proved
to achieve a satisfactory performance on a variety of cor-
pora, regardless of document type and chemical subdo-
main, consistently outperforming the state of the art.
As our solutions are all accessible and usable via the

Argo text mining platform, interested parties can replicate

Table 16 Summary of ChER’s performance under the CHEMDNER track setting (set 1), under similar experimental
settings as state-of-the-art methods (sets 2-4), and when applied to various corpora (sets 5-9).

Data Pre-processing Cust. Post-processing Micro-averages

Training Test Splitter Tokeniser Feats. Abbr. Comp. P R F1

1 CHEMDNER CHEMDNER LingPipe GENIA ✗ ✗ ✗ 88.87 70.95 78.91

training & dev. test Cafetiere OSCAR4 ✓ ✓ ✓ 92.76 81.30 86.65

2 SciBorg (CM):3-fold CV LingPipe GENIA ✗ ✗ ✗ 80.44 55.16 65.45

Cafetiere OSCAR4 ✓ ✓ ✓ 85.96 74.22 79.66

3 SCAI-IUPAC SCAI-100 LingPipe GENIA ✗ ✗ ✗ 84.78 66.87 74.77

training (IUPAC) Cafetiere GENIA ✓ ✓ ✓ 86.70 67.50 75.90

4 NaCTeM Metabolites:10-fold CV LingPipe GENIA ✗ ✗ ✗ 81.72 64.49 72.09

Cafetiere OSCAR4 ✓ ✓ ✓ 81.42 79.66 80.53

5 CHEMDNER SCAI-100 LingPipe GENIA ✗ ✗ ✗ 72.56 66.00 69.13

training & dev. (All) Cafetiere OSCAR4 ✓ ✓ ✓ 77.85 78.69 78.27

6 CHEMDNER Patents LingPipe GENIA ✗ ✗ ✗ 72.66 52.97 61.27

training & dev. Cafetiere OSCAR4 ✓ ✓ ✓ 73.43 57.91 64.75

7 CHEMDNER DDI LingPipe GENIA ✗ ✗ ✗ 76.52 75.00 75.75

training & dev. test Cafetiere OSCAR4 ✓ • ✓ 75.88 92.05 83.18

8 CHEMDNER PK LingPipe GENIA ✗ ✗ ✗ 79.29 84.66 81.89

training & dev. Cafetiere GENIA ✓ ✓ ✓ 79.83 88.34 83.87

9 CHEMDNER NaCTeM LingPipe GENIA ✗ ✗ ✗ 63.57 71.63 67.36

training & dev. Metabolites Cafetiere OSCAR4 ✓ ✓ ✓ 65.08 83.29 73.07

The first row in each set corresponds to the baseline. Key: Cust. Feats. = Custom Features, Abbr. = Abbreviation recognition, Comp. = Chemical composition-
based token relabelling; ✓ = enabled, ✗ = disabled, • = enabling or disabling makes no difference in performance.
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our results, if not introduce further improvements to our
solution by exploring other analytics. Moreover, owing to
the interoperable nature of Argo, our chemical entity
recogniser, ChER, does not impose any restrictions in
terms of input and output formats. It can be easily inte-
grated as a semantic analytic in other text mining tasks
such as document indexing and entity relation extraction.

Methods
Sequence labelling
In addressing the problem of named entity recognition, we
employed a sequence labelling approach which involves
the automatic assignment of labels to a given sequence of
items, i.e., the ordered tokens in a sentence. The set of
possible labels was defined by our chosen encoding
scheme, the begin-inside-outside (BIO) representation.
This scheme uses the labels ‘B’ and ‘I’ to indicate the
beginning and continuing tokens of a chemical name,
respectively, and ‘O’ to mark tokens which are not part of
any chemical name. To transform the documents into this
representation, the following pre-processing pipeline was
applied on raw input text:
Sentence splitting
Text contained in each document was segmented by
means of a sentence splitter. As described previously,
the LingPipe Indo-European sentence model and Cafe-
tiere sentence splitter were individually applied in this
work.
Tokenisation
In segmenting each sentence into tokens, we utilised
each of the GENIA and OSCAR4 tokenisers in our
experiments.
Part-of-speech and chunk tagging. Each resulting

token is automatically lemmatised and assigned tags
which correspond to its part-of-speech (POS) and
enclosing chunk. This information was supplied by the
GENIA Tagger [39] which employs maximum entropy
models in analysing both general and biomedical-
domain documents. Shown in Table 8 are the lemmata,
POS and chunk tags assigned to the tokens of the given
sentence.
Our sequence labelling approach was realised as an

application of the machine learning-based conditional
random fields algorithm (CRFs). Given an item
sequence, a CRF model predicts the most probable label
sequence based on functions capturing characteristics of
the current token and its context. These functions, typi-
cally referred to as features (discussed in detail in the
Experiments section), are employed in both training and
prediction phases. We built our named entity recogni-
sers on top of the NERsuite package [48], an implemen-
tation of CRFs with a built-in extractor of features
typically used in biomedical NER.

Evaluation metrics
We reported the effectiveness of our methods with the
commonly used information retrieval metrics, namely,
precision (P), recall (R) and F1 score defined as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 =

2 ∗ P ∗ R

P + R
,

where TP, FP and FN are the numbers of, respectively,
true positive, false positive and false negative recogni-
tions. Intuitively, precision is the fraction of recognised
entities that are correct, recall is the fraction of manu-
ally annotated entities that were recognised, and F1 is a
balanced harmonic mean between the two. F1 represents
a more conservative metric than the arithmetic average.
We note that all of the results reported in this paper,

including those of the other chemical NER tools, were
obtained using the evaluation tool provided by the Bio-
Creative organisers [49]. The tool calculates the macro-
and micro-averaged values of the aforementioned metrics.

Additional material

Additional file 1: List of chemical affixes. A listing of the most
common chemical prefixes and suffixes.

Additional file 2: List of chemical element symbols. A listing of the
chemical element symbols.

Additional file 3: Chemical Entity Recogniser (ChER) Experiments.
Tables containing the results of nine experiments, each comparing 20
combinations of the proposed methods.
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