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1 Introduction

To obtain a (1, 0) supersymmetric compactification of the heterotic string to six dimensions,

one should choose an internal CFT with (0,4) supersymmetry and right-moving central

charge cR = 6. In the realm of geometry, such CFTs arise as non-linear sigma models with

K3 target. In order to satisfy the Bianchi identify for the three-form field strength H of

the heterotic string

dH = Tr(R ∧R) − Tr(F ∧ F ) , (1.1)

one should further embed 24 instantons into the E8 × E8 gauge group. If one chooses

bundles V1,2 of rank r1,2 in the two E8s (which should be stable and holomorphic, and have
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vanishing first Chern class c1 = 0, in the simplest case), then the left-moving fermions in

the sigma model couple to the gauge connections on these bundles, and cL = 4 + r1 + r2.

The explicit construction of such (0,4) CFTs is a difficult task, and computations of

observables in such intricate theories are in general complicated to perform. Ideally, one

would like to be able to compute the partition function of the internal conformal field

theory. But more generally, one has to settle for obtaining coarser index information. One

such compromise is given by the elliptic genus,

Z(τ, z) = Tr(−1)F yJLqL0qL0 , y = e2πiz, q = e2πiτ . (1.2)

This is a graded trace over the Hilbert space of the left movers, containing further infor-

mation about quantum numbers under a left-moving U(1) current algebra whose generator

is JL.

In this paper, our focus will be on explicit examples of (0,4) models and their twining

genera, which are close relatives of the elliptic genus. They can be defined as follows.

Consider a (0,4) theory with discrete symmetry g. Then, one can modify (1.2) to

Zg(τ, z) = Tr(−1)F g yJLqL0qL0 , (1.3)

that is, one can take the trace with an insertion of the action of g on the physical

states.

We will construct (0,4) models as gauged linear sigma models with K3 target. The

basic ideas involved in constructing such sigma models with Calabi-Yau target were devel-

oped in the beautiful paper [1], and the extension to (0,2) models was discussed in detail

in [2]. As (0,4) models are a simpler subset of (0,2) models, our models will be simple

examples of the constructions in [2].

We will compute the twining genera by using the techniques of localization. Localiza-

tion was recently used to give a very explicit formula for the elliptic genus of linear sigma

models with rank one gauge groups in [3], with an extension to higher ranks appearing

in [4]; a small modification of that formula suffices to compute the twining genera (1.3).

Earlier results on the elliptic genera of (0,2) gauged linear sigma models appeared in [5],

which also anticipated (without derivation) aspects of the residue formula of [3].

While one justification for computing the observables (1.3) is that they contain valuable

information about the spectrum of an interacting conformal field theory, we had a more

specific motivation for undertaking this study. There is a Mathieu moonshine relating the

(4,4) sigma models with K3 target to the Mathieu group M24 [6]. The key first piece of

evidence for this moonshine was a decomposition of the coefficients of the expansion of

the elliptic genus of K3 in N = 4 characters, in terms of dimensions of representations of

M24. Given such a decomposition, one can make predictions for the twining genera (1.3)

for the (4,4) theories, if one inserts any element of M24. By finding explicit realizations

of symmetries of K3 sigma models, and computing (1.3) explicitly, one can check whether

these symmetries correspond to (conjugacy classes of) elements of the hypothetical M24.

Such checks were carried out in [7–10] with impressive results. The existence of a graded

M24 module with the desired properties has since been proved at a rigorous level [11].
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Possible extensions of this moonshine to theories with only half as much supersymme-

try, including (0,4) heterotic string compactifications, were discussed in [12]. As a logical

extension of that work, it is desirable to find explicit symmetries of (0,4) K3 conformal

field theories and check if the twining genera (1.3) match with those of suitable M24 conju-

gacy classes. This note, as well as the companion [13] to [12] which studies twining genera

of (0,4) supersymmetric K3 orbifold conformal field theories, will present examples where

exactly such matching can be seen.

2 Some simple (0,4) gauged linear sigma models

2.1 Basic multiplets and terms in the action

We will write down (0,4) linear sigma models by working in (0,2) superspace and using

vector bundles constructed as the cohomology of an exact sequence, as in [2]. The enhanced

worldsheet supersymmetry is not manifest, but should be expected to emerge in the IR on

general grounds when we construct models which have a large-radius interpretation as K3

sigma models.

The (0,2) multiplets we use are as follows (see [2, 14] for more discussion). (0,2)

superspace has coordinates (z, z̄, θ+, θ−) (so ± here on the Grassman coordinates denotes

U(1) charge, not chirality). The spinor superderivatives are

D± =
∂

∂θ± + θ∓∂z̄ . (2.1)

Chiral superfields Φ satisfy

D+Φ = 0 (2.2)

and have a component expansion

Φ = φ+ θ−ψ + θ−θ+∂z̄φ (2.3)

with ψ a right-moving fermion. Fermi superfields Λ also satisfy D̄+Λ = 0, but have

component expansion

Λ = λ+ θ−`+ θ−θ+∂z̄λ (2.4)

instead, with λ a left-moving fermion and ` an auxiliary field.

We will be considering (0,2) gauge theories with U(1) gauge group, so we also need to

discuss the (0,2) gauge multiplet. It consists of a pair of superfields V,A whose expansion,

in Wess-Zumino gauge, is given by

V = θ−θ+ā

A = a+ θ+α− θ−ᾱ+
1

2
θ−θ+D (2.5)

with a, ā the left/right moving pieces of the gauge field, α, ᾱ left-moving gauginos, and D

an auxiliary field. The field strength supermultiplets are

F = −α+ θ−(D + f) − θ−θ+∂z̄α

F = −ᾱ+ θ+(D − f) + θ−θ+∂z̄α (2.6)

– 3 –



J
H
E
P
0
4
(
2
0
1
4
)
0
4
8

where

f = 2(∂zā− ∂z̄a) . (2.7)

The basic terms which appear in a supersymmetric action will be the following. A

gauge invariant kinetic term for a charged chiral multiplet Φ with charge Q is

SΦ =

∫
d2z(∂z −Qa)φ̄(∂z̄ +Qā)φ+ (∂z̄ −Qā)φ̄(∂z +Qa)φ

+2ψ̄(∂z +Qa)ψ +Q(ᾱψ̄φ− αφφ̄) −QDφ̄φ , (2.8)

while a gauge invariant kinetic term for a charged Fermi multiplet Λ of charge Q is

Sλ =

∫
d2z2λ̄(∂z̄ +Qā)λ− ¯̀̀ . (2.9)

The gauge kinetic term is

Sgauge = − 1

2e2

∫
d2zd2θFF

=
1

2e2

∫
d2z(f2 −D2 + 2α∂z̄ᾱ) . (2.10)

The Fayet-Iliopoulos D-term and θ angle are

SD = r

∫
d2zD − i

θ

2π

∫
d2zf (2.11)

(where t = θ
2π + ir plays the role of a Kähler parameter in large radius geometric phases

of the theories to come). The (0,2) superpotential takes the form

SW =

∫
d2z dθ−ΛF (Φ) + h.c.

=

∫
d2z(`F (φ) − λ

∂F

∂φ
ψ) + h.c. . (2.12)

Here, F needs to be chosen to be a homogeneous polynomial of the appropriate degree in

the charged field Φ so that (2.12) is gauge invariant.

2.2 The class of models of interest

Our interest is to describe stable, holomorphic vector bundles V with c1(V ) = 0 and

c2(V ) = c2(TM) over K3 surfacesM . A simple class of models which admits a gauged linear

sigma model description is the following. We choose for M the Calabi-Yau hypersurface in

the WP3 with weights wi (i = 1, . . . , 4), described by the equation

W (φi) = 0 ⊂ WP3
w1,...,w4

. (2.13)

We define V as the cohomology of the exact sequence

0 → V → ⊕aO(na)
⊗Fa(φ)→ O(m) → 0 . (2.14)
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Field Gauge charge

Φi wi

P −m
Λa na

Γ −d

Table 1. Field content of our (0,2) sigma models

The conditions that c1(TM) = c1(V ) = 0 and c2(TM) = c2(V ) are captured by the

Diophantine equations ∑
i

wi = d,
∑

a

na = m,

m2 −
∑

a

n2
a = d2 −

∑
i

w2
i , (2.15)

with d being the degree of the defining polynomial W (φ) of the K3 surface; these equations

follow simply from the adjunction formula for Chern classes. The second equation in (2.15)

just imposes the requirement of worldsheet gauge anomaly cancellation for the abelian

gauge field.

These theories can be represented as gauged linear sigma models in the following way.

Let us consider the (0,2) supersymmetric abelian gauge theory with the matter content

shown in table 1.

Φi, P are (0,2) chiral multiplets, while Λa and Γ are Fermi multiplets. For our (0,2)

superpotential we choose ∫
d2z dθ−(ΓW (Φ) + PΛaFa(Φ)) + h.c. (2.16)

with W , Fa coinciding with the data in the definition of the K3 hypersurface and the

bundle V above. One can verify, as in [2], that in the limit of large r, this theory flows

to the sigma model governed by the geometric objects (2.13) and (2.14), with the scalars

living on the hypersurface (2.13) while the left-moving fermions transform as sections of

the bundle (2.14). Of course, as one varies the Fayet-Iliopoulos parameters in such a gauge

theory, other interesting phases can arise (with Landau-Ginzburg orbifold phases being a

prototypical such phase).

We will need to generalize this construction in a trivial way, in order to capture the

geometry of two non-trivial bundles V1,2 which we embed into the two E8s. The appropriate

generalization is to introduce two chiral analogues of the P field P 1,2, with charges m1,2,

and two sets of Fermi multipets Λa
1 and Λα

2 of charges na and qα, with a = 1, . . . , r1 + 1

and α = 1, . . . , r2 + 1. The superpotential is now∫
d2z dθ−(ΓW (φ) + P1Λa

1Fa(Φ) + P2Λα
2Gα(Φ)) , (2.17)
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with Fa and Gα defining the bundles V1,2 through exact sequences as in (2.14). The

constraints on the Chern classes now become

m1 =
∑

na, m2 =
∑

qα

d2 −
∑

w2
i = (m2

1 −
∑

n2
a) + (m2

2 −
∑

q2α) . (2.18)

Again, the second equation in (2.18) is required for gauge anomaly cancellation, and is

interpreted in space-time as implementing the condition

c2(TM) = c2(V1) + c2(V2) , (2.19)

which is required to satisfy the Bianchi identity (1.1).

Intuitively, the equation (2.19) means that in perturbative supersymmetric heterotic

models on K3, one should choose non-negative integers n(1), n(2) with

n(1) + n(2) = 24 , (2.20)

and place n(1) and n(2) gauge instantons in the two E8s. Our goal in the next section will

be to show that in a variety of examples constructed as above, reflecting distinct choices of

n1,2, one can find (0,4) sigma models with discrete symmetries g whose twining genera (1.3)

are consistent with the properties expected from Mathieu moonshine for (0,4) models. This

strengthens the case made in [12] that moonshine extends to a portion of the web of 4d

N = 2 (or 6d N = 1) supersymmetric heterotic string theories, as well as their type II (or

F-theory) Calabi-Yau duals.

2.3 Specific examples of models and discrete symmetries

We will focus on four classes of specific models with different values of n(1) and n(2), but

it should be clear that many other models exist and could be fruitfully analyzed in this

way. In each case, we just discuss some simple symmetries which arise for easy choices of

the defining data; we are not exhaustive. We label the models by the instanton numbers

(n(1), n(2)) chosen in each. The four models we will study are:

2.3.1 Model 1: a (24,0) model

For our first example, we will study the theory with d = 4 and wi = 1, 1, 1, 1. To begin

with, we can choose the defining data of the target manifold to be

W (Φi) =
∑

i

1

4
Φ4

i , (2.21)

i.e. the Fermat point in the moduli space of this K3 hypersurface. The bundle is defined

by choosing

V1 : m = 4, {na} = {1, 1, 1, 1}, Fa(φ) = Φ3
a . (2.22)

For generic defining data, this model simply defines the (0, 4) model obtained by deforming

the tangent bundle of K3 away from the (4,4) supersymmetric locus, while extending the

rank from SU(2) to SU(3) (by partially Higgsing the E7 space-time gauge group with a 56
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of E7). It has instanton numbers (n(1) = 24, n(2) = 0). The (4,4) theory was studied in

more detail in [15]; we simply discuss this model here to provide a warm-up on more or

less familiar territory.

We can study several simple symmetries in the Fermat K3. We will study three:

1. The Z2 symmetry which acts as

g : Φ1,2 → −Φ1,2, Λ1,2 → −Λ1,2 . (2.23)

2. The S3 symmetry which acts as a permutation of cycle shape (123) on Λ1,2,3 and

Φ1,2,3.

3. The Z4 symmetry

g : Φ1,2 → ±iΦ1,2, Λ1,2 → ±iΛ1,2 . (2.24)

We can also obtain more elaborate symmetries by choosing slightly different data.

For instance, if we choose a complex structure

W (Φi) = Φ3
1Φ2 + Φ3

2Φ3 + Φ3
3Φ4 + Φ3

4Φ1 (2.25)

then we can find a Z5 symmetry:

4. Z5 symmetry:

g : Φ1 → λΦ1, Φ2 → λ2Φ2, Φ3 → λ4Φ3, Φ4 → λ3Φ4, λ ≡ e
2πi
5 ,

Λ1 → λΛ1, Λ2 → λ2Λ2, Λ3 → λ4Λ3, Λ4 → λ3Λ4 . (2.26)

Defining data for the vector bundle which respects this symmetry could include e.g.

Fa(Φ) = ∂W
∂Φa

or suitable variants.

Another K3 which admits an interesting symmetry has the complex structure

W (Φi) = Φ3
1Φ2 + Φ3

2Φ3 + Φ3
3Φ1 + Φ4

4 . (2.27)

This surface admits the Z7 symmetry:

5. Z7 symmetry:

g : Φ1 → λΦ1, Φ2 → λ4Φ2, Φ3 → λ2Φ3, λ ≡ e
2πi
7 ,

Λ1 → λΛ1, Λ2 → λ4Λ2, Λ3 → λ2Λ3. (2.28)

Again suitable defining data for the bundle could be Fa(Φ) = ∂W
∂Φa

with other choices

also possible.

– 7 –
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2.3.2 Model 2: a (12,12) model

Again reverting to the Fermat quartic K3 (2.21), we choose now bundles V1,2 each with

m1,2 = 3 and {na}, {qα} = {1, 1, 1}. We consider the symmetries:

1. A Z2 with

g : Λ1,2,3 → −Λ1,2,3, P1 → −P1, Φ1,2 → −Φ1,2 . (2.29)

Here the Λs are those spanning V1, and one should choose data Fa(φ) which is con-

sistent with the symmetry.

2. A Z4 with

g : Λ1,2 → ±iΛ1,2, Φ1,2 → ±iΦ1,2 . (2.30)

Again, these fermions are from V1, and one should choose data F1,2(φ) consistent

with the symmetry.

2.3.3 Model 3: a (14,10) model

Now, we work on the K3 hypersurface embedded in WP3
1,1,1,3. For a defining equation, we

choose

W (Φ) = Φ6
1 + Φ6

2 + Φ6
3 + Φ2

4 (2.31)

For bundles, we let V1 be specified by m1 = 5, {na} = {3, 1, 1} and V2 be specified by

m2 = 4, {qα} = {2, 1, 1}.
We consider two symmetries in this model:

1. A representative Z2 symmetry is, for instance,

g : Λ2,3 → −Λ2,3, Φ2,3 → −Φ2,3 , (2.32)

with the Λs being fermions involved in the construction of V1. Simple choices of the

Fa(Φ) are consistent with such a symmetry.

2. We can consider a Z3 symmetry as follows:

g : Φ1 → e
2πi
3 Φ1, Φ2 → e

4πi
3 Φ2 (2.33)

with the two charge 1 fermions in V1, Λ2,3, rotating as

g : Λ2 → e
4πi
3 Λ2, Λ3 → e

2πi
3 Λ3 . (2.34)

There are simple choices of the Fa(Φ) that accomodate this symmetry.

2.3.4 Model 4: an (18,6) model

Finally, still working on the K3 hypersurface (2.31), we study the bundles V1 with m1 =

5, {na} = {2, 1, 1, 1} and V2 with m2 = 3, {qα} = {1, 1, 1}. One Z3 symmetry arises in

this model by permuting the fermions Λ2,3,4 of charge 1 arising as part of V1; the fermions

Λ4,5,6 arising as part of V2; and the chiral fields Φ1,2,3, all with the permutation of cycle

shape (123). Once again, simple choices of the bundle data F (Φ) are consistent with such

a symmetry.
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3 Computation of the twining genera

In this section, we compute the twining genera under the various model symmetries de-

scribed in §2.3. We begin by outlining the general strategy and formulae that are relevant,

and then simply present the results of applying these formulae to the various cases. Our

work relies heavily on the elegant residue formula derived recently in [3].

3.1 Residue formula for elliptic genus

The elliptic genus was first discussed in [16–19]. Its application to string compactification

was pioneered in [20], and it was first computed by localization in (2,2) supersymmetric

Landau-Ginzburg models in [21] and for (0,2) models in [5]. It has recently been the focus

of attention in, for instance, [3, 4, 22]

The formalism we discuss only assumes N = (0, 2) supersymmetry, though our ap-

plication will be to (0, 4) theories . Although in many discussions of the elliptic genus in

theories with (2, 2) supersymmetry the left-moving R-symmetry plays a crucial role, here

there is no longer a left-moving R-charge. However, the models we consider will have an

extra U(1) global current JL, and we will grade by the quantum number under the associ-

ated charge in the elliptic genus. In the models described in the previous section, JL = 0

for Γ and Φi , and for the Λa,α, JL = −1, whereas for the Pa,α, JL = +1.

We follow the discussion of (0, 2) abelian gauge theory in [3]. Let us define u to be the

holonomy of the U(1) gauge field around the cycles of the torus

u =

∮
Atdt − τ

∮
Asds (3.1)

with t, s the temporal and spatial directions, and τ the modular parameters of the torus.

The elliptic genus is given by the graded trace

Z(τ, z) = TrRR(−1)F yJLqHL q̄HR . (3.2)

Obtaining a formula for (3.2) via localization involves doing an integral over the Wilson

lines u of the abelian gauge field.

This integral localizes to a sum of contour integrals around loci (in the moduli space

of flat connections) where some of the fields become massless; we refer to these as singular

points. Let us consider a general (0, 2) U(1) gauge theory, with a number of gauge charged

chiral and Fermi multiplets Φi and Λa, as well as one vector multiplet. Suppose that the

charges of the chiral and Fermi multiplets under the gauge and U(1) global symmetry are

Qi,a and Ji,a respectively. Then, defining

x = e2πiu , (3.3)

the expression that has been obtained for the elliptic genus is [3]

Z(τ, z) = −η(q)2
∑

uj∈M+

∮
u=uj

du
∏
Φi

iη(q)

θ1(q, yJixQi)

∏
Λa

iθ1(q, yJaxQa)

η(q)
, (3.4)
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where M+ is the relevant set of singular points.1 These points are defined as the solutions

to the equation

Qiu+ Jiz ≡ 0 mod (Z + τZ), (3.5)

with positive Qi. Equivalently one could sum over poles in the set M− (including an overall

change of sign, due to the reversed orientation of the contour), defined by solutions to the

above equation for all negative Qi.

One can roughly understand the origin of the formula (3.4) as follows. Each chiral,

Fermi and vector multiplet makes a (multiplicative) contribution to the index at any fixed

value of the Wilson lines u. For a (0,2) chiral multiplet with global U(1) charge J and

flavor charge Q, the contribution is

Z
(0,2)
Φ,J,Q(τ, z, u) =

iη(q)

θ1(q, yJxQ)
. (3.6)

That of a Fermi multiplet with global U(1) charge J is

ZΛ,J,Q(τ, z, u) =
iθ1(q, yJxQ)

η(q)
. (3.7)

Finally, the contribution of a (0,2) vector multiplet is

Z
(0,2)
vector(τ) = η(q)2. (3.8)

independent of u. The product of these expressions over all multiplets present in a given

theory, integrated over the u-plane, can be reduced to the formula (3.4).

3.1.1 K3 elliptic genus

The standard results for the elliptic genus of K3 (or in the language of quantum field theory,

for the N = (4, 4) sigma model with K3 target) is [20]

ZK3(τ, z) = 8
4∑

i=2

(
θi(q, y)

θi(q, 1)

)2

, (3.9)

which has the expansion

ZK3 ∼
(

2

y
+ 20 + 2y

)
+

(
20

y2
− 128

y
+ 216 − 128y + 20y2

)
q + . . . (3.10)

For a (0, 4) model on K3 with rank r gauge bundle, the elliptic genus is given by

Zr
K3 =

(
θ1(q, y)

iη(q)

)r−2

ZK3, (3.11)

as derived in [5]. It is easy to check that applying (3.4) to our models of §2.3 agrees with

the result (3.11), with r = r1 + r2 the sum of the ranks of the bundles embedded in the

two E8s.

1Our conventions for modular forms can be found in appendix A.
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3.2 Residue formula for twining genera

Our real interest is to compute the elliptic genus with the insertion of a symmetry operator,

g, into the path integral

Z(n1,n2)
g (τ, z) = TrRR g (−1)F yJLqHL q̄HR (3.12)

for various particular (n1, n2) instanton embeddings. We can do this with a slight modifi-

cation to the computation of the untwined elliptic genus.

Consider an operator g which acts on chiral and Fermi multiplets as

gΦi = e2πiαiΦi, gΛa = e2πiβaΛa, (3.13)

and is a symmetry of the action. When inserting this operator into the path integral, it

modifies the contribution due to the chiral and Fermi multiplets. The contribution of a

(0, 2) chiral multiplet Φi to the integrand in (3.4) becomes

iη(q) eπiαi

θ1(q, e2πiαiyJixQi)
, (3.14)

while one obtains
iθ1(q, e2πiβayJaxQa)

eiπβa η(q)
(3.15)

from the twined Fermi multiplet Λa. One then sums over the (now shifted) poles that

previously contributed to the elliptic genus - the detailed locations of the poles in M+ on

the u-plane, as well as their orders, can be modified depending on the g charges of the

fields involved. Since the twining induces an additive shift in the pole location without

changing the sign of the chiral gauge charge, no new poles contribute to M+.

Denote the elliptic genus of the (4, 4) theory twined by a conjugacy class g of M24 by

Zg.2 Then we expect the twined elliptic genus of an (n1, n2) model to decompose as

Z(n1,n2)
g = ch(SO(2r − 4))Zg, (3.16)

i.e. a product of twined (4, 4) genera and twined SO(2r − 4) characters.

In writing (3.16), we are making two important assumptions:

1) We assume that the M24 module which is relevant in the moonshine for (0, 4) models

with arbitrary instanton embeddings, has the same representations at each level as

the one which arises in the (4, 4) theory. Evidence for this was presented already in

the new supersymmetric index computations of [12], which are valid for all instanton

embeddings.

2) We are assuming that the factor of(
θ1(q, y)

iη(q)

)r−2

(3.17)

2The Zg are discussed in detail in appendix B, where also the M24 character table and the first few

coefficients in the q-expansion of the various Zg are presented.
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in the elliptic genus of a (0, 4) theory with rank r bundle transforms as an element of

the spinor minus conjugate spinor representation of SO(2r−4). This is motivated by

the results to appear in the companion paper about (0, 4) orbifolds [13]. Heuristically,

the SO(2r−4) symmetry could appear manifestly in a field theory where one deformed

the bundle V1 ⊕ V2 to be an SU(2) bundle with instanton number n(1) + n(2). As

the elliptic genus is invariant under such smooth deformations, this may explain the

appearance of such factors (related to further ‘hidden symmetries’) in the twining

genera of (0, 4) sigma models.

We now show that our results for the set of models discussed in §2.3 satisfy the assump-

tion (3.16). We view this as a check of M24 moonshine for (0, 4) theories with a variety of

instanton embeddings.

3.3 Examples

3.3.1 Model 1

Here, we considered five symmetries in §2.3.1: a Z2 symmetry, a Z3 symmetry, a Z4

symmetry, a Z5 symmetry and a Z7 symmetry. The results for the twining genera are:

ZZ2 =
θ1(y)

iη(q)
Z2A ,

ZZ3 =
θ1(y)

iη(q)
Z3A ,

ZZ4 =
θ1(y)

iη(q)
Z4B , (3.18)

ZZ5 =
θ1(y)

iη(q)
Z5A ,

ZZ7 =
θ1(y)

iη(q)
Z7A .

Here, Z2A, Z3A, Z4A, Z5A and Z7A are the corresponding twining genera of the (4, 4) elliptic

genus with an insertion in those M24 conjugacy classes (see appendix B). The first argument

of the theta function has been suppressed here and below.

3.3.2 Model 2

We considered two symmetries in §2.3.2: a Z2 symmetry and a Z4 symmetry. The results

for the twining genera are:

ZZ2 =
θ1(y)2

(iη(q))2
Z2A ,

ZZ4 =
θ1(iy)θ1(−iy)

(iη(q))2
Z4B . (3.19)
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3.3.3 Model 3

Here, we also considered two symmetries in §2.3.3 — a Z2 and a Z3. The results are:

ZZ2 =

(
θ1(y)

iη(q)

)2

Z2A ,

ZZ3 =
θ1(e

2πi
3 y)θ1(e

4πi
3 y)

(iη(q))2
Z3B . (3.20)

3.3.4 Model 4

We considered a Z3 symmetry in §2.3.4. The result is

ZZ3 =
θ1(y)θ1(e

2πi
3 y)θ1(e

4πi
3 y)

(iη(q))3
Z3A . (3.21)

4 Discussion

In this note, we used the recently derived localization formula for the elliptic genus of (0, 2)

supersymmetric rank one two-dimensional gauge theories [3] to compute twining genera

of (0,4) gauged linear sigma models with K3 target. We did this for a variety of discrete

symmetries in (0, 4) models with four different sets of instanton numbers (n(1), n(2)).

In several cases, we found that the simple discrete symmetries give twining genera

which are consistent with those of M24 elements of the same order, with the trace in the

elliptic genus taken over the M24 module conjectured to exist in [6] and constructed in [11].

These direct computations are an analogue, for a conjectural (0,4) moonshine with various

instanton numbers, of the twining calculations in [7–10]. Interestingly, the 3B conjugacy

class of M24, which does not descend from the classical symmetries of K3 surfaces (as they

lie in M23 [23, 24]) and which has been elusive, appears here in one of the first cases we

examined.

It should not be difficult to find linear sigma models which admit relatively elaborate

discrete symmetries. The Z5 and Z7 examples of §2.3.1 were found by using a strategy

developed in [25], and it seems quite plausible that one can write down examples which show

twining in higher order M24 conjugacy classes in this way. It should also be instructional

to go through the list of e.g. the ‘famous 95’ weighted projective K3 hypersurfaces of

Reid [26], and see which of them admit interesting symmetries; this may lead to interesting

new examples even in the (4, 4) theory.

A major question which remains is the proper interpretation of the evidence presented

here, as well as in [12, 13], for a moonshine relating heterotic (0, 4) theories (and their type

II Calabi-Yau duals) to M24. The observations of [15] indicate that M24 does not play

a canonical role as an embedding group for symmetries of (4, 4) superconformal theories

with K3 target. The symmetries available in (0, 4) theories will of course only be richer;

developing a classification would be very interesting. Failing a complete classification, a

detailed study of particular families with large symmetry groups (extending the philosophy

of [27, 28] from the (4, 4) case) could also prove illuminating. It is even within the realm of

possibility that some (0, 4) superconformal theory, or perhaps a non-perturbative heterotic
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vacuum with small instantons replacing the gauge bundles V1,2, could manifest the full

symmetry and ‘explain’ the appearance of M24 in the elliptic genus. But other interpreta-

tions of the moonshine, in terms of Rademacher sums arising naturally in AdS/CFT [29],

or in terms of supersymmetric indices of NS5 branes [30], are also quite promising. Related

directions to explore are discussed in [31–33].
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A Conventions

We use the following conventions for the Jacobi θi(q, y) functions

θ1(q, y) = i

∞∑
n=−∞

(−1)nq
(n− 1

2 )2

2 yn− 1
2 , (A.1)

θ2(q, y) =

∞∑
n=−∞

q
(n− 1

2 )2

2 yn− 1
2 , (A.2)

θ3(q, y) =

∞∑
n=−∞

q
n2

2 yn , (A.3)

θ4(q, y) =
∞∑

n=−∞
(−1)nq

n2

2 yn , (A.4)

where q = e2πiτ and y = e2πiz. Whenever the y-dependence is not specified, we have set

y = 1, for example θi = θi(q) = θi(q, 1) and likewise for the other functions defined below.
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These θi(q, y) functions have the following product expansion

θ1(q, y) = −iq1/8y1/2
∞∏

n=1

(1 − qn)(1 − yqn)(1 − y−1qn−1) , (A.5)

θ2(q, y) = q1/8y1/2
∞∏

n=1

(1 − qn)(1 + yqn)(1 + y−1qn−1) , (A.6)

θ3(q, y) =

∞∏
n=1

(1 − qn)(1 + yqn− 1
2 )(1 + y−1qn− 1

2 ) , (A.7)

θ4(q, y) =

∞∏
n=1

(1 − qn)(1 − yqn− 1
2 )(1 − y−1qn− 1

2 ) . (A.8)

We also use the Dedekind η(q) function

η(q) = q
1
24

∞∏
n=1

(1 − qn). (A.9)

B M24 character table and coefficients of twining genera

In §3, we expressed the results for twining genera in various (0,4) models in terms of the

Zg which appear in the twined elliptic genus of the (4,4) K3 sigma model, for various M24

conjugacy classes g. In practice, to work out the q-expansions for the resulting forms, one

needs the character table of M24. It is reproduced in table 2 for completeness. The classes

appearing before 12B in the top row can also be considered as conjugacy classes in M23,

while 12B and those appearing to its right are intrinsic elements of M24 with no precursor

in M23.

The q-expansions of the Zg can be written as follows. For the elliptic genus of K3, one

writes

ZK3(z; τ) = 20chh=1/4,`=0(z; τ)−2chh=1/4,`=1/2(z; τ)+

∞∑
n=1

A(n)chh=n+1/4,`=1/2(z; τ) (B.1)

where chh,` are characters of the N = 4 superconformal algebra with a given conformal

weight and isospoin (whose explicit forms can be found in [34, 35]). The M24 module

associated with this theory via Mathieu moonshine is a graded vector space

V = ⊕∞
n=1V (n) (B.2)

with dim(V (n)) = A(n). Then the twining genus Zg can be written as

Zg(z; τ) = (χg − 4)chh=1/4,`=0(z; τ) − 2chh=1/4,`=1/2(z; τ) +

∞∑
i=1

Ag(n)chh=n+1/4,`=1/2(z; τ) ,

(B.3)

with

Ag(n) = TrV (n)g . (B.4)

In practice, one can find simple closed-form expressions for Zg as discussed in detail in

e.g. [7–10]. The first few terms in the q-expansions of the Zg for various conjugacy classes

are shown in table 3.
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1
0

T
.
E

G
U

C
H

I
A

N
D

K
.
H

IK
A

M
I

1A 2A 3A 5A 4B 7A 7B 8A 6A 11A 15A 15B 14A 14B 23A 23B 12B 6B 4C 3B 2B 10A 21A 21B 4A 12A

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23 7 5 3 3 2 2 1 1 1 0 0 0 0 0 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

252 28 9 2 4 0 0 0 1 −1 −1 −1 0 0 −1 −1 0 0 0 0 12 2 0 0 4 1
253 13 10 3 1 1 1 −1 −2 0 0 0 −1 −1 0 0 1 1 1 1 −11 −1 1 1 −3 0

1771 −21 16 1 −5 0 0 −1 0 0 1 1 0 0 0 0 −1 −1 −1 7 11 1 0 0 3 0
3520 64 10 0 0 −1 −1 0 −2 0 0 0 1 1 1 1 0 0 0 −8 0 0 −1 −1 0 0

45 −3 0 0 1 e+
7 e−

7 −1 0 1 0 0 −e+
7 −e−

7 −1 −1 1 −1 1 3 5 0 e−
7 e+

7 −3 0
45 −3 0 0 1 e−

7 e+
7 −1 0 1 0 0 −e−

7 −e+
7 −1 −1 1 −1 1 3 5 0 e+

7 e−
7 −3 0

990 −18 0 0 2 e+
7 e−

7 0 0 0 0 0 e+
7 e−

7 1 1 1 −1 −2 3 −10 0 e−
7 e+

7 6 0
990 −18 0 0 2 e−

7 e+
7 0 0 0 0 0 e−

7 e+
7 1 1 1 −1 −2 3 −10 0 e+

7 e−
7 6 0

1035 −21 0 0 3 2e+
7 2e−

7 −1 0 1 0 0 0 0 0 0 −1 1 −1 −3 −5 0 −e−
7 −e+

7 3 0
1035 −21 0 0 3 2e−

7 2e+
7 −1 0 1 0 0 0 0 0 0 −1 1 −1 −3 −5 0 −e+

7 −e−
7 3 0

1035′ 27 0 0 −1 −1 −1 1 0 1 0 0 −1 −1 0 0 0 2 3 6 35 0 −1 −1 3 0
231 7 −3 1 −1 0 0 −1 1 0 e+

15 e−
15 0 0 1 1 0 0 3 0 −9 1 0 0 −1 −1

231 7 −3 1 −1 0 0 −1 1 0 e−
15 e+

15 0 0 1 1 0 0 3 0 −9 1 0 0 −1 −1
770 −14 5 0 −2 0 0 0 1 0 0 0 0 0 e+

23 e−
23 1 1 −2 −7 10 0 0 0 2 −1

770 −14 5 0 −2 0 0 0 1 0 0 0 0 0 e−
23 e+

23 1 1 −2 −7 10 0 0 0 2 −1
483 35 6 −2 3 0 0 −1 2 −1 1 1 0 0 0 0 0 0 3 0 3 −2 0 0 3 0

1265 49 5 0 1 −2 −2 1 1 0 0 0 0 0 0 0 0 0 −3 8 −15 0 1 1 −7 −1
2024 8 −1 −1 0 1 1 0 −1 0 −1 −1 1 1 0 0 0 0 0 8 24 −1 1 1 8 −1
2277 21 0 −3 1 2 2 −1 0 0 0 0 0 0 0 0 0 2 −3 6 −19 1 −1 −1 −3 0
3312 48 0 −3 0 1 1 0 0 1 0 0 −1 −1 0 0 0 −2 0 −6 16 1 1 1 0 0
5313 49 −15 3 −3 0 0 −1 1 0 0 0 0 0 0 0 0 0 −3 0 9 −1 0 0 1 1
5796 −28 −9 1 4 0 0 0 −1 −1 1 1 0 0 0 0 0 0 0 0 36 1 0 0 −4 −1
5544 −56 9 −1 0 0 0 0 1 0 −1 −1 0 0 1 1 0 0 0 0 24 −1 0 0 −8 1

10395 −21 0 0 −1 0 0 1 0 0 0 0 0 0 −1 −1 0 0 3 0 −45 0 0 0 3 0

T
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(± √

−
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Table 2. Character table for M24.

T
W

IS
T

E
D

E
L
L
IP

T
IC

G
E

N
U

S
O

F
K

3
1
1

n 1A 2A 3A 5A 4B 7A 8A 6A 11A 15A 14A 23A 12B 6B 4C 3B 2B 10A 21A 4A 12A

1 90 −6 0 0 2 −1 −2 0 2 0 1 −2 2 −2 2 6 10 0 −1 −6 0
2 462 14 −6 2 −2 0 −2 2 0 −1 0 2 0 0 6 0 −18 2 0 −2 −2
3 1540 −28 10 0 −4 0 0 2 0 0 0 −1 2 2 −4 −14 20 0 0 4 −2
4 4554 42 0 −6 2 4 −2 0 0 0 0 0 0 4 −6 12 −38 2 −2 −6 0
5 11592 −56 −18 2 8 0 0 −2 −2 2 0 0 0 0 0 0 72 2 0 −8 −2
6 27830 86 20 0 −2 −2 2 −4 0 0 2 0 0 0 6 −16 −90 0 −2 6 0
7 61686 −138 0 6 −10 2 −2 0 −2 0 2 0 −2 −2 −2 30 118 −2 2 6 0
8 131100 188 −30 0 4 −3 0 2 2 0 −1 0 0 0 −12 0 −180 0 0 −4 2
9 265650 −238 42 −10 10 0 −2 2 0 2 0 0 −2 6 10 −42 258 −2 0 −14 −2

10 521136 336 0 6 −8 0 −4 0 0 0 0 2 −2 2 16 42 −352 −2 0 0 0
11 988770 −478 −60 0 −14 6 2 −4 2 0 −2 0 0 0 −6 0 450 0 0 18 0
12 1830248 616 62 8 8 0 0 −2 2 2 0 0 2 −6 −16 −70 −600 0 0 −8 −2
13 3303630 −786 0 0 22 −6 2 0 0 0 −2 2 0 −4 6 84 830 0 0 −18 0
14 5844762 1050 −90 −18 −6 0 2 6 0 0 0 2 0 0 18 0 −1062 −2 0 10 −2
15 10139734 −1386 118 4 −26 −4 −2 6 0 −2 0 0 2 2 −10 −110 1334 4 2 22 −2
16 17301060 1764 0 0 12 0 0 0 −4 0 0 0 2 6 −28 126 −1740 0 0 −12 0
17 29051484 −2212 −156 14 28 0 −4 −4 0 −1 0 0 0 0 12 0 2268 −2 0 −36 0
18 48106430 2814 170 0 −18 8 −2 −6 −2 0 0 −2 2 −6 38 −166 −2850 0 2 14 2
19 78599556 −3612 0 −24 −36 0 0 0 2 0 0 0 −2 −6 −20 210 3540 0 0 36 0
20 126894174 4510 −228 14 14 −6 −2 4 0 2 2 0 0 0 −42 0 −4482 −2 0 −18 0
21 202537080 −5544 270 0 48 4 4 6 −2 0 0 0 −2 6 16 −282 5640 0 −2 −40 2
22 319927608 6936 0 18 −16 −7 4 0 0 0 −1 0 0 4 48 300 −6968 2 −1 24 0
23 500376870 −8666 −360 0 −58 0 −2 −8 4 0 0 2 0 0 −18 0 8550 0 0 54 0
24 775492564 10612 400 −36 28 0 0 −8 0 0 0 0 0 −8 −60 −392 −10556 4 0 −28 −4
25 1191453912 −12936 0 12 64 12 −4 0 0 0 0 0 2 −10 32 462 13064 4 0 −72 0
26 1815754710 15862 −510 0 −34 0 −6 10 0 0 0 −1 0 0 78 0 −15930 0 0 22 −2
27 2745870180 −19420 600 30 −76 −10 4 8 −2 0 −2 0 0 8 −36 −600 19268 −2 2 84 0
28 4122417420 23532 0 0 36 2 0 0 0 0 −2 0 0 12 −84 660 −23460 0 2 −36 0
29 6146311620 −28348 −762 −50 100 −6 4 −10 −2 −2 2 0 0 0 36 0 28548 −2 0 −92 −2
30 9104078592 34272 828 22 −40 0 4 −12 4 −2 0 0 0 −8 96 −840 −34352 −2 0 48 0
31 13401053820 −41412 0 0 −116 0 −4 0 0 0 0 −2 −2 −10 −44 966 41180 0 0 108 0
32 19609321554 49618 −1062 34 50 18 2 10 −2 −2 2 0 0 0 −126 0 −49518 2 0 −46 2
33 28530824630 −59178 1220 0 126 0 −6 12 0 0 0 2 −4 12 62 −1204 59430 0 0 −138 0
34 41286761478 70758 0 −72 −66 −10 −6 0 6 0 2 0 0 12 150 1332 −70890 0 2 54 0
35 59435554926 −84530 −1518 26 −154 6 2 −14 0 2 2 0 0 0 −66 0 84222 2 0 158 2
36 85137361430 100310 1670 0 70 −12 −2 −10 0 0 0 0 −2 −18 −170 −1666 −100170 0 0 −74 −2
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Table 3. Coefficients in the q-expansion of Zg for various conjugacy classes g.
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