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1 Introduction

Jets arise in many important scattering processes encountered at the LHC. Therefore,

much experimental and theoretical effort has recently gone into creating better tools for

handling them. Techniques now exist to identify jets arising from the decay of boosted

heavy particles [1–21], to remove unwanted radiation from jets [4, 22–34], and to measure

properties of the partons initiating jets [35–40]. See refs. [41–43] for an overview. To

this toolkit the authors recently added Qjets [44]. In the discussion that follows we are

specifically thinking in terms of “tagging” jets as either containing (the decay products of)

a heavy boosted object (the signal), or as being an ordinary QCD-jet (the background).

The motivation behind Qjets comes from the observation that as jets are produced

through a stochastic process there is an inherent ambiguity in their reconstruction. That

is, even with a perfect algorithm one could never hope to unambiguously associate each

hadron to an individual jet — instead one typically makes a best-guess assignment using

a well motivated procedure. This is not ideal as it removes all information about the

ambiguity in jet processing and tagging; any two jets that pass a set of selection cuts are

assigned the same weight, even if one is unambiguously signal-like and the other is only

marginally so. To address this concern the Qjets procedure processes and tags a jet using a

range of plausible algorithms and grooming procedures, assigning a distribution of possible
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properties to each jet. The initial Qjets description [44] presented two central ideas: (i) a

new observable volatility that characterizes the width of the mass distribution generated by

the Qjets procedure and can help distinguish jets arising from boosted heavy objects from

QCD jets; and (ii) the use of the Qjets distributions to improve the statistical stability

of the measurements of jet observables. The former is an intuitively reasonable result in

the sense that one expects that a jet with an underlying mass scale (i.e., the mass of the

heavy object) will exhibit a jet mass that is more robust under changes in the details of

the jet algorithm and grooming procedure compared to a background QCD jet. Volatility

as a discriminating variable has recently been validated [45, 46] by both the ATLAS and

the CMS collaborations of the LHC. The Qjets improvement in the statistical behavior of

jet measurements is less intuitive and the current work has the goal of explaining the how

and why of this statistical improvement.

In order to explain why the Qjets procedure is associated with non-standard statistical

analyses, let us first distinguish it from a conventional, or “classical” approach, in which

a jet is first groomed and then tagged to be a signal jet if its groomed mass falls within

a pre-defined signal-mass window. Such a conventional approach therefore assigns both

a groomed mass µC
j and a tagging efficiency τC

j to each jet j. The conventional tagging

efficiency is a binary tagging variable, which takes the value 1, if the mass of the jet is

within the mass-window (Ω), µC
j ∈ Ω, and takes the value 0 if the mass of the jet is not

in the window, µC
j /∈ Ω. For Qjets there is a well defined procedure (reviewed in more

detail in section 3) to groom an individual jet in a variety of ways leading a distribution

of groomed masses. The corresponding Qjets tagging efficiency τQ
j is the fraction of those

masses that fall within the mass-window, while the Qjets measure of the jet mass µQ
j is

the average of the masses that fall within the mass-window. The fundamental difference in

the statistical analysis of the Qjets case arises from the fact that τQ
j exhibits a continuous

range of values in the interval [0, 1], in contrast to the binary values of τC
j .

To illustrate the unconventional features of a continuous weight τQ
j more specifically,

consider the goal of identifying boosted W -jets. A binary τC
j implies a jet is either W -

like or QCD-like, whereas a continuous τQ
j allows a jet to be treated as partially W -like

and partially QCD-like. Now consider an example where in an experiment the conventional

approach identifies two jets with masses µC
1 = 80 GeV and µC

2 = 85 GeV with τC
1 = τC

2 = 1.

One therefore reports that the experiment sees 2 tagged W -jets and measures the masses

of the tagged jets to be (80 + 85) /2 GeV = 82.5 GeV. Contrast that result with the Qjets

procedure that might assign these two jets the same masses as the conventional approach

(i.e., µQ
j = µC

j ), but finds one jet to be more W -like than the other (say, τQ
1 = 0.9 and

τQ
2 = 0.2). So, using the Qjets procedure, the experiment instead finds (0.9 + 0.2) = 1.1

W -jets, and measures the W -mass to be (0.9× 80 + 0.2× 85)/(0.9 + 0.2) GeV = 80.9 GeV.

Furthermore, as we explain below, both of these observables (the number of tagged jets and

the measured mass from the tagged jets) are statistically more robust in the case of the Qjets

procedure than in the conventional approach. In fact, one can make a definite statement:(
δNT

NT

)C

=
1√
εN

and
1√
N
≤
(
δNT

NT

)Q

≤ 1√
εN

, (1.1)
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where NT represents the number of tagged jets that arise from a physical process expected

to yield N total jets and ε represents the efficiency of the conventional tagging procedure,

ε = NT /N . So, if a process is expected to yield N = 100 jets reconstructed at ε = 50%

efficiency, one expects unweighted measurements of the cross section to have a statistical

uncertainty of 14% (= 1/
√

50). On the other hand, if one employs the Qjets procedure

with the average tagging efficiency ε still at 50%, one can achieve an uncertainty somewhere

between 10% and 14%. Thus, with Qjets one can hope to obtain more precise results using

the same data.

More specifically, the claims in ref. [44] regarding the uncertainties of various measure-

ments can be stated as

SQ/δBQ

SC/δBC
> 1 and

δmQ/mQ

δmC/mC
< 1 . (1.2)

These expressions use the definitions (to be explained in more detail later):

SQ/C =
∑

j∈signal

τ
Q/C
j : total number of signal jets correctly tagged in an experiment.

BQ/C =
∑

j∈bkg

τ
Q/C
j : total number of QCD jets incorrectly tagged in an experiment.

mQ/C =

∑
j
µ
Q/C
j τ

Q/C
j∑

j
τ
Q/C
j

: the (average) mass of the tagged jets as measured in an experiment.

δBQ/C, δmQ/C: the fluctuations in the corresponding measurements.

In the phenomenological studies presented below we will confirm the inequalities in eq. (1.2)

and attempt to provide intuitive explanations of why they hold. Note that the explanation

is not as straightforward as for eq. (1.1).

It is helpful to think in terms of two types of effects contributing to the fact that

the left-hand sides in eq. (1.2) are different from 1. As described above, an essential

difference of the Qjets procedure is the shift from the binary tagging efficiency of the

conventional approach, τC
j (= 0 or 1), to the continuously valued τQ

j (0 ≤ τQ
j ≤ 1). Thus

jets with τC
j = 1 can have τQ

j < 1, while jets with τC
j = 0, which make no contribution

to the conventional analysis, can have τQ
j > 0 and contribute to the Qjets analysis. These

changes impact both the counting of jets and the values of weighted averages, as in the

weighted average mass defined just above. One of the important results of the Qjets analysis

described below is that the distribution of jet-masses assigned by the Qjets procedure (µQ
j )

for W -jets is found to be more sharply peaked around MW than the µC
j distribution. The

Qjets procedure, since it samples a variety of pruning scenarios, can include scenarios that

remove unwanted radiation from a W -jet more effectively than the single conventional

pruning scenario [24, 25]. Since it is exactly these more effective scenarios that lead to

larger weights in the Qjets analysis, the resulting weighted average mass tends to be closer

to the physical W -mass. Thus the Qjets procedure can provide a better “groomer” than

the classical pruning [24, 25]. In summary, the improvement indicated in eq. (1.2) stems
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from both the “purely statistical” enhancement inherent in the shift from the binomial

distribution of τC
j to the continuous distribution of τQ

j , which we label the “statistical”

effect, and from the possible improvement in the measured signal mass distribution inherent

in the shift of mass observable from µC
j to µQ

j , which we label the “physics” effect.

Of course, the “statistical” and “physics” effects are not explicitly independent. In an

effort to a provide a quantitative separation of these two effects, we define a third, hybrid

pair of variables, (µQ
j , τ̃

Q
j ), where the mass variable remains the same as for the usual Qjets

procedure, but the tagging probability variable τ̃Qj follows a binomial distribution (similar

to τC
j ) defined by

τ̃Q
j =

{
0 for τQ

j = 0

1 otherwise.
(1.3)

With our definition of µQ
j in Qjets, τ̃Q

j corresponds to tagging a jet based on whether µQ
j

is in the bin or not — i.e. tagging efficiency is derived just like in the conventional case,

but using µQ
j instead of µC

j . Further, we define µQ
j such that its value is in the bin if any

of the Qjet masses for a given jet are in the bin, which is why all nonzero values for τQ
j

yield a τ̃Q
j value of 1.

The left-hand sides in eq. (1.2) can then be represented as products of statistical pieces

and physics pieces:

• statistical quantities: SQ/δBQ

S̃Q/δB̃Q
and δmQ/mQ

δm̃Q/m̃Q , exhibiting the impact of using a continu-

ous versus binary variable, τQ
j versus τ̃Q

j ;

• physics quantities: S̃Q/δB̃Q

SC/δBC and δm̃Q/m̃Q

δmC/mC , primarily exhibiting the impact of the dif-

fering distributions for the mass variables µC
j versus µQ

j .

The present article aims to clarify these points by presenting an explicit framework

for calculating the statistics of jets obtained from the Qjets procedure, as applied to a jet-

tagging analysis. The paper is structured as follows: in section 2 we introduce a statistical

formalism for evaluating the uncertainties associated with the measurement of cross-section

and mass for a tagging efficiency described by a continuous variable, in section 3 we review

the Qjets procedure and discuss, in particular, how it leads to a mass and a tagging

efficiency for a given jet, in section 4 we apply the formalism derived in section 2 to

estimate the statistical and physics quantities outlined above, in section 5 and section 6

we present simple phenomenological pictures to assist in the understanding of the results

for the statistical (section 5) and physics (section 6) effects presented in section 4, and in

section 7 we provide concluding remarks. A validation of our analytical results, derived

in section 2, using Monte Carlo pseudo-experiments is provided in appendix A, and more

mathematical details are included in appendix B.

2 Statistical uncertainties

In this section we lay out the mathematical foundation needed to understand the statistical

fluctuations of measurements when using the Qjets procedure (i.e., non-binary tagging).

This analysis applies to both signal and background measurements.
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One can think of the statistical uncertainties in jet-based measurements as arising from

two sources: (1) Poisson uncertainty, and (2) sampling uncertainty:

• Poisson uncertainty refers to the uncertainty in the number of events (or jets) of a

certain variety produced by a process yielding discrete counts at some continuous

rate. For example, if a collider is expected to yield on average N events (of the given

variety) with a given luminosity (N = Lσ, where σ is the production cross section

for this kind of event or jet) then the probability of it producing n events is given by

the Poisson distribution:

Pois(n|N) ≡ e−NNn

n!
, 〈n〉Pois = N , σ2

Pois = N . (2.1)

Thus the variance (σ2
Pois) of this distribution is N as indicated, which tells us that

the characteristic size of the variation in the number of events (of the given variety)

produced with a given luminosity from one experimental run to the next is
√
N .

• Sampling uncertainty refers to the uncertainty in the way the events will be recon-

structed by the analysis procedure, leading to fluctuations in the tagging rate sample-

to-sample. Let us illustrate this point with an explicit example. Consider that we

are trying to identify jets containing W decays with an algorithm characterized by a

given tagging efficiency (say 70%). By sampling uncertainty we refer to the fact that

for one sample of 100 signal jets the procedure might tag 75 jets as W -like, while for

another sample of 100 signal jets it might only tag 65.

The next step is to explain why the probability distribution describing the tagging

of jets in the Qjets procedure is fundamentally different from the conventional procedure,

resulting in qualitatively (and quantitatively) different expressions for the sampling un-

certainty, as well as the total statistical uncertainty. Recall that a conventional tagging

procedure assigns a binary valued weight τ of either 1 or 0 (i.e., tagged or not-tagged) to

a jet. Such a procedure is usually characterized by a tagging efficiency ε, which means

that, on average, a fraction ε of jets selected at random from a sample of W -jets will

be tagged. Thus the explicit probability distribution function (or pdf) for tagging 1-jet,

picked at random from a set of W -jets, by a conventional (C) procedure can be simply

represented as:

FC
1 (τ) = (1− ε)δ(τ) + εδ(τ − 1) , (2.2)

(where δ(τ) is the usual delta function that vanishes everywhere except at τ = 0, but is

sufficiently singular at τ = 0 to satisfy
∫
dτf(τ)δ(τ) = f(0) for any range of integration

that includes the origin). This form is illustrated in the left-hand plot in figure 1. In

contrast, the weight τ assigned by a Qjets procedure can have any value in the interval

[0, 1]. We label the pdf for tagging 1-jet (picked at random from a set of W -jets) with

probability τ by the Qjets procedure as FQ
1 (τ). Note that, unlike eq. (2.2), FQ

1 (τ) is a

continuous function of τ , as illustrated in the right-hand plot in figure 1.

These 1-jet tagging probability distribution functions (the F1(τ)’s illustrated in fig-

ure 1) are central to our analysis. As we will show later, the statistical uncertainties
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Figure 1. Illustration of how FC
1 (τ) (left) and FQ

1 (τ) (right) may look for a sample of W -jets.

Note the binomial nature of FC
1 (τ) as opposed to the continuous distribution of τ in FQ

1 (τ).

associated with various tagged 1-jet measurements are given entirely in terms of the first

few moments of the F1(τ). In particular, we define the average and variance (and the

normalization) of F1(τ) to be:

〈τ〉 =

∫ 1

0
τF1(τ)dτ , and σ2

τ =

∫ 1

0
(τ − 〈τ〉)2F1(τ)dτ ,

(∫ 1

0
F1(τ)dτ = 1

)
. (2.3)

Note that, in the special case of the conventional procedure as in eq. (2.2),

〈τC〉 =

∫ 1

0
τFC

1 (τ)dτ = ε , and (σC
τ )2 =

∫ 1

0
(τ − 〈τ〉)2FC

1 (τ)dτ = ε(1− ε) , (2.4)

where, as above, ε is the average tagging efficiency in the conventional procedure. The

results of eq. (2.4) are just what we expect from the binomial distribution corresponding

to a binary valued weight. Note that the differences between the two distributions in

figure 1 (binary versus continuous, where the latter has more support near the average

value) already suggest that σQ
τ < σC

τ , even for cases where 〈τQ〉 ≈ ε.
For the corresponding hybrid analysis of eq. (1.3) we have a distribution similar to

eq. (2.2),

F̃Q
1 (τ̃) = (1− ε̃)δ(τ̃) + ε̃δ(τ̃ − 1) , (2.5)

with moments

〈τ̃Q〉 = ε̃, and (σQ
τ̃ )2 = ε̃(1− ε̃) . (2.6)

Note that, since the jets that were tagged in the conventional analysis are typically still

tagged, and the Qjets procedure allows more jets to be tagged, with τ̃Q
j = 1 in the hybrid

analysis, we expect that ε̃ > ε.

2.1 Cross-section measurement

As a first detailed example consider the statistical uncertainties inherent in the measure-

ment of the production cross-section of jets containing the desired heavy particle. First,

– 6 –
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imagine that NS jets are selected at random from a set of W -jets. The total number of

(correctly) tagged W -jets (or NT ) is then given as

NT =

NS∑
j=1

τj . (2.7)

Since NT is a sum of weights, it can exhibit non-integral values for the Qjets procedure.

The probability distribution describing NT , for a given sample size NS , can be constructed

in terms of F1,

FNS (NT ) =

[
NS∏
k=1

∫
F1(τk)dτk

]
δ

(
NT −

NS∑
k=1

τk

)
. (2.8)

For future reference the first two moments of this general distribution are

〈NT 〉NS =

∫
NTdNTFNS (NT ) =

[
NS∏
k=1

∫
F1(τk)dτk

]
NS∑
k=1

τk = NS〈τ〉 , (2.9)

and

〈N2
T 〉NS =

∫
N2
TdNTFNS (NT ) =

[
NS∏
k=1

∫
F1(τk)dτk

](
NS∑
k=1

τk

)2

=

[
NS∏
k=1

∫
F1(τk)dτk

]NS∑
k=1

τ2
k +

NS∑
k 6=l

τkτl


= NS〈τ2〉+NS(NS − 1)〈τ〉2 = N2

S〈τ〉2 +NS

(
〈τ2〉 − 〈τ〉2

)
≡ N2

S〈τ〉2 +NSσ
2
τ .

(2.10)

For the conventional procedure (with a binary valued τ) FC
NS

(NT ) is given by the

probability of selecting NT objects from a set of NS objects and the pdf is given by a

Binomial distribution of mean ε:

FC
NS

(NT ) =

[
NS∏
k=1

∫
FC

1 (τk)dτk

]
δ

(
NT −

NS∑
k=1

τk

)

=
NS !

NT !(NS −NT )!
εNT (1− ε)NS−NT ≡ B(NT |NS , ε) ,

(2.11)

with moments

〈NC
T 〉NS = NSε

〈
(
NC
T

)2〉NS = N2
Sε

2 +NSε(1− ε) .
(2.12)

Next we consider measuring the production cross section for the tagged jets. As noted

above, the total statistical uncertainty depends on both the Poisson uncertainty and the

sampling uncertainty. If the expected number of jets (for a given luminosity L) is N , on

average the probability P of tagging NT jets is given by:

P(NT |N) =

∞∑
NS=NT

Pois(NS |N)× FNS (NT ) . (2.13)
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Evaluating eq. (2.13) in the conventional case is easier than one might expect, since the

combination of a Poisson process and a Binomial process is still a Poisson process. We have

PC(NT |N) =

∞∑
NS=NT

Pois(NS |N)× FC
NS

(NT )

=

∞∑
NS=NT

Pois(NS |N)× B(NT |NS , ε) = Pois(NT |εN),

(2.14)

i.e., it is a Poisson distribution with mean εN . Thus we can still apply our “
√
N” intuition.

Using eq. (2.14) (and eq. (2.1)) we find that the fractional uncertainty in the number of

conventionally tagged jets is

δNC
T

NC
T

=

√
σ2

Pois(NT )

〈NT 〉Pois
=

√
εN

εN
=

1√
εN

, (2.15)

as already noted in eq. (1.1).

Thus, if we observe 100 events with tagged signal jets in L = 1 fb−1 with ε = 50%, we

would report a cross section for signal jets of 200± 20 fb (i.e., σ = NT /ε/L = 100/0.5 fb,

and δσ/σ = δNT /NT = 1/
√

100 = 1/10).

Evaluating statistical uncertainties for a general F1(τ), e.g., a Qjets FQ
1 (τ), is slightly

more complicated. In particular, for the Qjets case NT is a sum of non-integer weights

and so can exhibit non-integer values. For example, consider a sample of 5 jets/events.

If, at the non-integer value 4.5, FQ
5 (4.5) = 0.1, then we interpret this to mean that the

probability of measuring one jet/event in the bin 4.5 ± ρ/2 is 0.1 × ρ, for infinitesimal ρ.

In the following manipulations we treat NT as a continuous variable. The mean of the

distribution P(NT |N) is obtained from (recall eq. (2.9))

〈NT 〉 =

∫
NT dNT P(NT |N) =

∞∑
NS=0

Pois(NS |N)

∫ NS

0
NT dNT FNS (NT )

=
∞∑

NS=0

Pois(NS |N)NS〈τ〉 = 〈τ〉N .

(2.16)

The second moment of P(NT |N) is found from (recall eq. (2.10))

〈N2
T 〉 =

∫
N2
T dNT P(NT |N) =

∞∑
NS=0

Pois(NS |N)

∫ NS

0
N2
T dNT FNS (NT )

=

∞∑
NS=0

Pois(NS |N)
(
NSσ

2
τ +N2

S〈τ〉2
)

= Nσ2
τ +N(N + 1)〈τ〉2 .

So the desired variance is

(δNT )2 ≡ 〈N2
T 〉 − 〈NT 〉2 = Nσ2

τ +N(N + 1)〈τ〉2 −N2〈τ〉2

= N
(
σ2
τ + 〈τ〉2

)
.

(2.17)
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This is the general result including the analysis above for the conventional case in

eq. (2.15), when we recall that in the conventional scenario (as in eq. (2.4)) 〈τC〉 = ε,

(σC
τ )2 = ε(1 − ε) so that (σC

τ )2 + 〈τC〉2 = ε. In the Qjets analysis the distribution F1(τ)

becomes non-zero at intermediate τ values (τ 6= 0, 1), which, as already suggested, serves

to reduce στ from its “conventional” value, as we will see explicitly shortly.

So it follows that for a general probability distribution F1(τ) we have

δNT

NT
=

1√
N
×

√
1 +

σ2
τ

〈τ〉2
. (2.18)

Since in the general case, τk ≤ 1.0 and thus τ2
k ≤ τk, the averages must obey

〈τ2〉 ≤ 〈τ〉 ⇒ σ2
τ ≡ 〈τ2〉 − 〈τ〉2 ≤ 〈τ〉(1− 〈τ〉) . (2.19)

Thus we obtain (essentially as claimed in the Introduction) that

1√
N
≤ δNT

NT
≤ 1√

〈τ〉N
. (2.20)

Comparing this to eq. (2.15) we see that the upper limit is saturated for the conventional

procedure with binary valued tagging. This allows for the the fractional uncertainty in the

cross-section measurement to be reduced by up to a factor of
√
〈τC〉 (=

√
ε) if weighted

jets are used in the measurement. This is the advantage of using weighted jets — while

we are still subject to the Poisson uncertainties in eq. (2.14), the sampling uncertainties,

encoded in B(NT |NS , ε) for a conventional tagging procedure, are reduced.

2.2 Mass measurement

The statistical uncertainty of a cross section measurement is straightforward to compute

with Qjets because the probability distribution for the number of tagged events factorizes

nicely into one factor capturing the effects of Poisson uncertainties and one capturing

the effects of sampling uncertainties (see eq. (2.13)). This is not generally true for other

quantities that involve a weighted average rather than a simple sum, e.g., the average

tagged jet mass is defined by

mT =

∑NS
j=1 µjτj∑NS
j=1 τj

=
1

NT

NS∑
j=1

µjτj . (2.21)

The corresponding expression relevant to the hybrid analysis of eq. (1.3) is

m̃T =

∑NS
j=1 µj τ̃j∑NS
j=1 τ̃j

=
1

ÑT

NS∑
j=1

µj τ̃j . (2.22)

One can still relate the relevant uncertainties to the underlying probability distribution

functions; however, the resulting expressions are more complicated. In particular, F1(τ) is

no longer enough. We now need to to know the probability distribution as a function of both

– 9 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
2

τ and µ. We label this distribution F1(µ, τ), which denotes the probability distribution in

the (µ, τ) plane. Note that F1(τ) is simply related to F1(µ, τ) by

F1(τ) =

∫
dµF1(µ, τ) . (2.23)

For illustration we show the FC
1 (µ, τ) and FQ

1 (µ, τ) distributions in figure 2 derived

from a sample of W -jets. In the conventional procedure, a jet with jet mass inside a

pre-defined mass window, for example, Ω = (70− 90) GeV for W -tagging, is tagged (with

τ = 1). This fact is demonstrated by FC
1 (µ, τ), where all non-zero entries are in the bin

at τ = 1 and the jet mass distribution peaks around the W -mass. On the other hand,

FQ
1 (µ, τ) shows that there are non-zero probabilities for tagging jets with efficiency τQ in

the full range [0, 1] for jet masses in the tagging window Ω. Note that the contributions

that lead to the strictly τ = 0 part of the distribution (see, for example, eq. (2.2)) all arise

from µ values outside of Ω.

In this section, we simply define moments of the two-dimensional distribution, and

leave all technical details to appendix B. The moments of interest, the single averages, the

two-dimensional mean, variance and covariance are given by

〈τ〉 ≡
∫
dµ

∫ 1

0
dτ τF1(µ, τ) =

∫ 1

0
dτ τF1(τ) ,

〈µτ〉 ≡
∫
dµ

∫ 1

0
dτ µτF1(µ, τ) ,

σ2
τ ≡

∫
dµ

∫ 1

0
dτ (τ − 〈τ〉)2F1(µ, τ) ,

σ2
µτ ≡

∫
dµ

∫ 1

0
dτ (µτ − 〈µτ〉)2F1(µ, τ) ,

σ(τ, µτ) ≡
∫
dµ

∫ 1

0
dτ (µτ − 〈µτ〉)(τ − 〈τ〉)F1(µ, τ) .

(2.24)

Note especially that, since τ and µ are correlated by F1(µ, τ), we are now interested in

both the variance of the parameters τ and µτ and in the covariance σ(τ, µτ).

So we are now ready to consider the measurement of the average (weighted) jet mass as

defined in eq. (2.21), where we want to understand the expected improvement in precision

from using the Qjets technique. Proceeding essentially as we did in the cross section case,

the expected average value of mT in a sample of NS jets, is given by (recall eq. (2.21))

〈mT 〉NS '
〈µτ〉
〈τ〉

[
1 +

σ2
τ

NS〈τ〉2
− σ(τ, µτ)

NS〈µτ〉〈τ〉

]
. (2.25)

As explained in the appendix, we are expanding in the fluctuations around the average

values and assuming that the higher order fluctuations are negligible. The corresponding

variance in this quantity is given by

(δmT )2
NS

= 〈(mT − 〈mT 〉NS )2〉NS '
〈µτ〉2

NS〈τ〉2

[
σ2
µτ

〈µτ〉2
+

σ2
τ

〈τ〉2
− 2

σ(τ, µτ)

〈µτ〉〈τ〉

]
. (2.26)
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Figure 2. Illustration of how FC
1 (µ, τ) and FQ

1 (µ, τ) may behave for a sample of W -jets. Since

these plots are for illustration purposes only, we do not provide the numerical values associated

with different shades of red. Qualitatively, the lightest shade in these plots represents a vanishing

F1(µ, τ) value, and a darker shade represents a larger value of F1. Note that all jets in the jet mass

window (70− 90) GeV are tagged (with τ = 1) in a conventional procedure and so only the τ = 1

boxes will be non-zero for FC
1 (µ, τ). On the other hand, FQ

1 (µ, τ) can be non-zero in the entire

(µ, τ) plane.

If we average over samples (to take into account the Poisson uncertainties) within an

experiment with a given luminosity, then we have NS → N = σL in the denominator

of both eq. (2.25)) and eq. (2.26), plus corrections of order 1/N2. Combining the above

results, the ratio of the fluctuations to the average value can be written as:(
δmT

〈mT 〉

)2

=
1

N

(
σ2
µτ

〈µτ〉2
+

σ2
τ

〈τ〉2
− 2

σ(τ, µτ)

〈µτ〉〈τ〉

)
+O

(
1

N2

)
. (2.27)

We can easily evaluate this quantity for the conventional binary tagging procedure. By

definition, and as illustrated in figure 2, τ = 1 for µ ∈ Ω when we consider the pdf FC
1 (µ, τ).

The fractional mass uncertainty of eq. (2.27) for the conventional tagging procedure with

average tagging efficiency ε is then(
δmC

T

〈mC
T 〉

)2

=
1

N
×
(
σC
µ

)2
ε〈µC〉2

+O
(

1

N2

)
, (2.28)

where we define the properly normalized mass distribution moments in the mass window

Ω as

〈µ〉 ≡ 1

NΩ

∫
Ω
dµ

∫ 1

0
dτ µF1(µ, τ) ,

σ2
µ ≡

1

NΩ

∫
Ω
dµ

∫ 1

0
dτ (µ− 〈µ〉)2 F1(µ, τ) ,

with NΩ =

∫
Ω
dµ

∫ 1

0
dτ F1(µ, τ) .

(2.29)
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Here NΩ fixes the normalization of the pdf F1 in the mass window Ω. In eq. (2.28) we

follow the convention in eq. (2.4) to denote that the moments 〈µC〉 and σC
µ are calculated

from eq. (2.29) using the conventional pdf FC
1 (µ, τ). Note that in the conventional case

the normalization is

(NΩ)C =

∫
Ω
dµ

∫ 1

0
dτ FC

1 (µ, τ) =

∫ 1

0
dτ

(∫
Ω
dµFC

1 (µ, τ)

)
=

∫ 1

0
dτ ε δ(1−τ) = ε , (2.30)

where we have used the fact that in the conventional or classical analysis all jets in the

tagging window have τ = 1. Once again, the reader is directed to appendix B for details.

3 Review of Qjets

The purpose of this section is to demonstrate how the Qjets procedure assigns a jet mass

(µQ
j ) and tagging efficiency (τQ

j ) to a given jet j. Before describing the details, let us

first review the general idea of the procedure. As suggested in ref. [44], we start with jets

identified using a standard algorithm like Anti-kT [47]. We recluster the constituents of the

given jet using a sequential and probabilistic recombination algorithm, such as kT [48, 49]

or Cambridge/Aachen (C/A) [50–52]. During clustering, pruning [24, 25] is performed in

order to remove unwanted elements in the jet, i.e., those elements not arising from the

decay of the desired heavy object. Through pruning we map a jet to its pruned version. If

the above set of steps is repeated on the same jet using a slightly different recombination

metric as explained below (the Qjets procedure), we obtain a different four-vector after

pruning due to the probabilistic nature of the Qjets clustering algorithm. We iterate the

procedure a number of times (say Niter) to map a jet to a set of pruned four-vectors.

The quantities µQ
j and τQ

j are then calculated from the invariant masses of these pruned

four-vectors.

In more detail, sequential recombination algorithms build up jets by merging four-

momenta in pairs over many steps. The behavior of the algorithms is determined by

the metric for measuring the “distance” between four-momenta. At each stage in the jet

clustering, one identifies the pair of four-momenta with the smallest distance and merges

them together (i.e., adds the corresponding 4-momenta and replaces the merged pair with

this sum in the updated list of 4-momenta). This merging step is repeated on the list

of 4-momenta until all remaining 4-momenta are separated by more than a predefined

cutoff. See ref. [53] for a more comprehensive discussion. For instance, the kT [48, 49] and

C/A [50–52] algorithms correspond to the following metrics:

dkTij ≡ min{p2
Ti , p

2
Tj}∆R

2
ij and d

C/A
ij ≡ ∆R2

ij , (3.1)

where ∆R2
ij = ∆y2

ij +∆φ2
ij is the squared angular distance between a pair of four-momenta

i and j (with y the usual rapidity and φ the azimuthal angle). Thus the C/A algorithm

merges the 4-momenta in strict order of their angular separation with closest merged first.

The kT algorithm, in contrast, gives some emphasis to merging the smallest pT elements

first and so the two algorithms will tend to identify jets with slightly different constituents.

– 12 –
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As implemented in ref. [44], the Qjets procedure also processes jets via pairwise merg-

ings with pruning applied at each merging step. However, unlike traditional clustering

which works deterministically, Qjets uses a probabilistic clustering procedure:

1. At every stage of clustering, for each pair of four-vectors (say, i and j), the conven-

tional distance metric dij from eq. (3.1) (for kT or C/A) is evaluated for all such

pairs. This is translated into a weight ω
(α)
ij via

ω
(α)
ij ≡ exp

{
−α(dij − dmin)

dmin

}
, (3.2)

where dmin is the smallest dij at this stage in the clustering process and α (termed

rigidity) is a continuous real parameter. This weight is then used to assign a proba-

bility Ωij to each pair via

Ωij = ωij/N, whereN =
∑
〈ij〉

ωij . (3.3)

2. A random number is generated and used to select a pair 〈ij〉 with probability Ωij .

Note that the conventional clustering process will always choose the pair with the

minimum dij at this point and corresponds to the limit α→ +∞.

3. Having chosen the pair 〈ij〉, the standard pruning procedure is applied. The softer

of the two selected four-momentum pair 〈ij〉 is discarded, if both of the following

criteria are satisfied for a given set of parameters (zcut, Dcut).

z ≡
min

(
pTi , pTj

)
pTp

< zcut and ∆Rij > Dcut . (3.4)

Otherwise, the pair is merged.

4. Steps (1-3) are repeated until all constituents are clustered. The invariant mass of

the resultant pruned four-vector is stored for further analysis.

5. Steps (1-4) are repeated Niter times. This procedure yields a set of Niter masses for

every jet it operates on. Due to the random numbers in step 2 these masses are

generally not the same, but instead define a distribution of masses.

In summary, the Qjets procedure maps the initial jet j to a set of masses, {mj,k},
where k takes integer values in [1, Niter]. For each jet j we can construct a probability

distribution fj(mj) as suggested in figure 3, with normalization
∫
fj(mj)dmj = 1. For

Niter � 1 this distribution will be relatively smooth and we will treat it as a continuous

function,

fj(mj) ≡ lim
Niter�1

1

Niter

Niter∑
k=1

δ(mj −mk,j) . (3.5)

– 13 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
2

Figure 3. Sketch of the pruned jet mass distribution for a jet processed many times with Qjets.

The red area represents the mass window (Ω), the fraction of the jetmass distribution within the

mass window (blue) is the tagging efficiency of the jet τQj , and µQ
j is the mean jetmass-in-the-

window. µa is the average jet mass for the entire distribution.

As described above, to define a tagging process, for example for W-jets, we focus on the

W-like mass window Ω illustrated in figure 3. For a given jet j, the tagging probability τQ
j is

the fraction of the Niter clustering sequences yielding a pruned mass within the W -window,

τQ
j =

1

Niter

∑
k�mj,k∈ Ω

1 =

∫
Ω
fj(mj)dmj . (3.6)

Similarly we define µQ
j as the mean value of the pruned jet mass for these W -like interpre-

tations for the same jet. Thus we have

µQ
j =

1

τjNiter

∑
k�mj,k∈ Ω

mj,k =

∫
Ω fj(mj)mjdmj∫

Ω fj(mj)dmj
. (3.7)

For comparison, µa in figure 3 indicates the average jet mass for the full distribution, not

just in the signal window. For a background (QCD) jet, this full-average mass value is

generally quite different from µQ
j .

Let us quickly review the Qjets procedure up to this point. We begin with a choice of

the jet finding algorithm and kinematic cuts, e.g., the anti-kT jet algorithm with R = 1.0

and kinematic cuts on the jet, pT > 200 GeV and rapidity |y| ≤ 1.0. Then we subject

the jets identified in this fashion to the Qjets procedure with specific choices of the Qjets

parameters α and Niter to produce the single-jet pruned mass distribution in figure 3. With

a specific signal jet in mind, say boosted W-jets, we define the mass window Ω in figure 3.

This procedure results in values for τQ
j and µQ

j from eqs. (3.6) and (3.7), which provide

a measure of the likelihood that the given jet is a signal jet along with an estimate of the

“true” mass of that signal jet.
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4 Results from phenomenological studies

As an introduction to the following discussion of the results of our phenomenological stud-

ies, recall that the goal of the current work is to provide a more detailed explanation of

the claim made in ref. [44] that the Qjets procedure improves the statistical stability of jet

observables. The fundamental point is that, unlike a conventional binary tagging algorithm

that identifies a jet as either tagged or not, the Qjets procedure yields a continuously valued

tagging probability for a jet (as detailed in section 3). If observables are constructed using

these tagging probabilities, it is non-trivial to estimate the statistical uncertainties associ-

ated with these observables as the tagging probabilities exhibits a continuous distribution

on the interval [0, 1]. For example, the well known result that the statistical uncertainty

associated with the measurement of the number of tagged jets is given by δNT =
√
NT , is

no longer true. In section 2, we gave analytic expressions for these uncertainties. In this

section, we report the results of our phenomenological studies, where we analyze carefully

prepared event samples (generated by standard Monte Carlo event generators) and use

the formulas from section 2 to demonstrate that indeed the Qjets procedure improves the

statistical uncertainties associated with cross-section and mass measurements.

To be specific, we study the problem of tagging jets containing the decay products of

W -particles. We treat a set of WW diboson events, where both W s decay hadronically,

as signal events. We also consider QCD dijet events that provide the primary background

to W -tagging. We generate both signal and background events for a 14 TeV LHC, using

Pythia 8 [54]. Additionally, we use the “ATLAS UE Tune AU2-CTEQ6L1” [55] provided

by Pythia 8 to give these events a realistically busy environment corresponding to actual

proton-proton collisions. The detector simulation is provided by Delphes [56]. In particu-

lar, we use the default parameters provided by Delphes to simulate the ATLAS detector.

Delphes output consists of energy flow four-vectors that are constructed out of the calorime-

ter cells, tracks, and muon elements of the detector. We do not impose any additional cut

on rapidity or pT on the Delphes output. We cluster the Delphes outputs into anti-kT jets

with R = 0.7 and pT > 500 GeV using Fastjet [57]. Only the leading jet from each event is

selected for further analysis.

We perform the Qjets procedure using the publicly available Qjets plugin.1 The con-

stituents of the selected jets are reclustered for various values of the rigidity parameter

(listed in table 1) using the C/A definition of the separation metric (see eq. (3.1)). For

the pruning parameter Dcut we use Dcut = m/pT , where m and pT are the mass and the

transverse momentum of the unpruned jet respectively. We perform our analysis for two

zcut parameter values, 0.1 and 0.15, where the smaller value corresponds to the default or

optimized pruning case and the larger value should lead to a bit of “over”-pruning. Re-

sults for both of these values are listed in table 1. Finally, we set the W -mass window to

(70− 90) GeV for the purpose of tagging.

At this point, we reiterate that in this work we are interested in both the effects of a

switching from a binary to a continuous tagging variable and from the corresponding change

in the weighted average mass. In order to define a separation of these effects we introduced

1http://jets.physics.harvard.edu/Qjets.
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a new binary tagging efficiency τ̃Q for every τQ obtained after the Qjets procedure (as

defined in the Introduction). The ratio of the statistical uncertainty estimated using τQ

to that using τ̃Q therefore provides an estimate of the statistical improvement arising

primarily from the differences between binary and continuous tagging variables (with the

identical mass distribution). We also consider the differences between an analysis using(
µQ, τ̃Q

)
versus one using

(
µC, τC

)
to try to isolate the effects primarily due to the changes

in the mass distribution (which we label “physics” effects).

To introduce our explicit numerical results it will be useful to make a few more com-

ments to define the notation used:

• As noted above, we are studying both a sample of W -jets, or signal jets, and QCD-

jets, or background jets. The corresponding results will be labeled by S and B.

• We also include results for the hybrid analysis of eq. (1.3) that is intended to sep-

arate statistical from physics effects. In particular, since this analysis uses a binary

τ̃Q (with values only 0 and 1), the corresponding average tagging efficiency and fluc-

tuation are given by 〈τ̃Q〉 = ε̃ and σQ
τ̃ = ε̃ (1− ε̃) respectively (see eq. (2.6)). The

uncertainties associated with the measurement of the cross-section and mass in this

hybrid analysis can be estimated from the corresponding formulas for conventional

analysis in eq. (2.15) and eq. (2.28), respectively, using the substitutions ε → ε̃,

〈µC〉 → 〈µ̃Q〉, and σC
µ → σQ

µ̃ . Once again we follow the convention that the appear-

ance of τ̃ and µ̃ in these moments reflects the fact that these moments are calculated

from their definitions in eqs. (2.3), (2.24), (2.29) using the hybrid pdf F̃Q
1 , which we

discuss in more detail below.

The statistical quantities we look at are given by the following equations:

δSQ/
√
SQ

δS̃Q/
√
S̃Q

=
δSQ

√
SQ

=

√
〈τS〉+

σ2
τS

〈τS〉
,

δBQ/
√
BQ

δB̃Q/
√
B̃Q̃

=
δBQ

√
BQ

=

√
〈τB〉+

σ2
τB

〈τB〉

SQ/δBQ

S̃Q/δB̃Q
=

(
〈τS〉
ε̃S

)
×

√
ε̃B
〈τB〉

× 1√
〈τB〉+

σ2
τB
〈τB〉

,

δmQ
T /m

Q
T

δm̃Q
T /m̃

Q
T

=

√√√√( σ2
µSτS

〈µSτS〉2
+

σ2
τS

〈τS〉2
− 2

σ(τS , µSτS)

〈τS〉〈µSτS〉

)
/

(
σ2
µ̃S

ε̃S〈µ̃S〉2

)
,

(4.1)

where we have used the equations derived in section 2.

In table 1, we tabulate the numerical estimations of the various observables for different

values of zcut and α. In the remaining part of this section we provide a brief description

of the patterns observed in table 1. Detailed explanations of these observations will be

provided in the following two sections.

The first four observables in the table capture what we have labeled the statistical

improvements seen in the Qjets procedure for the signal and the background samples. The

quantity δNQ
T /
√
NQ
T for both signal and background represents the improvement in the
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Statistical Effects Total uncertainty

α

δSQ
√
SQ

δBQ
√
BQ

SQ/δBQ

S̃Q/δB̃Q

δmQ
T /m

Q
T

δm̃Q
T /m̃

Q
T

SQ/δBQ

SC/δBC

δmQ
T /m

Q
T

δmC
T /m

C
T

zcut zcut zcut zcut zcut zcut

0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15

10.0 0.99 0.98 0.94 0.94 1.17 1.15 1.00 1.01 1.05 1.05 0.96 0.96

1.00 0.95 0.94 0.85 0.85 1.42 1.38 1.00 1.05 1.16 1.17 0.86 0.86

0.10 0.90 0.88 0.74 0.72 1.63 1.57 1.00 1.08 1.26 1.29 0.73 0.71

0.01 0.86 0.82 0.69 0.66 1.61 1.54 0.98 1.00 1.22 1.25 0.65 0.56

0.00 0.87 0.82 0.77 0.72 1.28 1.24 0.88 0.92 1.00 1.03 0.60 0.52

Table 1. Statistical uncertainties associated with various measurements of cross-section and mass.

Formulas used to estimate these quantities as listed in eq. (4.1).

uncertainty of the measured cross-section due to what we have labeled statistical effects.

Note that this quantity is unity for a binary tagging variable, which is why the denominator

becomes unity in the first line of eq. (4.1). For large α these quantities are close to 1 for

both values of the zcut parameter. This situation reflects the fact that at high rigidity

the individual mass distribution for each jet is quite narrow even after applying the Qjets

procedure and τ mostly has the values 0 or 1 (i.e., the Qjets procedure approaches the

“classical” limit as α → ∞). As indicated in table 1, the uncertainties decrease as α is

decreased and we include an increasing range of different clustering/pruning scenarios until

a plateau is reached at α ∼ 0.01 (for the background the uncertainty actually turns over

and starts to increase again as α→ 0). It is interesting also to note that the improvement

with decreasing α is slightly better (i.e., smaller values of the ratio) for the less optimal zcut

value (0.15). This feature presumably arises from the fact that we start, in the classical

limit, with less than optimal pruning, which allows the Qjets procedure more opportunity to

include different clustering/pruning scenarios that improve the situation. The background

case is somewhat less zcut dependent as expected, as there is less of a clear definition of

optimal pruning.

The statistical improvement in the discovery potential is captured by the third quantity,

the ratio
(
SQ/δBQ

)
/
(
S̃Q/δB̃Q

)
. The larger this number becomes, the better is the chance

that a precise measurement of the signal can be performed with a given luminosity. Once

again we see that this observable is maximized for a small α ∼ 0.01. The small zcut

dependence in this case makes the not unexpected suggestion that it is best for the Qjets

procedure to perturb around an optimal classical choice of parameters.

Finally, the fourth observable in table 1 provides an estimate of the uncertainty associ-

ated with the measurement of the jet mass arising from what we have labeled as statistical

effects. We interpret the fact that this ratio remains near unity (except for very small

values of α ∼ 0) as confirmation that we have largely succeeded in separating the effects

of binary versus continuous tagging variables, which we see are small for this variable,

from the effects of changing the mass distribution itself, which will be important for this

quantity. We refer the reader to section 5 for further explanation of these observations.
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Figure 4. The probability distributions FQ
1 (τ), F̃Q

1 (τ), FQ
1 (µ, τ), F̃Q

1 (µ, τ) derived from a sample

of W -jets. These particular distribution are produced using α = 1.0 and zcut = 0.1. For the rest of

the parameters, see section. 4.

For completeness we include our estimate of the total improvements provided by the

Qjets procedure using the last two observables in table 1. These observables compare the

uncertainties in the Qjets procedure to those in the conventional or classical procedure.

As explained earlier, these quantities can be calculated from eq. (4.1) by the replacements

ε̃ → ε, 〈µ̃Q〉 → 〈µC〉, and σQ
µ̃ → σC

µ . Overall we find that the behavior of the statistical

uncertainties associated with the cross-section and mass is similar to what was described

in ref. [44]. The cross-section measurement is most stable in the range 0.1 ≥ α > 0.01,

whereas the mass uncertainty prefers even smaller rigidity (0.01 > α ≥ 0.0).

Note that the contribution to the uncertainties from what we have labeled physics

effects can be found by simply dividing the total uncertainty by the corresponding statistical

contribution. These results will be discussed in more detail in section 6. It is worthwhile

noting that this exercise already tells us that the effects we labeled physics will be more

important than the statistical effects for the mass measurement uncertainties, as we just

suggested.

5 Understanding the statistical effects

In order to understand the uncertainties listed in table 1 it is essential to study the prob-

ability distributions F1(τ) and F1(µ, τ). In figure 4, we display these distributions as

derived from a sample of W -jets. On the left are the distributions FQ
1 (τ) and FQ

1 (µ, τ)

arising from the full Qjets analysis, while the plots on the right illustrate the distributions
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F̃Q
1 (τ) and F̃Q

1 (µ, τ) from the hybrid analysis. Recall that the latter analysis uses the

binary tagging probability τ̃Q derived from the standard Qjets probability τQ as defined

in eq. (1.3), i.e., all nonzero τQ values (τQ > 0) correspond to τ̃Q = 1. By construction,

FQ
1 (τ = 0) = F̃Q

1 (τ = 0) as illustrated by the equal heights of the zero bins of FQ
1 (τ) and

F̃Q
1 (τ) in figure 4. The difference between the two distributions arises from the fact that the

rest of the probability in F̃Q
1 (τ) all lies in the τ = 1 bin, whereas FQ

1 (τ) exhibits nonzero

probability at values of τ between 0 and 1 (although it is still strongly peaked in the τ = 1

bin). In other words in moving from the F̃Q
1 (τ) distribution to the FQ

1 (τ) distribution (i.e.,

moving from a binary tagging probability to a continuous one), probability “leaks out” of

the τ = 1 bin into the 1 > τ > 0 bins.

The lower plots of FQ
1 (µ, τ) and F̃Q

1 (µ, τ) provide additional information. In particular,

almost all jets that leak-out of the τ = 1 bin, as one moves from F̃Q
1 (µ, τ) to FQ

1 (µ, τ), lie

near or at one of the boundaries of the window in µ. Also note that the distribution in µ

corresponding to τ = 1 is peaked near the W mass (as expected for an underlying W -jet

sample), and that the τ = 0 bin does not actually appear in the lower plots as all of the

corresponding µ values are outside of the µ window (by definition). Lastly, but perhaps

most importantly, if we sum over τ but with no explicit τ weighting, the resulting mass

distributions are identical,
∫
dτF̃Q

1 (µ, τ) =
∫
dτFQ

1 (µ, τ). To make this last point explicit

we note the following results for the moments of these two distributions,

ÑQ
Ω =

∫
Ω
dµ

∫ 1

0
dτ F̃Q

1 (µ, τ) = ε̃ = 〈τ̃Q〉 =

∫
Ω
dµ

∫ 1

0
dτ FQ

1 (µ, τ) = NQ
Ω ,

〈µ̃Q〉 =
1

ÑQ
Ω

∫
Ω
dµ

∫ 1

0
dτ µF̃Q

1 (µ, τ) =
1

NQ
Ω

∫
Ω
dµ

∫ 1

0
dτ µFQ

1 (µ, τ) = 〈µQ〉 ,

(
σQ
µ̃

)2
=

1

ÑQ
Ω

∫
Ω
dµ

∫ 1

0
dτ (µ− 〈µ̃Q〉)2F̃Q

1 (µ, τ) =
1

NQ
Ω

∫
Ω
dµ

∫ 1

0
dτ (µ− 〈µQ〉)2FQ

1 (µ, τ)

=
(
σQ
µ

)2
. (5.1)

These equalities should help to confirm that comparing the Qjet and Q̃jet analyses, as

in table 1, focuses on the statistical effects, while comparing the Q̃jet analysis with the

conventional analysis focuses primarily on the physics effects caused by the changes in the

mass distributions, as we will discuss in section 6.

With these insights, we can construct an explicit toy model that helps to illuminate the

connection between the two distributions FQ
1 and F̃Q

1 . We can approximate the filled bins

(closest to the boundaries) as being described by delta functions (recall the description of

the conventional result in eq. (2.2)). Considering first adding just a single extra bin near

the upper boundary, we have

F̃Q
1 (τ) = (1− ε̃)δ(τ) + ε̃ δ(τ − 1)

FQ
1 (τ) ' F̃Q

1 (τ)−∆
[
δ (1− τ)− δ (1− η − τ)

]
,

(5.2)

where (as shown in eq. (2.5)) F̃Q
1 (τ) is represented by a binomial representation with mean

ε̃ and variance σ2
τ̃ = ε̃ (1− ε̃). The extra term in the expression for FQ

1 (τ) is intended to
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present the fact that a small fraction of the jets, ∆, have migrated from the τ = 1 bin

to the τ = (1 − η) bin (0 < η < 1). It is straightforward to evaluate the corresponding

approximate mean and variance of FQ
1 (τ) in the limit ∆ � ε̃ in terms of the mean and

variance of F̃Q
1 (τ). To first order in ∆/ε̃ we find

〈τ〉 ' ε̃−∆η ,

σ2
τ ' ε̃ (1− ε̃) + ∆η

(
η − 2 (1− ε̃)

)
= σ2

τ̃ + ∆η
(
η − 2 (1− ε̃)

)
.

(5.3)

Applying this result to the first few column of table 1 we obtain

δSQ/
√
SQ

δSQ̃/
√
SQ̃

=
δSQ

√
SQ

=

√
〈τs〉+

σ2
τs

〈τs〉
' 1− ∆

2ε̃
η (1− η) ≤ 1 . (5.4)

Noting that this expression is symmetric in η → 1 − η, we see that the bins at both ends

of the τ distribution will contribute in a similar fashion, decreasing the scaled fluctuations

in this observable. So, if we define a more accurate approximate expression for F1(τ),

including all of the filled in bins (ηk near 0 and near 1),

FQ
1 (τ) ' F̃Q

1 (τ)−
∑
k

∆k

[
δ (1− τ)− δ (1− ηk − τ)

]
, (5.5)

we find
δSQ/

√
SQ

δSQ̃/
√
SQ̃
' 1−

∑
k

∆k

2ε̃
ηk (1− ηk) ≤ 1 . (5.6)

Since 0 ≤ ηk, ε̃ ≤ 1 and ∆k > 0, all of the terms in the sum serve to decrease these

fluctuations (at least to leading order in ∆k/ε̃). As rigidity is decreased and the analysis

moves further from the “classical” limit, we expect more bins away from the edges to

be filled-in, which explains, at least qualitatively, the systematic decrease with decreasing

rigidity (at least until we reach zero rigidity) in the first two columns, both signal and

background, in table 1. Note that the deviation of the l.h.s. from 1 in eq. (5.6) is essentially

proportional to the factor
∑

k ∆k/ε̃. In our toy example, this represents the fraction of jets

that occupied the τ = 1 bin in F̃Q
1 (τ), but correspond to a smaller τ value in FQ

1 (τ). As

we mentioned earlier, these jets have masses near the boundary of the mass window and

we can say that
∑

k ∆k/ε̃ represents the fraction of jets that reside near the mass boundary

(at least in our toy example) and that, after the full Qjets procedure, exhibit less than unit

tagging probability.

To provide a more detailed picture of the rigidity (α) dependence exhibited in table 1,

figure 5 shows plots of FQ
1 (τ) and FQ

1 (µ, τ) for various values of the rigidity with zcut = 0.1.

To appreciate these plots it is important to note a couple of relevant features. In order

to make visible the values at intermediate τ values, the plots of FQ
1 (τ) are semi-log plots,

while the 2-D FQ
1 (µ, τ) plots use a linear scale for the color scale. Further, the τ = 0

bin at the extreme left of the FQ
1 (τ) plots corresponds to µ values not shown in the 2-D

FQ
1 (µ, τ) plots, which show only the µ values in the window Ω. To understand the general

structure of the plots in figure 5 recall that, as we lower the value of the rigidity parameter

α, the Qjets procedure explores an ever broader spectrum of clustering histories. This
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Figure 5. The distributions F1(τ) and F1(µ, τ) for signal (in red) and background (in blue) jets

as functions of α.

leads to changes in the plots arising from two distinct underlying effects, where both are

associated with µ values near the boundaries of the window Ω. Individual jets, whose

Qjet mass distributions are entirely within Ω for large α values, i.e., appear in the τ = 1

bin, may eventually exhibit Qjets mass distributions with tails that extend outside of Ω for

sufficiently small α values. So, as the value of α decreases, such jets will gradually populate

the bins with τ < 1, but still with µ near the boundaries, at least initially. Likewise there

are jets whose large α Qjets mass distributions are entirely outside of Ω, i.e., appear in the

τ = 0 bin, but then develop tails inside of Ω for sufficiently small α values. These jets will

gradually populate the bins at small τ values, always moving inward from the boundaries

in µ. This simple picture is generally correct for both the signal and background samples

as illustrated in figure 5. As α decreases the distributions in τ , FQ
1 (τ), for both signal and
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α

S̃Q/δB̃Q

SC/δBC S̃Q/SC
√
BC/B̃Q

zcut zcut zcut

0.10 0.15 0.10 0.15 0.10 0.15

10.0 0.90 0.91 1.16 1.18 0.776 0.774

1.00 0.82 0.85 1.48 1.61 0.554 0.530

0.10 0.77 0.82 1.81 2.12 0.427 0.385

0.01 0.76 0.81 1.91 2.32 0.399 0.351

0.00 0.78 0.83 1.93 2.37 0.406 0.350

Table 2. The physics component of the cross-section uncertainties as functions of zcut and rigidity

α, found by dividing the total uncertainty by the purely statistical component (from table. 1). We

also provide numerical values of different components in eq. (6.1) responsible for the physics part

of the cross-section uncertainties.

background, gradually fill-in at intermediate τ values leading to decreasing values of the

fluctuation σQ
τ . In turn this means that δNT /

√
NT decreases with decreasing α values as

indicated by the numbers in table 1, and the toy model analysis of eq. (5.6).

In the limit α → 0 the FQ
1 (µ, τ) plots for both signal (red) and background (blue)

suggest an “arc” structure, i.e., a ridge of enhanced probability connecting the µ boundaries

at small τ via bins at intermediate µ values at larger τ values. The primary distinction

between signal and background is the fact that the bins near τ = 1 for the background

are rapidly depopulated as α decreases, while for the signal the bins near τ = 1 maintain

a population similar to those near τ = 0 and the bins near τ = 1 always exhibit a µ

distribution with a peak near the signal mass (MW ).

Figure 5 also indicates that for large rigidity (say, α ≥ 1.0), the probabilities for finding

jets with intermediate τ values (0 < τ < 1), are tiny. In this range of α, the approximations

made in our toy model above are quite appropriate. For smaller rigidity (α < 1.0), more

and more jets occupy the intermediate τ values, new patterns emerge in the pdf FQ
1 (µ, τ),

and the deviations of FQ
1 from F̃Q

1 are not necessarily small.

6 Understanding the physics effects

We list the components of the cross-section and mass uncertainties due to what we have

labeled physics effects in table 2 and table 3 respectively. The numerical values of these

components can be evaluated by dividing the total uncertainty in table 1 by its statistical

part (also listed in table 1).

Understanding these physics quantities is relatively easier since one does not need to

think of fractional tagging efficiencies. In particular, since both the conventional and hybrid

analyses use binary tagging efficiencies, the fluctuations in the number of jets goes like

1/
√
N (recall the discussion in section 2). For example, the quantity in the table 2, which

measures the improvement in the cross-section measurement significance, simplifies to

S̃Q/δB̃Q

SC/δBC
=

(
S̃Q

SC

)
×

√
BC

B̃Q
. (6.1)
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The improvement in statistical stability, therefore, depends on two independent ratios, the

relative signal efficiency (S̃Q/SC) and (1 over) the square root of the relative background

efficiency (B̃Q/BC), for the hybrid Qjets analysis compared to the conventional analysis.

Table 2 separately exhibits the variation of these two components of eq. (6.1) with the

rigidity parameter α. To understand the exhibited behavior, we must recall our previous

discussion. As we decrease α, we include new clustering histories, and, as a result, find

that jets, which were previously not tagged (for larger α values), are now tagged. By

construction τ̃Q = 1 for these jets (even though they may have small τQ). This is why

the ratio ÑQ
T /N

C
T increases with decreasing α for both signal and background. In the case

of the (signal) W -jets, almost all jets are tagged even for large α and so S̃Q/SC increases

relatively slowly (but monotonically) as α decreases. In the language of the simple model

in the previous section (see eq. (5.6)), the behavior of the ratio S̃Q/SC is telling us about

the magnitude of the leak-in effect,
∑

k ∆k/ε̃, at least quantitatively (note that the effect

is no longer small as α approaches zero).

In the case of background jets, there are always more untagged jets than tagged ones,

some of which can be tagged when we allow a broader range of clustering histories as

α decreases. Thus the ratio B̃Q/BC increases quite rapidly with decreasing α, resulting

in the somewhat slower but still rapid decrease of the factor

√
BC/B̃Q . By eq. (6.1),

the physics component of the cross-section uncertainty in table 2 is the product of the

corresponding values in the two right-hand columns in the table. Numerically the decrease

of the background ratio is dominant, leading to a slowly decreasing cross-section uncertainty

in the hybrid Qjets analysis compared to the conventional analysis with decreasing α until

α reaches 0.01. For even smaller α values the sampling of clustering histories is so broad

that the qualitative behavior of the background ratio changes and the relative fluctuations

begin to grow.

Note also that the variation with α of the individual ratios, and the product, is some-

what stronger for the non-optimal zcut value (0.15). This is to be expected as the non-

optimal conventional result implies that more of the added clustering histories in the Qjets

analysis will correspond to an improvement. Note that this is a statement about the im-

provement in the statistical stability. Overall one is better off starting with an optimal

choice of the conventional pruning parameters to perform the Qjets procedure around.

However, the results in table 2 do suggest that the Qjets procedure can help to moderate

the impact of any initial poor choice of parameters.

Finally we turn to the mass measurement uncertainties as described by the results in

table 3. The general expressions from eqs. (2.27) and (2.28) for the signal sample yield

δm̃Q
T /m̃

Q
T

δmC
T /m

C
T

=

√
〈τC
S 〉
〈τ̃Q
S 〉
×
σQ
µ̃S

σC
µS

×
〈µC
S 〉

〈µ̃Q
S 〉

=

√
SC

S̃Q
×
σQ
µ̃S

σC
µS

×
〈µC
S 〉

〈µ̃Q
S 〉

(6.2)

The relative stability in the mass measurement depends on three important ratios, the

relative signal efficiency (SC/S̃Q), the relative fluctuation in the mass spectra (σQ
µ̃S
/σC

µS
),

and the relative average mass (〈µC
S 〉/〈µ̃

Q
S 〉). Table 3 exhibits the variation of these quantities

with α. As discussed in the previous paragraphs (and indicated in also table 2)

√
SC/S̃Q
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α

δm̃Q
T /m̃

Q
T

δmC
T /m

C
T

√
SC/S̃Q σQ

µ̃S
/σC

µS 〈µC
S 〉/〈µ̃

Q
S 〉

zcut zcut zcut zcut

0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15

10.0 0.96 0.95 0.93 0.92 1.03 1.03 1.00 1.00

1.00 0.86 0.82 0.82 0.79 1.05 1.04 1.00 1.00

0.10 0.73 0.66 0.74 0.69 0.98 0.95 1.01 1.01

0.01 0.66 0.56 0.72 0.66 0.91 0.86 1.01 1.02

0.00 0.69 0.57 0.72 0.65 0.95 0.86 1.01 1.02

Table 3. The physics component of the mass uncertainties as functions of zcut and rigidity α,

found by dividing the total uncertainty by the purely statistical component (from table. 1). We

also provide numerical values of different components in eq. (6.2) responsible for the physics part

of the mass uncertainties.

is a slowly but monotonically decreasing function as α decreases due to the increasing set

of tagged jets in the hybrid analysis, i.e., the jets leaking-in at the edge of the window Ω

as measured by the quantity
∑

k ∆k/ε̃ in our simple model.

As shown in table 3, the average jet mass remains relatively constant (〈µ̃S〉 ' 〈µC
S 〉 '

80 GeV) for all values of α. In terms of the simple model presented in the previous sec-

tion, the shift in the average jet mass (in the window Ω) in going from the conventional

analysis to the hybrid analysis is proportional to the difference between the number of jets

leaking-in from the upper edge of the window and the number leaking-in at the lower edge,

(
∑

k+ ∆k+ −
∑

k− ∆k−) /ε̃ (recall that the counting analysis, see eq. (5.6), involved the sim-

ple sum of these contributions). Since this leaking-in process is quite symmetrical (i.e., the

signal sample itself is quite symmetrical about MW with nearly identical numbers of jets

just outside the window at both ends), any shift in the average jet mass is expected to be

quite small, i.e., much smaller than the shift seen in the quantity

√
SC/S̃Q, in agreement

with the results in table 3.

The last quantity (namely, the the relative fluctuation in the mass spectra, σQ
µ̃S
/σC

µS
)

is especially interesting. Table 3 shows that this ratio first increases with decreasing α,

and then decreases. The simple model of the previous section suggests that the size of the

deviation from unity for the ratio is again set by the fraction of tagged jets that are leaking

in,
∑

k ∆k/ε̃, but now with a coefficient that, not surprisingly, depends on the shapes

of the jet mass distributions. The changes in the mass distribution can be qualitatively

understood as follows. As α is decreased and we move away from the conventional analysis,

the initial change in the mass distribution is the leaking-in of jets just outside the mass

window Ω into mass bins just inside the window (as is evident in figure 5). Thus initially

the mass distribution in the hybrid analysis is broader than in the conventional analysis

and σQ
µ̃S
/σC

µS
increases above unity with decreasing α. However, eventually, as the mass

distribution fills in the central region of the window (again see figure 5), the Qjets mass

distribution again has a width similar to the conventional case and σQ
µ̃S
/σC

µS
goes back to

unity (for α just above 0.1 in table 3). With a further decrease of α, 0.1 > α ≥ 0, the
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results in table 3 indicate that the jet mass distribution found by the Qjets procedure is

narrower than the one found by pruning alone, i.e., the Qjets procedure provides a more

efficient groomer than conventional or classical pruning.

Overall the relative uncertainty in the tagged mass measurement for the hybrid analysis

versus the conventional analysis decreases with decreasing α and the hybrid result becomes

approximately 30% smaller than the fluctuations in the conventional analysis, i.e., it is

the

√
SC/S̃Q factor that effectively controls the α dependence shown in table 3. What

we have labeled the physics part of the mass measurement uncertainty is minimized for

0.01 ≥ α ≥ 0.

7 Conclusions

The Qjets procedure is intuitively motivated by the idea that analyses of jet observables

that depend on clustering histories can be improved by considering multiple clustering

histories of a jet. On the other hand, the statistical treatment of the results can be

unintuitive and opaque. Much of the confusion lies in the fact that, while all observables

in the Qjets procedure are weighted with weights following a continuous distribution in

the interval [0, 1], the conventional approach applies no weight as long as jets are tagged,

i.e., applies a simple binary weight. Even in sophisticated multivariate analyses, where

many variables are combined in a likelihood and each jet/event is assigned a likelihood (a

continuous distribution in the interval [0, 1]) for being a signal, the likelihood variable only

provides a discriminatory variable to separate signal from background. The measurements

are subsequently estimated from the tagged jet/event sample (i.e., the jets/events that pass

the cut on likelihood to be signal) with only a binary (0 or 1) weight.

The purpose of this paper is to address this issue, namely, to provide a platform in

which the uncertainties associated with the measurements in the Qjets procedure can be

evaluated. We also propose an alternative way to calculate the uncertainties of measure-

ments. Uncertainties are traditionally estimated using Monte Carlo pseudo-experiments, in

which jets/events are picked at random from a given master-sample of jets/events (either

carefully prepared using a Monte Carlo event generator, or control-samples from collider

events), and then repeating pseudo-experiments several times. Variations of observables

over pseudo-experiments then provide an estimate of statistical uncertainties. While this

method is straightforward, it is time consuming (since pseudo-experiments need to be re-

peated many times), and still does not provide any insights regarding these measurements.

In this work we choose a different framework — we provide analytic formulas in section 2,

which relate these uncertainties with various moments of the given jets/events sample. On

the one hand, these expressions provide much faster ways to measure uncertainties; while

on the other, they help explain the physics of the uncertainties. We have also presented a

simple model of how the Qjets procedure impacts the probability distributions in both the

tagging efficiency τ and the jet mass µ, which provides further insight into the observed

numerical results.

We find that, while Poisson uncertainties associated with measurements are unavoid-

able, sampling uncertainties can be reduced by using weighted jets such as those returned
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by Qjets. We show that this additional stability in measurements provided by the Qjets

procedure can arise from two qualitatively different sources — from the transition from

unweighted to weighted measurements (which we label the statistics effects), and from the

Qjets generated changes in the distributions of jet-observables themselves, e.g., jet masses,

(which we label physics effects). Our explicit numerical results indicate how these two

kinds of effects often compete with each other, and how they vary as various Qjets pa-

rameters, especially the rigidity α, are altered. Overall, however, the Qjets procedure acts

to improve both the statistical stability of counting experiments and the precision of the

measurement of jet observables like the jet mass. Further, we have seen that the Qjets

procedure can largely remove the negative impact of a less-than-optimum choice of jet

grooming parameters on a conventional analysis.

Before we conclude, let us note that the results in this work can be easily generalized.

We obtained the expressions for uncertainties only for cross-section and mass measure-

ments. Uncertainties for any other weighted measurements in the Qjets procedure can

be performed by following the treatment for the mass measurement. Also note that, in

deriving these formulas, we explicitly talked about jets. However, we can easily use the

same formalism when we need to talk about events. In fact, we choose one jet per event

in our calculations. Therefore, the expressions for uncertainties associated with the num-

ber of jets observed (for example), is identical to the uncertainties associated with the

number of events observed. It is straightforward to apply the framework introduced in

this work to explain the statistical improvements claimed by the recent proposals such as

“Telescoping Jets” [58] and “Jet Sampling” [59]. Finally, we also expect that sophisticated,

state-of-the-art multivariate techniques can be made more robust by estimating measure-

ments using weighted events with the likelihood variable as the weight. Such an analysis

could presumably follow the framework laid out in this paper.
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manuscript we explore both cross-sections and more general measurements such as jet mass

and provide an analytical framework for calculating their statistical properties in terms of

probability density functions (the results are then validated using pseudo-experiments in

appendix A).
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A Validation of section 2 with pseudo-experiments

Traditionally, statistical uncertainties of complicated observables are estimated by using

Monte-Carlo pseudo-experiments. In this procedure, one generates many sets of events,

where the number of events is chosen according to a Poisson distribution with a given

mean (see eq. (2.1)). One then measures the quantity of interest on each set of events,

and, by considering the variation of the quantity across many pseudo-experiments, one

can estimate the statistical uncertainty of the measurement considered. This procedure

simultaneously accounts for both Poisson and sampling uncertainties.

In this work, we advocate for a different method of calculating statistical uncertain-

ties. As shown in section 2, analytical expressions may be derived, which relate these

uncertainties to various moments of a probability distribution constructed from a sample

of events. These analytical formulas carry more information than just performing Monte-

Carlo pseudo-experiments, since they (like all analytical derivations) also explain “why the

numbers are what they are.” One can use this improved understanding to devise ways to

attempt to reduce uncertainties further.

The purpose of this section of the appendix is to validate the formulas derived in

section 2 using pseudo-experiments. In order to do this, we choose a sample of W -jets

(in fact, we choose the same set of hadronic WW -events as outlined in section 4, and use

the same procedure and parameters to construct W -jets out of these events). We perform

105 pseudo-experiments, in each of which n W -jets are chosen at random. As explained

above (see especially section 2), n follows a Poisson distribution with mean N . Jets chosen

in a pseudo-experiment, are then subjected to the Qjets procedure for a particular set of

parameters (α = 0.01, zcut = 0.1, Dcut = m/pT ,Ω = (70− 90) GeV). Using the outputs of

the Qjets procedure, we calculate observables NT (number of jets tagged in an experiment)

and mT (tagged mass in the experiment) for each pseudo-experiment. The variations of the

these observables over the set of pseudo-experiments provides estimates of the statistical

uncertainties δNT and δmT . We also estimate the same uncertainties using the analytic

expressions derived in section 2 and compare them.

In figure 6 we compare the analytic estimates of the mean values and the uncertainties,

represented by the blue lines, and the numerical values from the pseudo-experiments (the

red points) as a function of the mean number of W -jets N . We begin with a measurement

of the cross section in the top row of figure 6. Here we see that the average and the

uncertainty in the number of tagged events follow essentially exactly the distribution in

eq. (2.18). Next, consider a measurement of the average jet mass, as in the bottom row of

figure 6. Here we see that the uncertainty falls as 1/
√
N up to corrections whose effects

are captured by terms of O(1/N2) in the formulas in section 2.

B Jet mass

In this section of the appendix we derive the analytical expressions relevant for estimating

the uncertainties associated with mass. In particular, we derive eqs. (2.25)–(2.28). For the

sake of completeness, we repeat a few of the definitions introduced in section. 2.2.
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Figure 6. Left: variation of 〈NT 〉, δNT , 〈mT 〉, and δmT as functions of N for a sample of

W -jets. See the text for details of the Qjets parameters used. The analytical results (calculated

using formulas derived in section 2) are represented by blue lines. The red points denote the same

quantities evaluated using Monte Carlo pseudo-experiments.

In an experiment where NS jets with masses {µj} and tagging probabilities {τj} are

chosen at random, the measured tagged mass is given by

mT =

∑NS
j=1 µjτj∑NS
j=1 τj

.

We are interested in the average and the variance of mT . Given the fact that the experiment

started with NS jets, we have

〈mT 〉NS =
〈∑NS

j=1 µjτj∑NS
j=1 τj

〉
NS
≡
〈MT

NT

〉
NS

, and

(δmT )2
NS

= 〈(mT − 〈mT 〉NS )2〉NS = 〈m2
T 〉NS − 〈mT 〉2NS .

In these expressions the notation MT ≡ mTNT is used in order to simplify the results. We

note that the probability distribution for MT and NT , for a given sample of size NS , can

be constructed in terms of F1(µ, τ),

FNS (MT , NT ) =

[
NS∏
k=1

∫
F1(µk, τk)dµkdτk

]
δ

(
NT −

NS∑
k=1

τk

)
δ

(
MT −

NS∑
k=1

µkτk

)
. (B.1)

The relevant moments of this general distribution can be derived in terms of the moments

– 28 –



J
H
E
P
0
1
(
2
0
1
5
)
0
2
2

of F1 by repeating the manipulations in eqs. (2.9)–(2.10). We have

〈NT 〉NS =

∫
dMT dNTNTFNS (MT , NT ) = NS〈τ〉 (B.2)

〈MT 〉NS =

∫
dMT dNTMTFNS (MT , NT ) = NS〈µτ〉 (B.3)

〈N2
T 〉NS =

∫
dMT dNTN

2
TFNS (MT , NT ) = N2

S〈τ〉2 +NSσ
2
τ (B.4)

〈M2
T 〉NS =

∫
dMT dNTM

2
TFNS (MT , NT ) = N2

S〈µτ〉2 +NSσ
2
µτ (B.5)

〈MTNT 〉NS =

∫
dMT dNTMTNTFNS (MT , NT ) = N2

S〈µτ〉〈τ〉+NSσ(τ, µτ) (B.6)

Now we are ready to estimate the mean and variance of the tagged mass, mT , distri-

bution. These calculations are slightly non-trivial since mT is a ratio of two independent

variables. We use a Taylor series expansion to simplify the results. In particular, note that

a generic bivariate function f(x, y) can be expanded using

f(x, y) 'f(x0, y0) +
∂f

∂x

∣∣∣∣∣
x0,y0

(x− x0) +
∂f

∂y

∣∣∣
x0,y0

(y − y0) (B.7)

1

2

[
∂2f

∂x2

∣∣∣∣∣
x0,y0

(x− x0)2 +
∂2f

∂y2

∣∣∣∣∣
x0,y0

(y − y0)2 + 2
∂2f

∂x∂y

∣∣∣∣∣
x0,y0

(x− x0) (y − y0)

]
+ . . .

Therefore, treating mT as a function of MT and NT , we can expand mT around MT =

〈MT 〉NS and NT = 〈NT 〉NS . We find that

mT '
〈MT 〉NS
〈NT 〉NS

+
〈MT 〉NS
〈NT 〉3NS

(NT − 〈NT 〉NS )2

− 1

〈NT 〉2NS
(NT − 〈NT 〉NS ) (MT − 〈MT 〉NS ) + . . .

(B.8)

It is now straightforward to find the average

〈mT 〉NS '
〈µτ〉
〈τ〉

[
1 +

σ2
τ

NS〈τ〉2
− σ(τ, µτ)

NS〈µτ〉〈τ〉

]
+ . . . . (B.9)

A similar expression can be derived for m2
T ,

〈m2
T 〉NS '

〈µτ〉2

〈τ〉2

[
1 +

σ2
µτ

NS〈µτ〉2
+ 3

σ2
τ

NS〈τ〉2
− 4

σ(τ, µτ)

NS〈µτ〉〈τ〉

]
. (B.10)

The final step in our calculation involves convolving with the Poisson distributions. This
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yields

〈mT 〉 =

∞∑
NS=0

Pois(NS |N)〈mT 〉NS '
〈µτ〉
〈τ〉

[
1 +

σ2
τ

N〈τ〉2
− σ(τ, µτ)

N〈µτ〉〈τ〉

]
, (B.11)

〈m2
T 〉 =

∞∑
NS=0

Pois(NS |N)〈m2
T 〉NS '

〈µτ〉2

〈τ〉2

[
1 +

σ2
µτ

N〈µτ〉2
+ 3

σ2
τ

N〈τ〉2
− 4

σ(τ, µτ)

N〈µτ〉〈τ〉

]
,

(B.12)

(δmT )2 = 〈m2
T 〉 − 〈mT 〉2 '

〈µτ〉2

N〈τ〉2

[
σ2
µτ

〈µτ〉2
+

σ2
τ

〈τ〉2
− 2

σ(τ, µτ)

〈µτ〉〈τ〉

]
. (B.13)

In these expressions we have neglected terms of order 1/N2 and higher.

Some simplifications arise for the case of the conventional tagging procedure. Since τ

is non-zero (and equal to one) only in the range Ω, we find that (q > 0)

(〈µpτ q〉)C =

∫
dµ

∫ 1

0
dτ µpτ qFC

1 =

∫
Ω
dµ

∫ 1

0
dτ µpFC

1 = (NΩ〈µp〉)C = ε〈
(
µC
)p〉 , (B.14)

where we use eq. (2.29) to derive the final expressions and borrow the notation µC from

eq. (2.28), to denote that the moment is to be calculated from eq. (2.29) using the conven-

tional pdf FC
1 (µ, τ).

Therefore we find the following identities (recall 〈τC〉 = ε)(
σ2
µτ

〈µτ〉2

)C

=
〈
(
µC
)2〉 − ε〈µC〉2

ε〈µC〉2
and

(
σ(τ, µτ)

〈µτ〉〈τ〉

)C

=
〈µC〉(1− 〈τC〉)
〈µC〉〈τC〉

=
1− ε
ε

=

(
σC
τ

)2
〈τC〉2

.

(B.15)

The final expressions for the conventional average mass and its uncertainty then simplify to

〈mC
T 〉 = 〈µC〉 ,

(
δmC

T

)2
=

1

N
× 1

ε

(
σC
µ

)2
,(

δmC
T

〈mC
T 〉

)2

=
1

N
× 1

ε

(
σC
µ

)2
〈µC〉2

(B.16)
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