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unctions 1n X and i P respectively. One calls P a geodesic 1t d(x, y)=dp(x, y), for
all vertices x and y in P. We give situations when every edge of a graph belongs
to a geodesic or a half-geodesic. Furthermore, we show the existence of geodesics
in infinite locally-finite transitive graphs with polynomial growth which are left
invariant (set-wise) under “translating” automorphisms. As the main result, we
show that an infinite, locally-finite, transitive, l-ended graph with polynomial
growth is planar if and only if the complement of every geodesic has exactly two
infinite components.  © 1996 Academic Press, Inc.

1. INTRODUCTION

The graphs considered in this paper are simple graphs and may be finite
or infinite. The symbols V(X), E(X), and AUuT(X) will denote, respectively,
the vertex set, the edge set, and the automorphism group of the graph X.
All infinite graphs will be presumed to be locally finite; that is, the valence
of every vertex is finite. If x, ye V(X), then the distance from x to y,
denoted dy(x, y), is the length of the shortest path (in X) joining x and y.
The subscript will be omitted if no ambiguity results.

We say that a group G <AUT(X) acts transitively on a graph X if for
every pair {x, y} of vertices in X there exists an automorphism g in G such
that g(x)=y; or equivalently, G acts on V(X) with just one orbit. If such
a group exists we call X transitive. If AuT(X) acts on E(X) with just one
orbit then we call X edge-transitive. We call X almost-transitive if AUT(X)
acts on V(X) with finitely many orbits.
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Let G be a group and H a generating set for G not containing the iden-
tity. The Cayley graph, denoted C(G, H), of G (with respect to H) is the
graph with vertex set G and edge set

E(C(G,H))={(g,gh) |geG,he HOH'}.

A double ray in a graph is an infinite connected subgraph in which every
vertex has valence 2. A ray is an infinite connected subgraph in which every
vertex has valence 2 except for precisely one vertex, which has degree 1.
A ray is said to emanate from its vertex of degree 1. Two double rays or
rays intersect if they share a common vertex.

If Y is a subgraph of a graph X, then X — Y denotes the subgraph of X
induced by V(X)— V(Y).

We use the notion of an “end” as formulated by Halin [5]. Two rays P
and Q, in a graph X, are equivalent if there is a third ray R such that
V(P)n V(R) and V(Q)n V(R) are both infinite. The equivalence classes
with respect to this relation are called ends. The number of ends of an
infinite graph X turns out to be the supremum of the number of infinite
components of X — 7T as T ranges over all finite subsets of V(X). It is well-
known that every connected, infinite, almost-transitive graph has either
one, two or infinitely many ends. Graphs with zero ends are finite.

The growth function of a graph X, with respect to a vertex x e V(X), is
defined by fy(x,0)=1 and

Sx(x,n)={yeV(X)|dx,y)<n}|, for all neN.

If X is transitive, then the growth function clearly does not depend on a
particular vertex, and therefore we denote it by fy(n). We say that X has
exponential growth if there exists a constant ¢ > 1 such that f(n) > ¢" holds
for all ne N. Otherwise X has nonexponential growth. In particular, X has
polynomial growth if fy(n) <cn holds for some constants ¢ and d. For a
survey of results on graphs with polynomial growth we refer the reader
to [9].

A double ray P in a graph X is called a geodesic (in X) if dy(x,y)=
dp(x, y) for all vertices x and y of P. An edge in X is said to be geodetic
if it belongs to some geodesic in X. Similarly, a ray R in X is called a
half-geodesic (in X) if dy(x, y) =dg(x, y) for all vertices x and y of R.

Geodesics and half-geodesic were studied by Watkins in [19]. (In this
particular work they were called “axes” and “half-axes”, respectively.)
Watkins proved many results about geodesics in transitive graphs. What
we prove in the sequel may be regarded as a continuation of Watkins’
paper.

Theorem 4.1 in [ 19] states that in an infinite transitive graph, every ver-
tex belongs to a geodesic. However this is not usually the case for edges.
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ExampLE 1.1. We construct an infinite family of infinite Cayley graphs
with polynomial growth in which not all edges are geodetic. Let G, be the
group Z x Z. x Z,,. Clearly

H,={(1,0,0),(0,1,0),(0,0,1),(1,0,1),(0, 1, 1)}

is a generating set for G,. For every n =2, the edges corresponding to the
generator (0,0, 1) in C(G,, H,) are not geodetic.

In Section 3, we give two situations where we can guarantee that every
edge of a graph is geodetic or every edge belongs to a half-geodesic. It is
shown that in a 1-ended transitive bipartite graph every edge belongs to a
half-geodesic and that with the additional property of planarity, every edge
is geodetic.

In [7], Halin discusses the two essentially different types of
automorphisms of an infinite graph X. An automorphism g is of fype 1 if
there is a finite non-empty subgraph Y of X such that g(Y) = Y; otherwise
g is of type 2. Automorphisms of type 1 represent, something like “rota-
tions,” whereas type 2 automorphisms may be regarded as something like
“translations.” Halin shows that for every type 2 automorphism g there
exists a double ray P and an integer n such that g”(P) = P. In Section 5, we
partially extend this result to show that in graphs with polynomial growth,
there exists a type 2 automorphism g and a geodesic P such that g(P)=P.
Such geodesics are said to be of zype 2.

A double ray P is said to separate a connected graph X if X — P has two
or more infinite components. In particular, P bisects X if X — P has exactly
two infinite components. Separating double rays were studied in [ 2] where
a characterization of infinite almost-transitive planar graphs, by double ray
separation properties was given. Also stated was the following conjecture
which we will confirm, in Sections 6, 7 and 8, for the case where X has
polynomial growth.

Conjecture 1.2. A 1l-ended transitive graph X is planar if and only if
every geodesic bisects X.

2. THE REPLACEMENT PROPERTY FOR GEODESICS

We now introduce some notation for describing various parts of a path,
ray or double ray P. If x, ye V(P), then P[x, y] and P[ y, x] will denote
the subpath of P joining x and y. The subpath of P[x, y] remaining when
x and the edge incident with x have been deleted is denoted by P(x, y].
Analogously we define P[x, y) and P(x, y). If P is a double ray and x # y,
then the notation P [x, co) will denote the unique ray emanating from x
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in P—{y}. A similar definition can be made for P (x, co). Convenient
notations are P, ,; and P, for P—P[x,y] and P—P(x,y) respec-
tively. Hence each of P, ,; and P, ,, consist of two rays; in the latter case
the two rays emanate from x and y respectively.

The following property of geodesics is called the “replacement property.”

Lemma 2.1. If x and y are distinct vertices of a geodesic P and Q is an
xy-path, then P, ,, U Q is a geodesic if and only if Q is a shortest xy-path.

Proof. The necessity follows immediately from the definition of a
geodesic.

To prove sufficiency, set R= P, ,, U Q and let u and v be distinct ver-
tices of R. Suppose d(u, v) <dg(u, v). We may assume without loss of
generality that ue P (x, c0) and ve Q. Now,

d(u, y) < d(u, v) +d(v, y)
<dgp(u, v)+dv,y)
=dp(u, x)+dg(x, v) +dg(v, y)
=dp(u, x)+dp(x, y)

=d(u, y) since P is a geodesic,

which is impossible. Hence d(u, v) = dg(u, v) for all vertices v, ve R. ||

3. GEoDETIC EDGES

Lemma 3.1. Let e=(x,y) be an edge in a bipartite graph, and suppose
that there exist two intersecting geodesics containing x and y respectively.
Then e is geodetic.

Proof. Let P and Q be two intersecting geodesics containing x and y
respectively, and let z be a vertex of PnQ such that V(P[x,z]n
O[y,z])={z}. Since both P and Q are geodesics, then d,(z, x) and
dy(z, y) differ by one; otherwise P[x, z] U Q[ y, z] + e would be a circuit of
odd length, a contradiction. Hence we assume without loss of generality
that dy(y,z)=dp(x,z)—1. Thus, by the replacement property for
geodesics, P ., U O[y,z]+e is a geodesic containing e, as required. ||

We now, momentarily, turn our attention to planar graphs. When a
planar graph is 3-connected, the cyclic order of the edges incident with
each vertex when that graph is embedded in the plane becomes an intrinsic
property of the graph and is the same for all planar embeddings. This
classic result of H. Whitney [20] for finite graphs has been generalized to
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infinite graphs in [8] and [17]. Also independent of the embedding is the
collection of subgraphs that form the boundaries of the faces. We call each
such subgraph a face boundary.

It is well known that every 1l-ended, locally finite, planar graph has a
proper embedding, that is, an embedding without accumulation points. (See
for example [6].) It will be assumed that only proper embeddings of
planar 1-ended graphs are used. Furthermore, it is easy to show (see [2])
that a 1-ended transitive graph is 3-connected and hence there is essentially
just one embedding of such a graph.

THEOREM 3.2. Every edge of a l-ended transitive bipartite planar graph
is geodetic.

Proof. Let X be a l-ended transitive bipartite planar graph and let
e=(x, y) be an arbitrary edge in X. By Theorem 4.1 in [19], there exist
geodesics P and Q containing the vertices x and y respectively. If P and Q
intersect Lemma 3.1 implies that e is geodetic, and hence we assume
otherwise.

Let E(P)={(x;,x;,,)|i€Z} where x=x, and (without loss of
generality) (x,---y---x_; ---) is the clockwise permutation induced on
the neighbors of x in the (unique) embedding of X. (See Fig. 1.) Similarly,
let E(Q)={(y:, yi+1) | i€ Z}, where y =y, and (without loss of generality)
(yy--+y_q---x---) is the clockwise permutation induced on the neighbors
of y. We denote by P* and P~ the rays induced by the vertices of P
with nonnegative subscripts and nonpositive subscripts, respectively.
Appropriate definitions can be made for Q* and Q.

Consider the double ray R=e+ P~ u Q™. If R is not a geodesic then
some path S joining a vertex we P~ to a vertex ze Q@ has the property
that dg(w, z) <dg(w, z). By planarity and 1-endedness, S must meet some
vertex ¢ in P* or Q~; otherwise, SuU R[w, z] contains an end-separating
circuit. Without loss of generality assume that e V(Q ). Since Q is a
geodesic, we may assume that S[¢, z] = Q[ ¢, z]. Since P is a geodesic and
ds(w,y) <dg(w,y) then dg(w,y)=dp(w,x)—1 or dg(w,y)=dp(w, x).

w X_, X X,

i e — P
e
Q_-——————.—~——-0——-———0— ——————— * — —p— Q+
t Yo Y Y Z

FIGURE 1
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However, the latter is ruled out by bipartiteness. The replacement property
for geodesics implies P, ., W S[w, y]+e is a geodesic containing e. [I

It is not known if one can drop the condition that X is bipartite from
Theorem 3.2. Hence we offer the following conjecture.

Conjecture 3.3. Every edge of a l-ended transitive planar graph is
geodetic.

We would like to mention that Thomassen [ 15] has shown that in an
infinite transitive cubic graph every edge is geodetic.

We conclude this section with a result for transitive bipartite graphs in
general.

THEOREM 3.4. Every edge of an infinite connected tramsitive bipartite
graph belongs to a half-geodesic.

Proof. Let X be an infinite connected transitive bipartite graph and let
e=(x,y) be an arbitrary edge in X. By Theorem 4.1 in [19], there exists
a geodesic P containing x. If ee E(P) then we are done and hence we
assume otherwise. By Lemma 3.2 in [19], there exists a half-geodesic
emanating from y which has the form Ru P,[u, o), where ve V(P),
ue P[x,0) and R is a shortest yu-path. If e€ E(R) then again we are
done, and hence we assume otherwise. Since X is Dbipartite,
dp(y, u) #dp(x, u). Furthermore, P[x, u] is a shortest xu-path, and there-
fore dp(y,u) and dp(x,u) differ by 1. If dg(y,u)=dp(x,u)—1 then
P, ., ,oR+e is a geodesic containing e. On the other hand, if
dp(y,u)=dp(x,u)+ 1 then we can assume that R = P[x, u] + ¢, and again
we are done. ||

4. CHARACTERIZING PoLYNOMIAL GROWTH

The growth function f;(n) of a group G with respect to a finite generating
set H, is defined by f;(0)=1 and

fom)=l{glg=h --h, h,e HOH 'U{e}}|, for all neN.

We say that G has exponential growth if there exists a constant ¢ > 1 such
that f;(n) > ¢” holds for all ne N. Otherwise G has nonexponential growth.
In particular, G has polynomial growth if f.(n) < cn? holds for some con-
stants ¢ and d.

We can identify the growth function of a group G, with respect to a
generating set H (not containing the identity), and that of C(G, H). One
can consider results about group growth as results about Cayley graphs.
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Gromov’s [ 3] characterization of groups with polynomial growth is one
of the crucial results which permeates the remainder of this paper.

THEOREM 4.1 (Gromov [3]). A finitely generated group G has polynomial
growth if and only if it contains a nilpotent subgroup of finite index.

If a group G acts transitively on X, then an imprimitivity system of G on
X is a partition 7 of V(X) into subsets called blocks, such that every cle-
ment of G induces a permutation of the blocks of 7. Among imprimitivity
systems we include the partition of V(X) into singletons and into { V(X)}
itself. If 7 is a partition into blocks of a group G which does not act trans-
itively on X then 7 is called a block system of G on X. The quotient graph
X, is defined as follows: V(X,) is the set of blocks and two vertices
Xx., V. € V(X,) are adjacent in X, if there exists an edge (x, y) € E(X) such
that xex, and yey,. By G, we denote that group acting on X, which is
induced by G. Clearly, it is a homomorphic image of G and G, is a sub-
group of AUT(X,).

A group G almost has a property P if a normal subgroup of finite index
in G has property P.

THEOREM 4.2 (Trofimov [18]). Let X be an infinite connected transitive
graph with polynomial growth and suppose that a subgroup G of AUT(X) acts
transitively on X. Then there exists an imprimitivity system © of G on X with
finite blocks such that G, is a finitely generated almost nilpotent group and
the stabilizer of a vertex of X, in G, is finite.

Gromov’s [3] deep result about groups with polynomial growth
together with [ 1, Theorem 2] implies that for every group G with polyno-
mial growth we can find constants c¢,, ¢, and an integer d such that
e, n? <fe(n)<c,n? holds. Trofimov’s characterization of automorphism
groups of graphs with polynomial growth implies that the same also holds
for graphs with polynomial growth; that is, there always exist constants
¢,, ¢, such that ¢, n?<fy(n)<c,n? holds for some integer d. We call the
least integer d such that fy(n) < cn? holds for some constant ¢ the growth
degree d, of X. Graphs with growth degree 1 are said to have linear
growth. Similarly, graphs with growth degree 2 are said to have quadratic
growth. Theorem 4.2, together with a result of Sabidussi [ 11, Theorem 4],
implies that G, and X, (and hence also X) have the same growth degree.

An automorphism g of a graph X is called bounded if there is a constant
k, depending upon g, such that d(x, g(x)) <k for every xe V(X). We
denote by B(X) the group of all bounded automorphisms of X, and by
B/(X) the set of elements of finite order in B(X).
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LemmA 4.3 (Seifter [ 14, Corollary 2.7]). Let X be an infinite connected
graph with polynomial growth and suppose G = AUT(X) acts transitively on
X. Then the orbits of B/(X) NG on X give rise to an imprimitivity system t
of G on X such that G is a finitely generated almost nilpotent group and the
stabilizer of a vertex of X, in G, is finite.

5. TYPE 2 GEODESICS

We now proceed to show the existence of type 2 geodesics in graphs with
polynomial growth. Firstly, a preliminary result from [14].

Lemma 5.1 (Seifter [ 14, Lemma 4.1]). Let X be a graph and let O and
O’ be two orbits of a subgroup of AUT(X) on X. Suppose O and O are both
finite, have identical size, and there is at least one edge in X joining a vertex
in O to a vertex in O'. Then there exists a complete matching of the bipartite
subgraph of X with vertex set OU O and edge set {(x,y)]|(x,y)e€
E(X),x€0,ye0'}.

LEMMA 5.2. Let X be an infinite connected graph and suppose the group
G acts transitively on X. Let t be an imprimitivity system with finite blocks
of G on X such that the blocks of t coincide with the orbits of a subgroup
of G. If there exists a type 2 automorphism in G, which leaves invariant a
geodesic in X, then G contains a type 2 automorphism which leaves invariant
a geodesic in X.

Proof. Let n denote the cardinality of the blocks of 7. Suppose g is an
automorphism in G such that g, is a type 2 automorphism which leaves
invariant a geodesic P, in X,. Clearly, g is a type 2 automorphism of X.

Let x, be a distinguished vertex of P.. Then evidently

Po= ) glP[x. glx)]).

JjeZ

Let m=|E(P.[x,,g.(x,)])|, and label the vertices of P, so that
E(P,)={(x/,x/*")|jeZ} where x?=x_ and g(x/)=x/"". Recall that
each x/ is a block of 7 in X. Evidently any double ray Q with edge set
E(Q)={(y,y;+1) | y;exl,jeZ} is a geodesic in X; for otherwise any
path joining vertices y,; and y, that has length less than |i— k| would have
an x’ x* path of length less than |i — k| as an image in X, contradicting the
fact that P, is a geodesic. We shall proceed to construct such a double ray
in X, and show that it remains invariant under a type 2 automorphism.
Since each vertex x/ is a block of 7 in X of cardinality n, we let
x/={x{, .., x]}. Furthermore, g(x/)=x/*" for all je Z, and therefore we
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may choose this labeling so that g(x/)=x/"" for all 1<i<n and jeZ.
Hence each O,=(..., x; ™, x?, x”, x?™, ...) is an orbit of g on X.

By a previous observation every preimage of P, is a geodesic. Let
P.=(...,x ', x% x!,...). Since each x/ is a block of 7 in X and the blocks
of 7 satisfy the assumptions of Lemma 5.1, there is a complete matching
between every pair of blocks x7/, x/*!, je Z, in X. Hence P, has n pairwise
disjoint preimages each of which is a geodesic in X. Let P denote one such
preimage. It is not likely that P is invariant under g, even a power of g.
However, since P is infinite and meets each (finite) block x/ for jeZ, it
meets an infinite number of blocks of the form x””. Hence, there is an
integer 1 </<n such that O, is met infinitely often by P. Let s and ¢ be
two integers such that x7” and xJ” both belong to P. Then Q=
Ujez ("1 (P[xy", x{"]) is the required geodesic. |

Lemma 5.3. Let a finitely generated torsion free nilpotent group N act
almost-transitively on a connected graph X. Then there is a type 2 geodesic
Pin X.

Proof.  We prove this by induction on the growth degree of N. If N has
linear growth then N =~ Z which immediately implies that X is a two-ended
graph. Then the conclusion follows easily from Theorem 2.4 in [10].

Let {e} =N, <N, <N, < --- <N,=N be the upper central series of
N. Since N, is the centre of N, then by Theorem 2.3 in [13] it contains a
type 2 automorphism g which is central in N. Let ¢ now denote the block
system of N on X which is induced by the orbits of g on X. Then by
Theorem 2 in [1] (see also Lemma 6.3 of this paper), N, has growth
degree less than N. Also N, acts with finitely many orbits on X .

By the induction hypothesis there is a type 2 automorphism /, of X,
which leaves invariant a geodesic P,. Let E(P)={(x/,x/*')|jeZ}. Let n
be the positive integer such that /,(x/) =x/*" holds for all j e Z. Since the
x/ are orbits of g, then P,[x?, x"] lifts to a finite path Q in X with edge
set E(Q)={(x/, x’*") | 0<j<n—1}, such that x'ex’.

Let h=€"'(h,). Since h acts on the orbits of g, there exists an m such
that g”h(x°)=x". Then | ez (g7h)7 (Q) is the vertex set of a geodesic in
X which is left invariant by the type 2 automorphism g4, as required. |J

THEOREM 5.4. Let X be an infinite connected transitive graph with poly-
nomial growth. Then there is a type 2 geodesic P in X.

Proof. By Lemma 5.2 and Theorem 4.2 we can assume that AUT(X) is
a finitely generated group with polynomial growth. Hence by Theorem 4.1
AUT(X) contains a finitely generated nilpotent subgroup N of finite index.
Furthermore it is known (see, for example, [ 12, Corollary 10]), that the
subgroup N, of N consisting of the elements of finite order of N is finite.
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Hence there are only finitely many values for d,(x, y) where x and y belong
to the same orbit of N, on X. Therefore N, cannot contain unbounded
automorphisms. Hence by Lemma 5.1 we can assume that N is a torsion
free group. Since it has finite index in AUT(X), it clearly acts with finitely
many orbits on X. So Lemma 5.3 completes the proof. ||

6. THE GEODETIC SUBGRAPH

The subgraph of an infinite graph X spanned by the geodetic edges is
called the geodetic subgraph of X. If X is transitive then it is immediate that
its geodetic subgraph is transitive and spanning. The section is devoted to
proving results on the geodetic subgraph.

THEOREM 6.1. If X is a l-ended transitive graph such that every geodesic
bisects X, then the geodetic subgraph of X is planar.

Proof. Let Y be the geodetic subgraph of X, and by way of contradic-
tion, suppose that Y is nonplanar. By Kuratowski’s theorem, Y contains a
subdivision K of K;; or Ks;. We label the edges of K so that
E(K)={ey, .., e,}, where n=|E(K)|. We denote by P, a geodesic in X con-
taining e;, for 1 <i<n. Since each P, bisects X, we let { V;, V;} be the par-
tition of V(X)— V(P,) induced by the two infinite components of X — P,.
(There are no finite components in X — P, by Theorem 4.2 in [19].)

Now suppose that some subgraph with vertex set J(X) and containing
P, has been properly embedded in the plane. Clearly, P; induces a partition
of V(X)— V(P;) into two classes; the classes are determined by the two
sides “sides” of P;. (See, for example [ 16, Lemma 8.1].) We say this planar
embedding is faithful to P, if this partition is { V;, V}.

Evidently it is possible to embed the graph with vertex set V(X) and
edge set E(P,) in the plane so that this embedding is faithful to P,. Since
this graph is not necessarily 3-connected, this embedding is not necessarily
unique. Now suppose S is an embedding of the graph with vertex set V(X)
and edge set E(UJL, P;) in the plane, that is faithful to P, .., P,,, where
1 <m < n. Moreover, suppose that this is not possible with the graph with
vertex set V(X) and edge set E( U_/’.’fll P)).

Case 1. The addition of the edges of P, to S produces a nonplanar
embedding. We assume that this is still the case if we consider other planar
embeddings that are faithful to P,,.., P,,. Then there exists an edge
e=(x,y) of P,,,, that crosses some P,, where 1 <k <m. Clearly not both
x and y can belong to P, since P, is a geodesic. If one of x or y belongs
to P,, then the assumption that a// planar embeddings faithful to Py, ..., P,,
become nonplanar by the addition of P,, ., implies there exists a geodesic
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in {P,, .., P,} also crossed by e not containing x or y. Hence we assume
that {x, y} n P, = . Then since e crosses P, and S is faithful to P, then
x and y belong to different classes of the partition { ¥, V;.}. However, this
is impossible since e is an edge of X — P,.

Case 2. The addition of the edges of P,,,, to S produces an embed-
ding which is not faithful to Py, ..., P,,, . Then it is immediate that some
edge of U7, P; joins vertices in different classes of the partition
{Vpits Vins1}, a contradiction.

Hence we conclude that it is possible to find an embedding of the graph
with vertex set V(X) and edge set E({) 7’;11 P,) in the plane, that is faithful
to Py, .., P, .. Proceeding inductively, we have a planar embedding of the
graph with vertex set V(X) and edge set E(7_, P;). However, this graph
contains K, a contradiction, and hence we deduce that X is planar, as

required. |

If X is edge-transitive then X is its own geodetic subgraph and hence
Conjecture 1.2 is true for edge-transitive graphs.

COROLLARY 6.2. A l-ended tramsitive and edge-transitive graph X is
planar if and only if every geodesic bisects X.

We now consider graphs with quadratic growth. Using the following
result, due to Bass, one can gain considerable insight into the structure of
the automorphism groups of such graphs.

If G is a finitely generated abelian group, then by p(G) we denote the
torsion-free rank of G.

LEmMMa 6.3 (Bass [ 1, Theorem 2]). Let N be a finitely generated nilpo-
tent group with lower central series N=N,>N,> --- >N, ={e}. Then N
has growth degree Y.~ ip(N;/N;, ).

COROLLARY 6.4. If G is a finitely generated group with quadratic
growth, then G contains a free abelian group of rank 2 which has finite index
in G.

Proof. By Theorem 4.1, G contains a nilpotent subgroup N of finite
index with quadratic growth. Let N=N,>N,> --- >N, ={e} be the
lower central series. By Lemma 6.3, 2=3%",_, ip(N,/N,, ). This implies
that p(N,/N,) =2 and that p(N;/N;,,)=0forall2<i<n—1. Hence n=2
and N is a free abelian group of rank 2, as required. ||

LEMMA 6.5. Let X be a connected transitive graph with quadratic growth
such that every geodesic bisects X. Then X contains a connected subgraph
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which is left invariant by a free abelian subgroup of AUT(X) of rank two, and
in which every edge is geodetic in X.

Proof. We first assume that AUT(X) is a finitely generated group. Then
it has quadratic growth by Theorem 4.2 and the results in [ 14, Section 37].
By Corollary 6.4, AuT(X) contains a free abelian subgroup H of rank 2
which has finite index in AUT(X). Let H=<{a, b).

By Theorem 2.3 in [13], all automorphisms in AUT(X) of infinite order
are of type 2. Hence a and b are type 2 automorphisms. We now consider
the graph X, where o is the block system of H on X which is induced by
the orbits of b on X. Applying [ 10, Theorem 2.4], we can assume that a,,
leaves invariant a geodesic P,. As in the proof of Lemma 5.3 we can then
show that there is a geodesic P in X which is left invariant by ab™ for some
me Z. But then, for example, the group generated by {ab,a'p"} is also
isomorphic to Z x Z and has finite index in AUT(X). Hence we can without
loss of generality assume that « itself leaves invariant a geodesic P.

We claim that there exists a positive number k such that {¥(P)},., is
a two way infinite sequence of pairwise disjoint geodesics in X. To prove
this claim, we first note that a acts with finitely many orbits O, ..., O,, on
P. Let x; be a vertex in O, for 1 <i<m. Suppose infinitely many vertices
in {b’(x;)},. 2 belong to P. This implies that there exist integers / and s # ¢
such that b5%(x,), b'(x;)€ O,, or equivalently b°(x;)=a’b'(x,) for some
integer . Then commutativity implies that »°~‘(x)=a’(x) holds for all
x € V(X) thus contradicting the fact that {a, b} generates H. We conclude
that for each i such that 1 <i<m, there exists a largest integer m, such that
b/(x;)nP# for all j<m,. Evidently k =max{m, |1 <i<m} +1 is the
required positive integer.

Now consider the graph X, where ¢ is the block system of H on X which
is induced by the orbits of a. Evidently the infinite cyclic group {b,) acts
with finitely many orbits on X,. Hence by Lemma 5.3, some b” leaves
invariant a geodesic Q, in X,. Also Q, must meet all of the finite cycles ...,
P ', P°, P!, ... which are the images of ..., b *(P), b°(P), b*(P), ... for
otherwise one of these geodesics would not bisect X. Also O, immediately
leads to a geodesic Q in X which is left invariant by a”b"*. Then

U (@(Q)u (a"b™)’ (P))

JeEZL

is the required subgraph.

If AuT(X) is not a finitely generated group, then the blocks of the
imprimitivity system t (see Theorem 4.2) are nontrivial. Hence the above
and considerations similar to those in the proof of Lemma 5.2 immediately
imply that there are non-bisecting geodesics in X. |
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LEMMA 6.6. Let X be a connected transitive graph with quadratic growth
such that every geodesic bisects X. Then X contains a connected transitive
spanning subgraph in which every edge is geodetic in X.

Proof. By Lemma 6.5, X contains a connected subgraph Y which is left
invariant by a free abelian group of rank two, and in which every edge is
geodetic. It may be the case that Y does not span X.

Let @ and b be two type 2 automorphisms of X, such that (a, b) is a free
abelian group of rank two which leaves Y invariant. Then there exist type
2 geodesics P and Q containing x such that a”(P)=P and b"(Q)= Q for
some integers m and n.

Consider the spanning subgraph Y’ ={J,c . urx)&(Y). Evidently Y’ is
transitive and spans X. Furthermore, every edge of Y’ is geodetic in X. By
way of contradiction, assume that Y’ is disconnected. Then there exist two
disjoint copies of Y, say g,(Y) and g,(Y). We may assume without loss of
generality that g, is the identity and that there exists an edge e with one
end vertex x in Y and the other end vertex y in g,(Y).

Clearly there exists a positive integer k£ and a negative integer / such that
b™(e) and b™(e) both join a vertex in Y to a vertex in g,(Y); otherwise X
would have growth degree greater than 2. One may choose k& and / so that
b"™(x) and b"(x) are vertices in different components of Y — P. However,
since there exists a path in g,(Y) joining 4"(y) and b"(y), X — P has just
one infinite component, a contradiction. |

Suppose X is a transitive graph with polynomial growth of degree
greater than 2. By generalising the arguments in the preceeding lemmas,
one can construct a nonbisecting geodesic in X. Hence, we have the follow-
ing lemma.

LemmA 6.7. Let X be a 1-ended transitive graph with polynomial growth
such that every geodesic bisects X. Then X has quadratic growth.

7. NORMAL PLANE TILINGS

Suppose X is a transitive graph with quadratic growth such that every
geodesic bisects X. In this section we apply a result of Zieschang [21] to
show that the geodetic subgraph of X is isomorphic to one of 11 graphs.
These 11 graphs correspond to the 3-connected transitive normal plane
tilings given by Griinbaum and Shephard [4].

THEOREM 7.1. Let X be a transitive l-ended graph with polynomial
growth such that every geodesic bisects X. Then AUT(X) is isomorphic to a
Euclidean motion group.
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FIGURE 2

Proof. By Lemma 6.7, X has quadratic growth. By Lemma 6.5 there
exists a free abelian group S=<a, b) of rank 2 which has finite index in
AUT(X). Suppose g is a nontrivial automorphism of X of finite order which
commutes with all members of S.

Now, consider the subgroup H of AUT(X) generated by @, b and g. Since
S acts with finitely many orbits on X then so does H. Furthermore, g com-
mutes with ¢ and b, and therefore the orbits of g give rise to a block system
¢ of H on X. Clearly S, acts with finitely many orbits on X,, although X,
need not be transitive. If we now assume that all geodesics are separating,
we can again apply the methods of the proof of Lemma 6.5 to show that
X, contains a subgraph Y, homeomorphic to one of the two graphs in
Fig. 2, each of which is spanned by geodesics and left invariant by some
subgroup of finite index in S. Then by Lemma 5.1 it follows immediately
that Y, can be lifted to |g| disjoint copies of Y, in X. But, as in Lemma 6.6
this implies that X contains a nonbisecting geodesic. Hence we conclude
that the identity is the only automorphism of finite order that commutes
with all members of S.

Then a result of Zieschang (see [ 21, Theorem 24.1]) implies that AuT(X)
is isomorphic to a Euclidean motion group, as required. ||

COROLLARY 7.2. Let X be a l-ended transitive graph with polynomial
growth such that every geodesic bisects X. Then the geodetic subgraph of X
is isomorphic to one of the 11 3-connected transitive normal plane tilings.

8. A CHARACTERIZATION OF PLANAR GRAPHS WITH POLYNOMIAL GROWTH

Throughout this section X is a 1-ended transitive graph of polynomial
growth in which every geodesic bisects. By Corollary 7.2 the geodetic
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subgraph of X is one of the eleven normal plane tilings. This geodetic sub-
graph will be denoted by Y. For the proof of our main theorem we need
several preliminary results:

Lemma 8.1. If ae AuT(Y), then a* e auT(X) for some k> 1.

Proof. 1If a has finite order, then our assertion is trivial.

Let a be of infinite order. Then it is an automorphism of type 2. It is easy
to see that there exists a double ray (not necessarily a geodesic) left
invariant by a power of a. Let P be such a double ray with a"(P)= P for
some integer n. If n#1 we replace ¢” by a. Furthermore we choose an
Xo € V(P) and set x;=a’(x,), i€ Z.

Since X is transitive, there is a g;eAUT(X) for each x; such that
x;=g,;(xy). From the construction of Y it is obvious that AUT(X) < aUT( Y)
and therefore also g, 'a’eAut(Y) for every ieZ. Each of these
automorphisms fixes x, and since the stabilizer of x, in AUT(Y) is finite,
there are integers j#/ such that g 'a’=g;'a’. This implies that
ad*=g; 'g eaur(X) for k=1—j. |

Let ¢ be a homomorphism of a graph X, onto a graph X, and let S(v),
ve V(X,), denote the star consisting of v and all edges incident with v. If
@(S(v)) is isomorphic to S(v) for every ve V(X,) we call ¢ a covering map.

LEMMA 8.2. Let {%:i€Z} be a set of lines in the plane and let P denote
a double ray in Y with the following properties:

(a) There is a translation b of the plane that leaves Y and every line
% invariant and therefore is a type 2 automorphism of Y.

(b) If a line &, meets an edge e of Y it either meets an endpoint of e
or contains e.

(c) There is a translation a of the plane which leaves Y and P
invariant and maps every ¥, onto %, .

(d) P meets every & in exactly one vertex, say x;.
(e) The distance between every pair x;, x; ., on P is k, where k is the
length of a shortest path between &, and ¥, in Y.
Then P is a type 2 geodesic in X.

Proof. Figure 3 shows the eleven normal plane tilings. We drew them
such that they facilitate following the arguments of this and the next proof.
We first note that P is a geodesic in Y, since every double ray in Y which
satisfies (d) and (e) is a geodesic in Y.



GEODESICS IN TRANSITIVE GRAPHS

“)

(.8

3) (a2 4.3.4) (a3 43

S
N

% (3.6.3.6)

(312

(4.6.12)

FIGURE 3

27



28 BONNINGTON, IMRICH, AND SEIFTER

Suppose P is not a geodesic in X. Then dy(x,, x;) <k-i for some i> 1.
Then, by (c¢), we have

dx(xo, xi-j) <k-i-j—j=dy(x,, xi-j) —J
for every j> 1.

Thus, for every m =1 there is an index s such that dy(x,, x,) <k-s—m.
From the structure of AuT(Y) it follows immediately that the group
generated by a and b is isomorphic to Z> Then, by 8.1, a group isomorphic
to Z* also acts on X. Without loss of generality we can assume that this
group is again generated by a and b. We also assume that no orbit of » on
X contains adjacent vertices of X and that no vertex of X is adjacent to
more than one vertex of an orbit of » on X. (If the orbits of b do not have
this property, we consider some b”, p > 1. Since X is locally finite we can
always find some p such that the orbits of 5 on X have the required
properties.) By € we denote the block system of <{a,b)> on X which is
induced by the orbits of 5. Again X, denotes the quotient of X with respect
to the blocks of € and because of the assumed properties of the orbits of
b, the quotient map ¢: X — X_, induced by the construction of X, is a
covering map. Clearly X, is a graph with linear growth and a, acts almost
transitively on it. Thus, by Lemma 5.3, X, contains a geodesic R..

All vertices contained in a line % give rise to end separating sets ¥ in
X .. By m we denote twice the diameter of each ¢ in X .. This number m
clearly is the same for all ¥¢, ie Z. Furthermore, let s be chosen as above
and let yg=R. N L5, yi=R_n ZL<. Then

s =T (s —m) + 5> d o (95 X8) + (x5, X) + d (5, )

/dRE(yoa )

Since ¢ is a covering map, every double ray Re ¢ '(R,) is a geodesic in
X and thus also in Y. Of course the distances in R are the same as in R,_.
But then R connects %, and %, with fewer than k - s edges, in contradiction

to (e). 1

LEMMA 8.3. Let {%:i€Z} be a set of lines in the plane and let P denote
a double ray in X such that the <& and P satisfy properties (a)—(d) of
Lemma 8.2 and in addition:

(e") The distance between every pair x;, x;,, on P is <k where k is
the length of a shortest path between ¥, and ¥, in Y.

Then =k and P is in Y.
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Proof. 1f the assertions of the lemma do not hold, we procede
analogously to the proof of Lemma 8.2 until we obtain a geodesic in
X—and therefore in Y—that connects %, and %, with fewer than /- s<k-s
edges, in contradiction to (e'). ||

THEOREM 8.4. Let X be a l-ended tramsitive graph with polynomial
growth. Then X is planar if and only if every geodesic bisects X.

B c B c B c B c B c
A D A D A D
(36) “4) 32
3.8 A D A D
(32.4.3.4) (3.6.3.6)
B c B c
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FIGURE 4
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Proof. 1If X is planar, then by Theorem 5.3 in [2] every geodesic bisects
X. Therefore it remains to prove the converse.

Let X be a l-ended transitive graph with polynomial growth such that
every geodesic bisects X. By Corollary 7.2, the geodetic subgraph Y of X is
isomorphic to one of the 3-connected transitive normal plane tilings (see
Figure 3). The vertices are the points with integer coordinates and the
edges are lines which connect points at Euclidean distance either 1 or \/5
from each other.

Furthermore, for each of the eleven graphs Y in consideration AUT(Y)
contains subgroups isomorphic to Z*. If the graphs are embedded as in
Figure 3 it is easy to find such subgroups and fundamental domains with
respect to these subgroups. Figure 4 shows such fundamental domains for
each of our eleven graphs. The dark vertices are called corner vertices of
the fundamental domains.

We now prove that every edge of X is geodetic, which implies that X
itself is isomorphic to one of the graphs of Figure 3.

We assume that E(X)— E(Y) contains an edge e, otherwise there is noth-
ing to show. Furthermore S={g, i) always denotes the subgroup
isomorphic to Z* which has the fundamental domains of Figure 4. In addi-
tion we assume that 4#(A)= D, h(B)= C and g(A4)=B, g(D)= C hold and
call a shortest path Q(L, M), L, Me { A, B, C, D}, L # M, extendable to a
geodesic P in X if P={J,.,a’'(Q) is a type 2 geodesic in X, where
a(lLy=M, a€S.

Since X is transitive, we can assume that e € E(X) — E(Y) is incident with
a corner vertex of a fundamental domain.

Case 1. ee E(X)— E(Y) connects two vertices of one fundamental
domain.

Case 1.1. All tessellations except (3*-6) and (4-6-12).

Case 1.1.1. Let % be the line through 4 and B left invariant by the
translation g and let % be the line through C and D. Note that the dis-
tance k£ between %, and % is given as follows:

k=1 for (3%) and (4%

k=2  for (3%-4%),(32-4.3.4),(3-6-3-6)

k=4 for (6°), (4-82),(3-12?%)

k=6 for (3-4-6-4).

Suppose the edge e is on a path Q from {4, B} to {C, D} of length <k.

Then an application of Lemma 8.3 shows that Q is extendable, where
ae{h,g*"'h}. But then e is geodetic, a contradiction.
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This situation occurs for all edges e in (3°), (4%), (3*-4%) and for all e,
except e = (A4, B) or e=(C, D), in the tessellations (32-4-3-4), (3-6-3-6)
and (6%).

Case 1.1.2. 1If such an e does not exist, let %, be the line through A4 and
D left invariant by the translation /4 and let %, be the line through B and
C. Then k has the values

k=2  for (6% and
k=3 for (3-4.-6-4),

the other values of k remaining unchanged. We leave it to the reader to
verify that e again is on an extendable path Q from {4, D} to {B, C} of
length <k in all those cases.

Case 1.2. For the tessellation (4.6.12) we observe that the above proce-
dure works, unless e=(B, J). Let the lines %, %, be defined as in Case
1.1.1. Note that £ =10 in this case. Since AUT(X) acts transitively on X and
leaves Y invariant, we thus also have the edge (K, /) in X, since the square
(B, I, J, K) is only square in Y containing B. Similarly we conclude that the
edges h(B,J), h(K, I) are also in X. Then there is a path Q of length 20
between B and h*(B) which contains e. But Q is an extendable path by
Lemma 8.3, a contradiction.

Case 1.3. For the tessellation (3*-6) we first note that every vertex in
the fundamental domain either is one of the corner vertices or has distance
1 from a corner vertex. Thus every edge e either connects two corner ver-
tices or is on a path Q of length 2 between two corner vertices.

If Q connects 4 to B or C, respectively, we let %, be the line through A4,
I and let %, be the parallel through B or C, respectively.

If O connects 4 to D we let %, be the line through 4, J and %, be the
parallel through D.

If Q is a path from B to a vertex in {C, D} or from C to D, then we
similarly choose %4, and %, as the parallels through the origin and
endpoint of Q.

Case 2. The edge e connects vertices of distinct fundamental domains.
Case 2.1. e connects corner vertices of distinct fundamental domains.

Let e =(x, y). Then we can always find numbers p and ¢ such that x and
y are corner vertices of fundamental domains with respect to S=<g?, h?).
But in this case it is immediately clear that e is in an extendable path, a
contradiction.

Case 2.2. e connects a corner vertex to an internal vertex of a distinct
domain.
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Let e=(x, y) where x is a corner vertex. Then it is as simple as above
to show that e is in a path Q in X from x to a corner vertex w of the
domain which contains y, which is shorter than any path between x and w
in Y. As in Case 2.1 we can find S=<{g?, h?) and fundamental domains of
S, such that x and w are corner vertices of one fundamental domain of S.
Thus we again have that Q is an extendable path, a contradiction. Since a
detailed proof of this fact is quite similar to the above discussion, we leave
it to the reader to deal with the details. ||
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