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constituents affect human white adipocyte
function in-vitro
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Abstract

Background: Specific bio-active dietary compounds modulate numerous metabolic processes in adipose tissue
(AT), including pre-adipocyte proliferation and differentiation. AT dysfunction, rather than an increased fat mass per
se, is strongly associated with the development of insulin resistance and is characterized by impaired adipogenesis,
hypertrophic adipocytes, inflammation, and impairments in substrate metabolism. A better understanding of
mechanisms underlying AT dysfunction may provide new strategies for the treatment of obesity-associated
metabolic diseases. Here we evaluated the role of (all-E)-lycopene (Lyc), eicosapentaenoic acid (EPA) or trans-
resveratrol (Res) and combinations thereof on human white adipocyte function.

Methods: In-vitro differentiating human pre-adipocytes were treated with EPA, Lyc and Res or their combinations
for 14 days. The effects on intracellular lipid droplet (LD) accumulation, secreted anti- and pro-inflammatory cyto-/
adipokines (e.g. adiponectin, IL-6, IL-8/CXCL-8 and MCP-1/CCL2) and on gene expression of markers of adipocyte
differentiation and substrate metabolism (e.g. PPAR-gamma, C/EBP-alpha, GLUT-4, FAS, ATGL, HSL, and PLIN-1) were
measured by fluorescent microscopy (Cellomics™), multi-parametric LiquiChip® technology and quantitative RT-PCR,
respectively.

Results: Treatment of differentiating adipocytes for 14 days with the combination of Lyc/Res and EPA/Res resulted
in significantly inhibited LD formation (~ -25 and -20%, respectively) compared to the effects of the single
compounds. These morphological changes were accompanied by increased mRNA levels of the adipogenic marker
PPAR-gamma and the lipase ATGL and by decreased expression levels of lipogenic markers (LPL, FAS, GLUT-4) and
the LD-covering protein PLIN-1. In addition, a blunted adipocyte secretion of pro-inflammatory cytokines (IL-6 and
MCP-1) and adiponectin was observed following treatment with these compounds.

Conclusion: The combination of the dietary bio-actives Lyc and EPA with Res might influence adipocyte function
by affecting the balance between adipogenic, lipogenic and lipolytic gene expression, resulting in a reduced LD
storage and a less inflammatory secretion profile. Taken together, our results indicate that combinations of dietary
compounds may be beneficial for the prevention and treatment of metabolic disorders via effects on human white
adipocyte function.
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Background
Over the last decade research focusing on adipose tissue
(AT) biology and function enormously advanced due to
the sustained increase in obesity prevalence [1]. AT dys-
function, characterized by impaired adipogenesis, hyper-
trophic adipocytes, inflammation, and impairments in
lipid and glucose metabolism, rather than an increased
body fat mass per se, is strongly associated with the devel-
opment of insulin resistance [2]. A better understanding
of mechanisms causing or maintaining AT dysfunction
may provide novel and improved strategies for the treat-
ment of obesity-associated metabolic diseases.
The major role of AT is storage and release of fatty acids

(FAs) depending on energy intake and expenditure. FAs
are stored in the form of triacylglycerides (TAGs) in intra-
cellular lipid droplets (LDs) and released by lipolysis, the
hydrolysis of TAGs into free FAs and glycerol via the ac-
tion of intracellular lipases (including hormone sensitive
lipase (HSL) and adipose triglyceride lipase (ATGL)). This
storage and removal capacity (lipid turn-over) of AT is
regulated by a tight alignment between adipogenic differ-
entiation, lipogenesis and lipolysis [3, 4], which has been
shown to be impaired in obesity and may modulate
whole-body insulin sensitivity [5, 6]. The differentiation of
pre-adipocytes into mature adipocytes is controlled by a
complex transcriptional cascade involving peroxisome
proliferator-activated receptor gamma (PPAR-gamma)
and CCAAT/enhancer binding protein alpha (C/EBP-
alpha) (reviewed in [7]). Furthermore, lipid-storing adipo-
cytes are enclosed by adipose-derived stromal cells includ-
ing pre-adipocytes, endothelial and hematopoietic cells,
and immune cells (e.g. macrophages [8]). Hence, AT is
not only an energy storage tissue but also an active endo-
crine organ, producing and secreting an abundance of
specific mediators (for review see [9]). Pro-inflammatory
cytokines and chemokines are increasingly secreted by AT
cells of obese individuals [10], resulting in a state of ‘low-
grade inflammation’ [11], which affects local adipose me-
tabolism, systemic inflammation and insulin sensitivity.
Overall dietary quality and specifically diets high in bio-

active constituents may have beneficial clinical effects on
metabolic processes, by altering AT function. A number of
natural compounds, such as plant-derived polyphenols,
carotenoids and polyunsaturated fatty acids (PUFAs), or
their metabolic derivatives have been tested for their
impact on adipocyte differentiation and metabolism in
several in-vitro and in-vivo murine models [12–14]. How-
ever, human data are scarce and mainly the action of indi-
vidual compounds have been tested [15, 16]. Several
studies using pre-adipocytes, mostly from murine and less
frequent from human origin, have demonstrated that the
polyphenol Res and the n-3 PUFA EPA are potent modu-
lators of adipocyte function (for review see [17, 18], re-
spectively). However, distinct biological activities of

lycopene or its metabolites in human adipocyte function
remain to be elucidated. Here, we investigated the effects
of individual and combinations of bio-active dietary con-
stituents including (all-E)-lycopene (Lyc), eicosapenta-
enoic acid (EPA) and trans-resveratrol (Res) on lipid
accumulation, adipogenic, lipogenic and lipolytic gene ex-
pression and cyto-/adipokine secretion in in-vitro differ-
entiating (14 days) primary human white adipocytes.

Methods
Cell culture
All cell culture reagents were obtained from Life Technolo-
gies (Karlsbad, CA, US). Unless otherwise stated, chemicals
were purchased from Sigma-Aldrich (St. Louis, MO, US).
Individual subcutaneous primary human pre-adipocytes
(HPAd 1375 and 1377) were obtained from Cell Applica-
tion, Inc. (San Diego, CA, US) whereas a multi-donor vial,
termed super lot (SL0035), was purchased from Zen-Bio,
Inc. (North Carolina, US). Available donor characteristics
are indicated in Additional file 1: Table S1. Pre-adipocytes
were maintained in growth medium (GM): DMEM/Ham’s
F-12 (1:1, v/v) complemented with 10% FCS, 1% pen/strep
(v/v), 1% HEPES pH 7.4, 0.2% amphotericin B, and 2.5 ng/
ml recombinant basic fibroblast growth factor (bFGF). GM
was changed every 2–3 days. Cells were passaged when
reaching ~80% confluence and used for experiments be-
tween passage 3 and 7. For experiments, 6000 cells/cm2

were incubated (37 °C, 5–8% CO2, relative humidity of
85%) on collagen-I-coated 24-well plates in GM for ~5 days.
For adipogenesis confluent HPAd were cultured for 14 days
in differentiation medium (DM): DMEM/Ham’s F-12 sup-
plemented with 5% FCS, 1% pen/strep, 1.5% HEPES
pH 7.4, 0.2% amphotericin B, 17 μM calcium-pantothenate,
33 μM biotin, 0.5 μM recombinant human insulin and
100 μM rosiglitazone. After 3 days of differentiation 0.5 μM
dexamethasone and 250 μM isobutylmethylxanthine
(IBMX) were omitted from the medium.
For the non-differentiation control (CTRL) and differen-

tiation control (Diff CTRL) pre-adipocytes were cultured in
medium containing only vehicle (i.e. dimethylsulfoxide
(DMSO), tetrahydrofurane (THF)) and insulin or in
complete DM, respectively. For treatment purposes DM
was supplemented with different doses (0.5–25 μM) of the
test compounds EPA, Res and Lyc (DSM Nutritional Prod-
ucts Ltd. Basel, Switzerland)) for the total 14 day differenti-
ation period (see Additional file 2: Figure S1). Lyc was
dissolved in THF and all other substances in DMSO. To in-
vestigate possible amplifying effects, Res (1 and 25 μM) was
also combined with Lyc (0.5 and 2 μM) or EPA (1 and
25 μM), respectively. Treatments were performed in tripli-
cate. Final vehicle concentrations were adjusted to 0.2%
DMSO and 0.1% THF in all cultures. Media with or with-
out bio-active compounds were renewed every 3 to 5 days.
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Lipid droplet quantification (ArrayScan)
Cellular LDs were quantified adapting the Cellomics™ assay
described previously [19] applying the Thermo Scientific™
ArrayScan™ VTI High Content Reader (Thermo Fisher
Scientific, Waltham, MA, US). Briefly, differentiated adipo-
cytes (day 14) were fixed, stained with the fluorescent dyes
Hoechst 33342 (nuclei) and BODIPY® 493/503 (LDs; Life
Technologies) followed by quantification of accumulated
LDs with the SpotDetector® V2 algorithm. Adjusted proto-
col parameters are listed in Additional file 3: Table S2. For
analysis 100 fields per well were scanned and data of each
channel were reported on a “per field” basis. The nuclei re-
lated features Spot Count (= LD-number), Spot Total Area
(= LD-area) and Spot Total Intensity (= LD-intensity), de-
scribing the differentiation status of treated adipocytes,
were calculated as percent of Diff CTRL per plate.

Gene expression analysis (TaqMan™)
Total RNA was isolated from cells at day 8 of treatment
(RNeasy® 96 Kits; Qiagen, Hilden, Germany). Primers and
probes were designed using the Primer Express software
(Applied Biosystems, Foster City, CA, US) and synthesised
by Sigma Genosys (St. Louis, MO, US) (Additional file 4:
Table S3). Quantitative TaqMan™ RT-PCR was performed
on first strand cDNA (Omniscript® RT Kit; Qiagen) as de-
tailed previously [19] utilizing an ABI-PRISM® 7900 HT
Sequence Detection System. mRNA abundance was calcu-
lated using the comparative CT method: ΔCT = CT [gene
of interest] – CT [endogenous control] and ΔΔCT =ΔCT

[Diff CTRL cells] - ΔCT [treated cells]. The fold expression
for the gene of interest was expressed as 2−ΔΔCT .

Adipokine and cytokine secretion (Luminex)
Supernatants of differentiating adipocytes were collected
at day 8 (after 5 days conditioning, day 4–8) of the treat-
ment period and stored at -80 °C till analysis. MILLI-
PLEX MAP Human Adipocyte Panel (Cat#HADCYT-
61 K) kits were purchased from Millipore (Billerica,
Massachusetts, USA) and used according to the manu-
facture’s protocol on the LiquiChip® Workstation IS 200
(Luminex technology; Qiagen, Hilden, Germany). De-
tected molecules were: adiponectin (Adipo), hepatic
growth factor (HGF), interleukin (IL)-6, IL-8/CXCL8,
monocyte chemoattractant protein (MCP)-1/CCL2 and
plasminogen activator inhibitor (PAI)-1 (active, serpin
E1). Measurements were run in triplicates and final con-
centrations were normalized by nucleus count per well.
Data evaluation was performed with the LiquiChip® Ana-
lyser software from Qiagen.

Statistical analysis
In brief, data points from repetitive experiments con-
ducted with pre-adipocytes from the same donor were

set relative to the corresponding Diff CTRL mean
(=100%) and averaged. Subsequently all relative values
from the different donors and super lot (Additional file
1) were used for calculating the overall mean ± SEM.
Statistical significance of the mean differences between
treatment and Diff CRTL was tested by a linear mixed
model or Student's t-test. P values <0.05 were consid-
ered significant. ArrayScan™ results and cytokine con-
centrations are shown as relative mean ± SEM. Gene
expression data are expressed as fold change (FC) ± error
(based on SEM). For details of the statistical analysis ap-
plied to the three data sets see Additional file 5.

Results
Combinations of bio-active dietary constituents inhibited
lipid accumulation
To determine effects of bio-active dietary constituents on
lipid accumulation in adipocytes, pre-adipocytes were dif-
ferentiated for 14 days in the presence or absence of the
compounds. Subsequently, LD accretion in the mature adi-
pocytes was assessed by fluorescent microscopy (Fig. 1a).
Lyc alone decreased the LD-area by 15% at 0.5 μM (p =
0.021) and the LD-intensity by 20% at 2 μM (p < 0.05),
while Res and EPA alone did not affect lipid accumulation
(Fig. 1b) compared to Diff CTRL. However, the combin-
ation Lyc/Res substantially reduced the adipocyte lipid
content (represented by shown LD-parameters). Lyc/Res at
2/25 μM, significantly inhibited LD-number, -area and
-intensity by 25% (p < 0.001), 17% (p < 0.01) and 23% (p =
0.044), respectively (Fig. 1a + c, right), in comparison with
the Diff CTRL. In addition, combined treatment with EPA/
Res at 25/25 μM reduced LD-area and -intensity by 22% (p
< 0.001) and 26% (p = 0.011), respectively, whereas the LD-
number was slightly attenuated (Fig. 1c). Together, these
data indicate that the combination of Lyc/Res and EPA/Res
significantly reduced the adipocyte lipid content compared
to Diff CTRL.

Dietary bio-actives affected adipogenic, lipogenic and
lipolytic gene expression
In order to investigate the possible underlying mechanism
for this attenuated lipid accumulation targeted quantita-
tive RT-PCR analysis was performed at day 8 of differenti-
ation, a time point intermediate between undifferentiated
and differentiated adipocytes. The combinations EPA/Res
and Lyc/Res at high concentrations increased the expres-
sion of the adipogenic master regulator, PPAR-gamma, by
1.9-fold and 1.4-fold (p < 0.001), respectively, compared
with Diff CTRL (Fig. 2a). Lyc/Res reduced mRNA levels
of the lipogenic genes FAS (fatty acid synthase) and
GLUT-4 (glucose transporter type 4 /SLC2A4) signifi-
cantly (Fig. 2e + f, p < 0.05). In addition, the combination
of EPA/Res strongly blunted the lipogenic markers LPL
(lipoprotein lipase) and GLUT-4 mRNA (0.03 and 0.15-
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fold, respectively; Fig. 2c + f, p < 0.001). Both combinations
did not affect FABP-4 (cytosolic fatty acid binding protein
4) expression (Fig. 2d). Res alone at 25 μM moderately en-
hanced the expression of PPAR-gamma to 1.7-fold (p <
0.001) and reduced GLUT-4 expression 0.7-fold (p =
0.007) compared to Diff CTRL. The expression of C/EBP-
alpha, LPL and GLUT-4 was diminished to 0.5-fold, 0.1-
fold and 0.4-fold, respectively, when pre-adipocytes were
differentiated in the presence of 25 μM EPA (Fig. 2b, c + f,
p < 0.01). In contrast, Lyc alone (at 2 μM) did not affect
adipogenic and lipogenic gene expression (Fig. 2a-f).
The mRNA levels of the major lipases HSL and ATGL

were neither significantly affected by Lyc and EPA nor
by the combinations, although Res alone increased
ATGL expression 2.6-fold (p = 0.006; Fig. 2g + h) in com-
parison to Diff CTRL. However, combining these bio-

active compounds significantly diminished the expres-
sion of the LD-covering protein PLIN-1 (perilipin 1;
Fig. 2i, EPA/Res: 0.2-fold and Lyc/Res: 0.4-fold, p <
0.001). A comparable effect on the expression of lipo-
genic and lipolytic genes was observed at day 14 for both
combinations (Additional file 6: Figure S2). Altogether,
these results demonstrate that combining of Lyc/Res
and EPA/Res affects the balance between adipogenic,
lipogenic and lipolytic gene expression in white human
adipocytes.

Bio-active compounds attenuated secretion of pro-
inflammatory cytokines
Finally, we analysed the influence of dietary bio-actives
on cyto-/adipokine secretion of differentiating human
adipocytes. EPA alone and the combination EPA/Res

a

b

c

Fig. 1 Effects of Lyc, Res and EPA on lipid droplet parameters in differentiated human adipocytes. Primary human pre-adipocytes (HPAd) were
differentiated for 14 days in the presence of bio-active compounds. a Representative fluorescent images of cells after growth in non-differentiation
medium (CTRL) and differentiation-only medium in the absence (Diff CTRL) or presence of resveratrol (Res), lycopene (Lyc) and Lyc/Res at high
concentrations. b Quantification of the effects of Lyc, Res and eicosapentaenoic acid (EPA) alone and c of the combinations of EPA/Res and
Lyc/Res on lipid droplet features. Shown are three parameters (Lipid Droplets/Cell, Lipid Droplet Area/Cell and Lipid Droplet Intensity/Cell) that
quantify lipid accumulation in adipocytes, as compared to Diff CTRL set as 100%. Data are represented as overall mean ± SEM (7 donors, n ≥ 6).
(*) p < 0.05, (**) p < 0.01, (#) p < 0.001 (versus Diff CTRL, linear mixed model)
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strongly reduced the secretion of the insulin sensitizer
Adipo by ~90% whereas Res and Lyc/Res blunted it by
~60% (Fig. 3a) compared to Diff CTRL. The combina-
tions EPA/Res and Lyc/Res and EPA suppressed pro-
inflammatory IL-6 secretion by 70%. Release of the pro-

inflammatory cytokine MCP-1 was significantly reduced
by more than 30% by all compounds and combinations
except Res. Both combinations caused a similar secre-
tion pattern for the above mentioned cyto-/adipokines at
day 14 of differentiation (Additional file 6: Figure S2).

a

c d

e f

g

i

h

b

Fig. 2 Effects of bio-active compounds on adipogenic, lipogenic and lipolytic gene expression markers. Displayed are the effects of EPA, Lyc and
Res or combinations thereof on gene expression after 8 days treatment of HPAd. mRNA levels of adipogenic transcription factors PPAR-gamma a
and C/EBP-alpha b, lipogenesis markers LPL c, FABP-4 d, FAS e and GLUT-4 f and lipolytic markers HSL g, ATGL h and PLIN-1 i were determined
by quantitative RT-PCR. Data are shown as crude fold change (FC) ± error (based on SEM, 2 donors, 1 super lot, n ≥ 2), compared to Diff CTRL set
as 1. (*) p < 0.05, (**) p < 0.01, (#) p < 0.001 (versus Diff CTRL, linear mixed model). CV for dCT values: <5% for all genes
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Further, the secretion of angiogenic HGF was markedly
diminished by Lyc/Res (70%, p < 0.01), whereas PAI-1
levels were not modified by the compounds (Fig. 3e + f)
in comparison to the Diff CTRL.
Together, our data indicate that EPA and the combina-

tions Lyc/Res and EPA/Res are able to suppress the se-
cretion of pro-inflammatory markers, but concurrently
attenuate the anti-inflammatory and insulin sensitizing
adipocyte-specific hormone adiponectin.

Discussion
Weight gain is accompanied by increased lipid storage
in AT, altered gene expression and production of pro-
and anti-inflammatory mediators [20]. In the present
study, we examined the effect of the three abundantly

consumed bio-actives Lyc, Res and EPA on human white
adipocyte function and whether combining Res with
EPA or Lyc has amplifying effects. Our in-vitro data
demonstrate that combining Lyc with Res caused a sig-
nificant reduction in LD-number, -area and -intensity in
human adipocytes. This reduced lipid accumulation was
accompanied by increased expression of adipogenic and
reduced expression of lipogenic and lipolytic markers,
and by an attenuated pro-inflammatory secretion profile
(i.e. IL-6 and MCP-1).
Single bio-active dietary constituents are known to in-

fluence pre-adipocyte differentiation, proliferation and
adipocyte function directly or indirectly [15–18]. Sur-
prisingly, in our study Res and EPA treatment alone
showed no significant effect on the LD accumulation in

a b

c d

e f

Fig. 3 Adipokine and cytokine secretion of adipocytes treated with bio-active compounds. Supernatants of HPAd, cultured in the presence or
absence of EPA, Lyc and Res or combinations thereof, were collected at day 8 of differentiation and subsequently analysed on the LiquiChip®
workstation. The accumulation of the following adipokines: adiponectin (Adipo, a), interleukin-6 (IL-6, b) and 8 (IL-8, c), monocyte chemotactic
protein 1 (MCP-1, d), hepatic growth factor (HGF, e) and plasminogen activator inhibitor-1 (PAI-1, f) was measured in media after 5 days conditioning
(day 4–8), as compared to Diff CTRL set as 100%. Data are shown for three independent experimental series as overall mean ± SEM. (*) p < 0.05,
(**) p < 0.01, (#) p < 0.001 (versus Diff CTRL, linear mixed model)
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human adipocytes. This is contrary to the general re-
ported findings in in-vitro and animal studies, which
suggest that Res and EPA are capable of diminishing
lipid storage in rodent adipocytes [21–24]. However, in
human adipocytes lipid accumulation was either pro-
moted or unaffected by EPA [25, 26], what seems in line
with our observation after 14 days treatment. For Res,
both enhancing and suppressive effects on lipid accumu-
lation were described in murine 3T3-L1 cells and follow-
ing a high fat diet (HFD) in mice [27, 28]. In human
Simpson-Golabi-Behmel syndrome (SGBS) adipocytes
anti-adipogenic effects of Res were reported for concen-
trations > 30 μM [29, 30], suggesting that Res at 25 μM
(this study) might be at switch between its pro- and
anti-adipogenic actions. The limited number of human
clinical trials with Res or EPA supplementation showed
controversial results regarding their effects on adipo-
cyte size, function [31, 32] and adipose inflammation
[33, 34], possible due to variation in population, dose
and duration of supplementation. Together, these data
indicate that further research is necessary to elucidate
the exact effect of Res and EPA on adipogenic potential
of human (pre-) adipocytes, under the consideration
that the usage of primary white adipocytes can affect
the experimental outcomes due to intrinsic donor
characteristics [35].
Supplementation with the carotenoid Lyc can increase

its levels in human AT [36] and 3T3-L1 cells [37] and it
is well studied for its anti-oxidative effects [38]. In
addition, our results show for the first time that Lyc
alone moderately but significantly reduces lipid accumu-
lation in human adipocytes. This effect was also ob-
served in C3H10 T1/2 adipocytes [19]. Conversely, Lyc
or its metabolite apo-10’-lycopenoic acid (APO10LA)
did not modulate AT mass in rodents [39] (following
oral administration for 6 weeks) [40]. In contrast to the
minor effect of single compounds, our data clearly dem-
onstrate that the combination Lyc/Res has a stronger ef-
fect on LD accumulation, suggesting that Res enhances
Lyc’s modest anti-adipogenic effect.
Although not a direct measure of lipid turn-over

within adipocytes, investigating mRNA levels of genes
involved in related pathways could provide possible
underlying mechanisms for the amplifying effects ob-
served with combinations of bio-actives. Res’s anti-
adipogenic properties may be attributed to its effects on
both master regulators of adipogenesis, PPAR-gamma
and C/EBP-alpha, which are repressed via activation of
AMP-activated protein kinase (AMPK) [41]. Interest-
ingly, in the present study Res at 25 μM up-regulated
PPAR-gamma expression and showed no effect on C/
EBP-alpha mRNA in differentiating human adipocytes.
This seems contrary to the reported down-regulation of
PPAR-gamma and lipogenic markers in 3T3-L1 [41] and

SGBS cells [29] at concentrations >25 μM and the ac-
companying reduction of fat pads in mice following
10 weeks of HFD feeding [42]. We hypothesize that in
the present study the concentration of Res (25 μM) is in-
sufficient to counteract the strong adipogenic effects of
the PPAR-gamma agonist rosiglitazone [43], contained
in the media at 100 μM during the complete differenti-
ation period. This is further supported by results in differ-
entiating SGBS cells, demonstrating no effect of 20 μM
Res on PPAR-gamma expression even in the presence of a
low rosiglitazone concentration (2 μM) [29].
PUFAs can act as PPAR agonists and display PPAR-

independent gene control function [44]. Regarding EPA,
a well-known n-3 PUFA, a reduction in stored LDs and
a concomitant modification of adipogenic markers, e.g. a
decrease of PPAR-gamma expression, was described in
murine fat cells [19, 21]. However in line with our re-
sults, an upregulation of PPAR-gamma expression is de-
scribed in isolated human adipocytes [45], suggesting
species-specific effects of EPA on adipogenesis. Finally,
Lyc is not presented as an adipogenic modulator [16],
however some conflicting data exist regarding its impact
on adipose gene expression. In accordance with our hu-
man data, in murine adipocytes, Lyc treatment did not
affect adipogenic genes [39] but moderately decreased
lipid deposition [19], whereas Lyc administration for
6 weeks decreased PPAR-gamma mRNA in AT of rats
without changes in total fat mass [46].
In addition to adipogenesis, the balance between lipo-

genesis and lipolysis largely influences total lipid amount
in human adipocytes. The combination of Lyc/Res and
EPA/Res strongly suppressed the lipogenic markers
GLUT-4, LPL and FAS in our human fat cells. However,
for the single compounds conflicting effects on these
markers were reported previously. Supporting our re-
sults, a reduction of GLUT-4 mRNA and unaffected
levels of FAS mRNA were shown in 3T3-L1 cells after
Res (20 μM) [47] and EPA (100 μM) [48] treatment, re-
spectively. Whereas, opposing to our human data,
GLUT-4 and LPL mRNA expression was up-regulated
after treating murine adipocytes with Lyc (2 μM) [19]
and EPA (100 μM) [21], respectively.
Furthermore, the lipases ATGL and HSL and the LD-

covering protein PLIN-1 are key proteins in the intracellu-
lar lipolytic process, being tightly regulated by neuroendo-
crine signals (reviewed in [49]). Our results are in
agreement with Lasa et al. [50], who reported that the
mRNA level of ATGL but not HSL, were increased follow-
ing treatment of mature human and murine adipocytes
with 100 μM Res for 24 h, which was accompanied by an
increased FFA release [50]. Interestingly, the mRNA of the
dominant LD-covering protein PLIN-1 was not altered by
the single constituents. In line, a recent in-vitro study in
human adipocytes also demonstrated that EPA alone had
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no impact on PLIN-1 expression [51]. On the other hand,
the combinations significantly suppressed PLIN-1 mRNA
in our human adipocyte model, suggesting interactions
between bio-active compounds which influence PLIN-1
expression. However, it needs to be investigated whether
this translates into functional changes in the lipolytic po-
tential of the adipocytes.
Together, the pronounced down-regulation of lipo-

genic (GLUT-4, LPL, FAS) and lipolytic genes (PLIN-1)
by the combination of bio-active compounds (EPA and
Lyc with Res) cannot be justified by additive effects of
the single compounds, suggesting strong amplifying/syn-
ergistic interactions. Therefore, combining bio-active
constituents facilitates the interplay of different direct
and indirect transcriptional controlling mechanisms,
which warrants further investigations.
Finally, we showed that the reduction in lipid accumula-

tion following EPA/Res or Lyc/Res treatment was accom-
panied by a diminished release of the pro-inflammatory
cytokines IL-6 and MCP-1. In line, a previous study, in dif-
ferent adipocyte models and in murine AT explants, dem-
onstrated that pre-incubation with the anti-inflammatory
nutrient Lyc (24 h, 2 μM) reduced the secretion of the pro-
inflammatory cytokines IL-6 and MCP-1 induced by
tumour necrosis factor (TNF)-alpha stimulation or HFD-
feeding, respectively [52]. Additionally, a study with HFD-
induced obese rats showed that Lyc supplementation in-
creased plasma adiponectin levels and decreased the
mRNA of MCP-1 and IL-6 in AT and their circulating pro-
tein levels [40]. Without stimulation of the inflammatory
pathways (this study), Lyc only suppressed the secretion of
the macrophage attracting chemokine MCP-1 [53] from
human adipocytes. Furthermore, several studies indicate
that treatment of mature SGBS and 3T3-L1 adipocytes with
Res (100 μM, 48 h) [30, 54] and EPA (200 μM, 48 h) [55,
56], respectively, and supplementation of HFD-fed mice
with both bio-actives (Res, 10 weeks [42]; EPA, 5 or
11 weeks [55, 56]) can reduce the expression and secretion
of pro-inflammatory cytokines such as MCP-1, IL-6 and
IL-8 in AT.
In addition, we observed a decrease of Adipo secretion

with Res, EPA and the combinations. However, several
groups reported an increase of the anti-inflammatory and
insulin sensitizing adipokine adiponectin and a decrease of
leptin expression and secretion after treatment of mature
3 T3-L1- and SGBS-adipocytes with Res (up to 200 μM) or
its metabolites for 24 or 48 h, respectively [30, 57]. Simi-
larly, EPA treatment (100 μM, 24 or 48 h) was also able to
increase Adipo secretion from mature primary human adi-
pocytes [26, 58]. Nevertheless, our findings are in line with
recent data from Lorente-Cebrian et al. [59], who reported
that 200 μM EPA (96 h) significantly decreased adiponectin
gene expression and protein secretion in freshly isolated rat
adipocytes [59]. Furthermore, we noticed a strong

attenuation of the angiogenic protein HGF by the combin-
ation Lyc/Res. HGF is secreted from AT and its expression
is elevated in the obese state allowing for remodelling of
AT when expanding [60] and exhibits anti-inflammatory
characteristics on the cross-talk between macrophages and
adipocytes in mice [61].
Altogether our data suggest that treatment with dietary

bio-actives during adipogenic differentiation, alters the
cyto-/adipokine release towards a less pro-inflammatory
secretion profile, indicated by an attenuated IL-6 and
MCP-1 release. The combinations EPA/Res and Lyc/Res
partially augmented the effects of the single compounds
on the secretion of adiponectin, IL-6, MCP-1 and HGF,
supporting the concept of strong amplifying/synergistic
interactions between nutrients [62].

Conclusions
Here we show for the first time, that the combination of
the dietary bio-actives Lyc and EPA with Res might influ-
ence adipocyte function synergistically by affecting the bal-
ance between adipogenic, lipogenic and lipolytic gene
expression, resulting in a reduced lipid accumulation and
improved inflammatory profile. Our data suggest that ap-
plying combinations of bio-actives is a more favourable ap-
proach to tackle AT dysfunction because anti-lipogenic and
anti-inflammatory effects can be magnified compared to
the single dietary constituents [63–66]. Given that obesity
is recognized as a state of chronic ‘low-grade inflammation’
[10, 11], reducing the secretion of pro- and stimulating
anti-inflammatory adipokines with combinations of dietary
bio-actives could contribute to manage and treat obesity-
related metabolic complications.
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adipokines adiponectin and IL-6 (overall mean ± SEM; E-F) after 8 (C-F) or
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differentiated human adipocytes. Shown are the effects of the combinations
EPA/Res and Lyc/Res on gene expression and adipokine secretion after
14 days treatment of HPAd. mRNA levels of lipogenesis markers LPL (A),
GLUT-4 (B) and FAS (C) and the lipolytic marker PLIN-1 (D) were determined
by quantitative RT-PCR and the accumulation of the adipokines adiponectin
(E), IL-6 (F), MCP-1 (G) and PAI-1 (H) was measured in media after 5 days
conditioning (day 10–14) on the LiquiChip® workstation. Data are shown as
crude fold change (FC) ± error (based on SEM, A-D) compared to Diff CTRL
set as 1 and as overall mean ± SEM (E-H) for one experimental series (all
donors included: HPAd 1375, 1377 and super lot SL0035). (*) p < 0.05,
(**) p < 0.01, (#) p < 0.001 (versus Diff CTRL, Student’s t-test)
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