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Abstract
We study in this paper the basic Fourier transform, q-translation and q-convolution
associated to the q-difference operator in the space of entire functions with
logarithmic order 2 and finite logarithmic type and their dual.

1 Introduction
The concept of the basic Fourier transform is related to the quantum group which is a
q-deformation of the Lie group. The deformation parameter q is always assumed to satisfy
 < q < . The basic Fourier transform was defined firstly in [] and studied after that from
the point of view of harmonic analysis in [–], . . . .
In this work, we are interested in the basic Fourier transforms of entire functions with

logarithmic order  and finite logarithmic type which is introduced by []. This notion of
logarithmic order is a refinement order of entire functions of order zero which is used to
study the growth of order of some basic hypergeometric series. Our investigation is in-
spired by the ideas developed by [, ] and []. Some of the arguments used here are
similar to the one considered in [] and []. However, we need to introduce new proce-
dures to prove the results in the q-theory setting.
The paper is organized as follows. In Section , we give a brief introduction and recall

some known results about q-shift factorial, q-derivative and q-exponential function. In
Section , firstly we describe the space of entire functions and its dual. Also, we give a new
q-Taylor expansion of an entire function. Secondly, we introduce the logarithmic order
and logarithmic type. In Section , we study a new q-translation operator and its related
q-convolution andwe give several characterizations from the space of entire functions into
itself that commute with the q-translation. Finally, in Section , we define the q-Fourier
transformon the dual space of entire functions andwe establish a q-Paley-Wiener theorem
type.

2 Preliminaries
We assume that z ∈C and  < q < , unless specified otherwise. We recall some notations
[]. For an arbitrary complex number a,

(a,q)n :=

⎧⎨
⎩ for n = ,

( – a)( – aq) · · · ( – aqn–) for n≥ ,

(a,q)∞ := lim
n→∞(a,q)n,
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and [
n
k

]
q

:=
(q,q)n

(q,q)k(q,q)n–k
.

The q-derivative of a function f (z) is defined as in [] by

Dqf (z) :=
f (z) – f (qz)
( – q)z

, z �= ,

and we say that f has the q-derivative at zero if the limit

lim
n→∞

f (zqn) – f ()
zqn

exists and does not depend on z. We define the operator

�qf (z) := f
(
q–z

)
.

Obviously,

�qDq = qDq�q

and for an arbitrary positive integer n,

( – q)k

(q;q)k
(�qDz)kzn =

⎧⎨
⎩

[ n
k
]
qq

(k+ )–nkzn–k for  ≤ k ≤ n,

 for k > n.
()

Consider the q-exponentials (see []) defined by

eq(z) :=
∞∑
n=

zn

(q,q)n
=


(z,q)∞

, |z| < 

and

Eq(z) :=
∞∑
n=

q(
n
)zn

(q,q)n
= (–z,q)∞. ()

The q-exponentials functions eq(z) and Eq(z) satisfy

Dqeq(z) = eq(z) and �qDqEq(z) = Eq(z).

3 Space of entire functions of finite logarithmic order
We denote byA the space of entire functions on C. This space is endowed with the topol-
ogy of the uniform convergence on compact subsets of C. Thus, A is a Frechet space. A′

denotes the strong dual space of A. If T ∈ A′, there exist a constant C >  and a compact
subset K of C such that

∣∣〈T , f 〉∣∣ ≤ C sup
z∈K

∣∣f (z)∣∣, f ∈A.
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According to the Hahn-Banach theorem, the mapping T can be extended to the space
C(K) of continuous functions onK , as an element of the dual space ofC(K). Then theRiesz
representation theorem implies there exists a regular complex Borel measure γ supported
in K such that

〈T , f 〉 =
∫
C

f (z)dγ (z), f ∈A.

Proposition  The operator �qDq is continuous from A into its self.

Proof According to the Cauchy integral formula, for |z| < qr, we can write

�qDqf (z) =


iπ

∫
|u|=r

f (u)
(u – q–z)(u – z)

du.

Then

|�qDqf |qr ≤ 
( – q)( – q)r

|f |r ,

where |f |r = sup|z|≤r |f (z)|. Thus, we conclude that the operator �qDq is continuous from
A into itself. �

In the following theorem, we establish a new q-Taylor formula different from the one
considered in [] and [].

Theorem  If f ∈A, then f admits the representation

f (z) =
∞∑
n=

( – q)nq(
n
)zn

(q;q)n
(�qDq)nf ().

Proof Suppose that

f (z) =
∞∑
n=

anzn.

Then for k = , , . . . , we have

( – q)k

(q;q)k
(�qDq)kf (z) =

∞∑
n=k

an

[
n
k

]
q

q(
k+
 )–nkzn–k . ()

By taking z = , we obtain for k = , , . . . that

ak =
( – q)k

(q;q)k
q(

k
)(�qDq)kf (), ()

This proves the result. �

Recent research concerning q-difference equations, moment problems (see [, –])
strongly suggests that in order to deal with basic hypergeometric functions, one should
use the following concept.
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We recall (see []) that an entire function f of order zero has logarithmic order � if

� := lim
r→+∞ sup

ln ln |f |r
ln ln r

, ()

and when the logarithmic order � of f is finite, we define the logarithmic type τ as

τ := lim
r→+∞ sup

ln |f |r
(ln r)�

. ()

It is easy to see that:
f is of logarithmic order ρ if and only if, for every ε > ,

|f |r =O
(
e(ln r)

ρ+ε)
.

If f is of logarithmic order ρ , then its logarithmic type is equal to τ if and only if

|f |r =O
(
e(τ+ε)(ln r)ρ )).

We denote by Eτ ,q(C) the space of entire functions of logarithmic order  and logarithmic
type τ . In particular, when τ = 

 lnq– , Eτ ,q(C) is denoted simply by Eq(C). That is, an entire
function f is in Eτ ,q(C) if and only if for every ε > ,

∣∣f (z)∣∣ =O
(
e(τ+ε)(ln |z|)), as |z| → ∞.

The space Eτ ,q(C) is endowed by the topology associated to the family {ρτ ,ε} of seminorms,
where for every ε > ,

ρτ ,ε(f ) = sup
z∈C

∣∣f (z)e–(τ+ε) ln |z|∣∣.
Thus, Eτ ,q(C) is a Banach space. The dual of Eτ ,q(C) is denoted, as usual, by E′

τ ,q(C).

Lemma  ([]) Let f (z) =
∑∞

n= anzn be an entire function of order . Its logarithmic order
ρ and logarithmic type τ satisfy

ρ =  + lim sup
n→∞

lnn
ln ln( 

n√|an| )
()

and

τ =
(ρ – )ρ–

ρρ
lim sup
n→∞

n
(ln( 

n√|an| ))
ρ–

. ()

Proposition  The logarithmic order of the q-exponential function Eq(z) is equal to  and
its logarithmic type is 

– ln(q) .

Proof The result follows from Lemma . �
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Proposition  Let χ be a functional on Eτ ,q(C), then χ ∈ E′
τ ,q(C) if and only if there exists

a Borel measure γ on C and ε >  such that for every f ∈ Eτ ,q(C),

〈χ , f 〉 =
∫
C

f (z)e–(τ+ε)(ln |z|) dγ (z). ()

Proof Suppose that χ admits the representation () for a certain complex regular Borel
measure γ on C and ε > . Then we have

∣∣〈χ , f 〉∣∣ = C
∣∣f (z)∣∣ sup

z
e–(τ+ε)(ln |z|) .

Then χ ∈ E′
τ ,q(C). Conversely, let χ ∈ E′

τ ,q(C), then there exists C such that

∣∣〈χ , f 〉∣∣ = C
∣∣f (z)∣∣ sup

z
e–(τ+ε)(ln |z|) .

We denote byC the space of continuous functions inC vanishing at infinity. If f ∈ Eτ ,q(C),
then f (z)e–(τ+ε)(ln |z|) ∈ C. Indeed for  < η < ε, we have

∣∣f (z)∣∣e–(τ+ε)(ln |z|) ≤ sup
z

(∣∣f (z)∣∣e–(τ+η)(ln |z|))e–(ε–η)(ln |z|) → ,

as |z| → ∞.
We consider the mapping I from Eτ ,q(C) into C defined by I(f )(z) = f (z)e–(τ+ε)(ln |z|) and

the functional λ from I(Eτ ,q(C)) into C given by λ(f ) = 〈χ , f 〉.
It is clear that λ is continuous when on I(Eτ ,q(C)) we consider the topology induced in

it by the usual topology of C. By using Hanh-Banach and Riesz representation theorems
in a standard way, we can conclude that χ admits a representation like () for a certain
complex regular Borel measure γ on C and ε > . �

4 q-translation and q-convolution
In this section, we define a new q-translation operator related to q-difference operator
�qDq, on the space of entire functions of logarithm order .

Definition  The q-translation Tξ is defined on monomials zn by

Tξzn :=
n∑

k=

[
n
k

]
q

q–(n–k)k
( – q)k

(q;q)k
ξ kzn–k . ()

Proposition  For ξ ∈C, the q-translation operator Tξ can be extended on the entire func-
tion f (z) =

∑∞
n= anzn of logarithmic order  and logarithmic type lesser than 

– lnq in the
following manner:

Tξ f (z) =
∞∑
n=

an
n∑

k=

[
n
k

]
q

( – q)k

(q;q)k
q–(n–k)kξ kzn–k . ()

Proof It suffices to prove the convergence of the following series:

A =
∞∑
n=

|an|
n∑

k=

[
n
k

]
q

( – q)k

(q;q)k
q–(n–k)k|ξ |k|z|n–k .
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For every n ∈N and k = , . . . ,n, we can write

–(n – k)k =
k(k – )


+


k +

(


– n

)
k.

On the other hand, the function

ϕ(x) =


x +

(


– n

)
x

attains its minimum on n – 
 . For such a value n – 

 , the minimum value over (,∞) is

–



(
n –




)

.

Hence,

q–(n–k)k ≤ q(
k
)q–


 (n–


 )


. ()

Furthermore,

( – q)k

(q;q)k
≤ .

Thus,

A≤
∞∑
n=

|an|q– 
 (n–


 )


n∑

k=

[
n
k

]
q

q(
k
)|ξ |k|z|n–k . ()

By q-binomial theorem, we get

n∑
k=

[
n
k

]
q

q(
k
)|ξ |k|z|n–k = |z|n

(
–

ξ

|z| ;q
)
n
. ()

Hence,

|A| ≤
∞∑
n=

|an|q– 
 (n–


 )

 |z|n
(
–

|ξ |
|z| ;q

)
n
. ()

The logarithmic type τ of the function f is lesser than 
– lnq , then there exists  < β < 

such that τ = β 
– lnq . By applying Cauchy estimates, we find, for every R >  and n ∈N,

|an| ≤ CR–ne
β

(lnR)
 lnq– . ()

In particular, for R = q–n, we get

|an| ≤ Cq(–

 β)n .
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Then

|A| ≤ C
∞∑
n=

q

 (–β)nqn+



∣∣zn∣∣(– |ξ |

|z| ;q
)
n
< ∞.

This shows the result. �

Proposition  For z, ξ ∈C, the q-exponential function satisfies the product formula

TξEq(z) = Eq(z)Eq(ξ ).

Proof Let f be an entire function of logarithmic order  and logarithmic type lesser than


– lnq . The series defined in () is absolutely convergent. Then, after interchanging the
double sum, we can write

Tξ f (z) =
∞∑
k=

( – q)k

(q;q)k
q–(n–k)kq(

k
)ξ k

∞∑
n=k

an

[
n
k

]
q

q(
k+
 )–nkzn–k .

By (), the operator Tξ can be represented by the form

Tξ f (z) =
∞∑
n=

( – q)n

(q;q)n
q(

n
)ξn(�qDq)n(f )(z). ()

The result follows from the fact that the q-exponential function Eq(z) is an eigenfunction
of the operator �qDq corresponding to the eigenvalue . �

Proposition  For f ∈ Eτ ,q(C), with τ lesser than 
– lnq and z, ξ ∈C, we have

Tzf (ξ ) = Tξ f (z), Tf = f ,

Tz ◦ Tξ f = Tξ ◦ Tzf , (�qDq)Tzf = Tz(�qDq)f .

Now, we define the q-convolution of χ ∈ E′
τ ,q(C) and f ∈ Eτ ,q(C) as

χ � f (ξ ) = 〈χ ;Tξ f 〉. ()

In the following theorem, we obtain several characterizations of the continuous linear
mappings L fromA into itself that commute with the q-translation operators.

Theorem  Let L be a continuous linear mapping fromA into itself. The following asser-
tions are equivalent:

(i) L commutes with the q-translation operators Tz , z ∈C, that is,

TzL = LTz, z ∈C.

(ii) L commutes with the q-difference operator �qDq.
(iii) There exists a unique ϑ ∈A′ such that Lf = ϑ ∗ f , f ∈A.

http://www.advancesindifferenceequations.com/content/2012/1/184


Bouzeffour Advances in Difference Equations 2012, 2012:184 Page 8 of 13
http://www.advancesindifferenceequations.com/content/2012/1/184

(iv) There exists a complex Borel regular measure having compact support on C, for
which, for all f ∈A, we have

L(f )(z) =
∫
C

σzf (w)dγ (w).

(v) There exists an entire function � of logarithmic order  such that

Lf (z) = �(�qDq)f (z),

where

�(z) =
∞∑
n=

anzn.

Proof (i) ⇒ (ii) Let g ∈A, we have

Tzg(ξ ) – g(ξ )
z

=
∞∑
n=

( – q)n

(q;q)n
q(

n
)zn–(�qDq)n(g)(ξ ). ()

Hence,

lim
z→

Tzg(ξ ) – g(ξ )
z

= �qDqg(ξ ).

The operator L is continuous, then

�qDqLg(ξ ) = lim
z→

TzLg(ξ ) – Lg(ξ )
z

= L lim
z→

Tzg(ξ ) – g(ξ )
z

= L�qDqg(ξ ).

Hence, (i) ⇒ (ii).
(ii) ⇒ (i) The operator L commutes with �qDq, then for every n ∈N,

L(�qDq)n = (�qDq)nL.

Hence,

LTzg(ξ ) =
∞∑
n=

( – q)n

(q;q)n
q(

n
)zn–L(�qDq)n(g)(ξ )

=
∞∑
n=

( – q)n

(q;q)n
q(

n
)zn–(�qDq)nL(g)(ξ )

= TzLg(z).

(i) ⇒ (iii) Assume that (i) holds. We define the functional ϑ on A as follows:

〈ϑ ; f 〉 = Lf ().

It is clear that ϑ ∈A′ and

ϑ � f (ξ ) = 〈ϑ ;Tξ f 〉 = LTξ f () = Lf (ξ ).

http://www.advancesindifferenceequations.com/content/2012/1/184
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(iii) ⇒ (iv) It follows immediately from Hahn-Banach and Riesz representation theo-
rems.
(iv) ⇒ (v) Suppose that for all f , we have

Lf (ξ ) =
∫
C

Tξ f (z)dγ (z),

where γ is a complex Borel regular measure with compact support. According to [], we
obtain

L(f )(z) =
∞∑
n=

(�qDq)nf (z)
∫
C

( – q)n

(q;q)n
q(

n
)ξn dγ (ξ ).

Hence,

Lf (z) = �(�qDq)f (z),

where

�(z) =
∞∑
n=

anzn, with an =
∫
C

( – q)n

(q;q)n
q(

n
)ξn dγ (ξ ).

Since γ has compact support on C, for certain a and C, we have

|an| ≤ ( – q)n

(q;q)n
q(

n
)an.

Then we get

∣∣�(z)
∣∣ ≤ Eq

(
a|z|),

and � is of logarithmic order .
(iv) ⇒ (i) Suppose that for every f ∈A, we obtain

L(f )(z) =
∞∑
n=

(�qDq)nf (z)
∫
C

( – q)n

(q;q)n
q(

n
)ξn dγ (ξ ).

Hence, if f ∈A since Tz�qDqf = �qDqTzf ,

TzL(f )(z) =
∞∑
n=

Tz(�qDq)nf (z)

=
∞∑
n=

(�qDq)nTzf (z)

= LTzf . �

http://www.advancesindifferenceequations.com/content/2012/1/184
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5 The q-Fourier transform on the spaceA′

We introduce the q-Fourier transform onA′ by

Fq(T)(ξ ) =
〈
T(z),Eq(–iξz)

〉
, ξ , z ∈C. ()

From () the q-Fourier transform takes the form

Fq(T)(ξ ) =
∞∑
n=

(–i)n
( – q)nq(

n
)

(q;q)n
〈
T , zn

〉
ξn, ξ ∈C. ()

Theorem  (q-Paley-Wiener theorem) The q-Fourier transform Fq is a topological iso-
morphism from A′ onto Eq(C).

Proof Assume firstly that T ∈ A′. Then there exists a complex regular Borel measure γ

on C and a >  such that the support of it is contained in the open ball B(,a) of center 
and radius a and

〈T , f 〉 =
∫
C

f (z)dγ (z), f ∈A

so that for every n ∈N, there exists a constant C >  such that

∣∣〈T ; zn〉∣∣ ≤ Can. ()

By the expansion () of the q-Fourier of T , we can write

Fq(T)(λ) =
∫
C

Eq(–iλz)dγ (z) =
∞∑
n=

an,

where

an = (–i)n
( – q)nq(

n
)

(q;q)n
〈
T , zn

〉
λn, λ ∈C.

Then


n
ln |an| = ln( – q) + ln |λ| – ln(q;q)n + ln

∣∣〈T ; zn〉∣∣ + n – 


ln(q)

and

ln ln

(


n√|an|
)
= ln(n – ) + ln

(
–
ln(q)


)
+ ln

[
 –

 ln((q;q)n)
n(n – ) ln(q)

+ 
ln( – q) + ln |λ|
(n – ) ln(q)

+ 
ln |〈T ; zn〉|

n(n – ) ln(q)

]
.

The inequality () shows that

lim
n→∞

ln |〈T ; zn〉|
n(n – ) ln(q)

= .

http://www.advancesindifferenceequations.com/content/2012/1/184
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Then

lim
n→∞

ln ln( 
n√|an| )

lnn
= .

Furthermore, the logarithmic order ρ of Fq(T) is equal to

ρ =  + lim sup
n→∞

lnn
ln ln( 

n√|an| )
= .

Similarly, the logarithmic type of τ of Fq(T) is given by

τ = lim sup
n→∞

n
ln( 

n√|an| )
=


– lnq

.

Hence, we have provedFq(T) ∈ Eq(C).Moreover,Fq is a continuousmapping fromA into
Eq(C). Indeed, since A is a bornological space, it is sufficient to see that Fq(T) ∈ Eq(C).
The q-Fourier transform Fq is a one-to-one mapping fromA′ into Eq(C). Indeed, assume
that T ∈A′ is such that Fq(T) = , z ∈C. Then from (), we infer that

〈
T(w),wn〉 = , ∀n ∈ N.

Hence, () implies also that

〈
T(w), f

〉
= , ∀f ∈A.

Thus, the transform Fq is one-to-one. Suppose now that g is a function in Eq(C). There
exists C >  such that for every r > ,

|g|r ≤ Ce
ln |r|
 lnq– .

From Theorem , we have

g(z) =
∞∑
n=

( – q)nq(
n
)zn

(q;q)n
(�qDq)ng(), z ∈C.

Then, for every n ∈N,

( – q)nq(
n
)

(q;q)n
(�qDq)ng() =

∫
CR

g(w)
wn+ dγ (w),

where CR represents, for every R > , the circular path CR : w = Reiθ , θ ∈ [, ). Hence, for
every n ∈N, we have

∣∣(�qDq)ng()
∣∣ ≤ C

(q;q)∞
( – q)nRnq(

n
)
e

ln |R|
 lnq– ρ(g).

http://www.advancesindifferenceequations.com/content/2012/1/184


Bouzeffour Advances in Difference Equations 2012, 2012:184 Page 12 of 13
http://www.advancesindifferenceequations.com/content/2012/1/184

In particular, if we take R = q–n, we obtain

∣∣(�qDq)ng()
∣∣ ≤ C′an, a =

q/

 – q
.

On the other hand, from (), we have


iπ

∫
Ca

Eq(–izξ )ξ––n dξ =
( – q)n

(q;q)n
q(

n
)(–iz)n.

For |z| > a, we put

f (z) =
∞∑
m=

(–i)–mz––m(�qDq)m(g)().

Then the series converges absolutely in Ca. Hence, for every z ∈C, we have


iπ

∫
Ca

Eq(–izξ )f (ξ )dξ =
∞∑
m=

(–iz)n(�qDq)n(g)()


iπ

∫
Ca

Eq(–izξ )ξ––n dξ

=
∞∑
m=

( – q)nq(
n
)

(q;q)n
zn(�qDq)n(g)()

= g(z).

We now define the functional T on A by

〈χ ;ϕ〉 = 
iπ

∫
Ca

f (z)ϕ(z)dz.

It is obvious that χ ∈ A. Moreover, Fq(T) = g . Also, from (), we deduce that for every
bounded set � of A, there exists C >  such that

〈
F–(g);ϕ

〉 ≤ C sup
z∈�

∣∣g(z)∣∣. ()

We conclude that F– is continuous from Eq(C) ontoA. �
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