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Abstract

In this paper we study some aspects of the Bruhat order on classical Weyl groups, obtaining
a direct combinatorial description of the minimal ¢hs, that is chains with the lexicographically
minimal labelling. Moreover, we find a combinatorial characterization of the covering relation in the
hyperoctahedral group and in the even-signed permutation group, providing results analogous to the
well-known characterization of the covering relation in the symmetric group.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Bruhat order on Coxeter groups has been studied extensively (seeb5ergl?, 13,

17)). In particular it is known that every Coxeter group, partially ordered by the Bruhat
order, is a graded: L-shellable poset (se&,[7, 12]).

In this work we study some aspects of the Bruhat order on a particular class of Coxeter
groups, namely that of classical Weyl groups, which have nice combinatorial descriptions
in terms of permutation groups: the symmetric grdgy the hyperoctahedral group,
and the even-signed permutation grdp

We obtain, for these groups, a direct combinatorial description of the minimal chains,
that is chains with the lexicographically minimal labelling, which play a crucial role in the
definition of the E L-shdlability.

As a parallel result, we find a combinatorial characterization of the covering relation
in the hyperoctahedral group and in the even-signed permutation group, analogous to the
well- known characterization in the symmetric group.
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The organization of the paper is as follows.Saction 2we collect somévasic notions
and results. IrSection 3we expose some general techniques about posets, which will be
used in the rest of this workSectbns 46 contain the main results, about, respectively,
the ymmetric group, the hyperoctahedral group and the even-signed permutation group.
Finally, Section 7is dedicated to th proof of a rather technical result.

2. Notation and preliminaries

We letN = {1, 2, 3, ...} andZ be the set of integers. Farm € Z, with n < m, we let
[n,m] ={n,n+1,...,m}. Forn € N, we let[n] = [1, n] and[£n] = [—n, n]\{0}. We
denote by= the congruency modulo 21 = m, with n, m € Z, means thah — mis even.
Finally, we deote simply by< the lexicogaphic ordering oh-tuples:(az, a2, ..., an) <
(b1, b, ..., by) means thasy < by, wherek = min{i € [n] : & # b;}.

2.1. Posets

We fdllow [15, Chapter 3] for poset notation and terminology. In particular, we denote
by <1 thecovering relationx <1 y means thax < y and there is na suchthatx < z < y.

A posetishoundedf it has a minmum and a maximum, denoted f))andi resgectively. If
X,y € P,withx <y,welet[x,y] ={ze P : x <z <y}, and wecall it aninterval of P.
If X,y € P, with x < y, achainfrom x to y of length kis a (k + 1)-tuple (xg, X1, . . ., Xk)
suchthatx = xp < X1 < -+ < Xk = Y. Achainxg < X1 < --- < X is said to be
saturatedif all the relations in it are covering relatiofigo <1 X1 <1 - - - <1 Xk).

A poset is s@l to begradedof rank nif it is finite, bounded and if all maximal chains
of P have the same length If P is a gradegoset of rankn, then here is a uniqueank
functionp : P — [0, n] suchthatp(0) = 0, p(1) = nandp(y) = p(x) + 1 whenevery
coversx in P. Conversely, ifP is finite and bounded, and if such a function exists, tien
is gradedf rankn.

Let P be a graded poset and &t be a totally ordered set. AR L-labelling of P is a
function : {(x,y) € P?: x <y} — Q such that for everyx, y € P, with x < y, two
properties hold:

1. There is exactly ongaturated chain from to y with non-decreasing labels:

X=XoIX1<---<IXk =Y,
A1 A2 Ak

with Ay < Ao <--+ < Ak.
2. This chain has the lexicogrhically minimal labelling: if

X=Yody1d--- Y=Y
H1oo g2 Mk
is a saturated chain fromto y different from the previous one, then

(A’:L? A’Z? M) A’k) < (Ml? HZ? A l’l/k)'
A gradel posetP is said to beE L-shelbbleif it has anE L-labelling.
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Connections betweek L-shellable posets and shellalbmplexes, Cohen—Macaulay
complexes and Cohen—Macaulay rings can be found, for examplg,3r4, 8, 9, 14, 16].
Here we only recall the following important result, due t@Bjér.

Theorem 2.1. Let P be a gaded poset. If P is EL-shellable then P is shellable and hence
Cohen—Macaulay.

2.2. Coxeter groups and Bruhat order

We rder to [10] for the definition of a Coxeter group. L&f be a Coxeter group, with
set of gerratorsS. Thelengthof an elemeniv € W, denoted byl (w), is the mhimal k
suchthatw can be written as a product bigenerators. Aefledionin a Coxeér groupwW
is a onjugate of some element B The set of all réections is usually denoted by:

T:{wa_l:se S w e W}

Let W be a Coxeter group with set of generatSré et ushaveu, v € W. We setu — v
if andonly if v = ut, witht € T, andl(u) < I(v). TheBruhat orderof W is the partial
order relation so defined: given v € W, thenu < v if and only if there is a chain

U=Up—>Ug > U2 —> ---— Uk = .

If W is finite it is known thaW has a maximum, which is usually denoteddny. This
element is an involutiom)g = 1. Moreover, composition and conjugacy witky induce
(anti)automorphisms of the Bruhatder, as wetate in the following.

Proposition 2.2. Let W be a finite Coxeter group, with maximumg, and let uv € W.
Then the followingre equivalent:

1. u<uv;

2. wov < woU;

3. vwg < Uwo;

4. wouwg < wovwg.

Bruhat order on Coxeter groups has been studied extensively (seebergl?, 13,
17)). In particular it is known that every Coxeter group, partially ordered by the Bruhat
order, is a graded; L-shellable poset (se&,[7, 12)).

2.3. Classical Weyl groups

The finite irreducible Coxeter groups have been completely classified (see, e.g.,
[2, 10]). Among them we find the classical Weyl groups, which have nice combinatorial
descriptions in terms of permutation groups: the symmetric gi®uis a representative
for type An_1, the hyperoctahedral grolg, for typeB,, and the even-signed permutation
groupDy, for typeDy,.

2.3.1. The symmetric group
We denote byS, thesymmetic group, defined by

S = {o :[n] — [n] : o is a bijection
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Fig. 1. The diagram of = 35124¢ S5.

and we call its elementgermutationsTo denote a permutation € S, we often use the
one-line notationwe write o = o102...0n, to mean thato (i) = o; for everyi € [n].

We alsowrite o in disjoint cycle formomitting to write the 1-cycles of: for exanple, if

o = 364152, then we also write = (1, 3, 4)(2, 6). Giveno, t € §,,weletct =0 o1
(compostion of functions) so that, for examplél, 2)(2, 3) = (1, 2, 3). Giveno € §,, the
diagramof o is a gjuare ofn x n cells, with the celli, j) (thatis, the cell in columhand

row j, with the convention that the first column is the leftmost one and the first row is the
lowest one) filled with a dot if and only # (i) = j. For exanple, inFig. 1the diagram of

o = 35124¢ S is represented.

As a set ofgenerators fofs,, we takeS = {s;, S, ..., Sh—1}, wheres = (i,i + 1) for
everyi € [n — 1]. Itis known that the symmetric groug, with this set of generators, is a
Coxeter goup of typeAn_; (see, e.g.,q]).

The length of a permutation € &, is given by

(o) =inv(o),
where
inv(e) = [{(, ) e N?:i < j,o() > a())}

is the nunber ofinversionsof o .
In the symmetric group the reflections are the transpositions:

T={G])em?:i<j)

In order to give a characterization of the covering relation in the Bruhat order of the
symmetric group, we introduce the following definition.

Definition 2.3. Letus haver € S,. Ariseof o is a pair(, j) € [n]2 suchthati < j and
o() <o(j).Arise(i, j) is said to bdreeif there is nok € [n] suchthati < k < j and
o) <o) <o(j).

For example, e rises ofc = 35124¢ S are(l, 2), (1,5),(3,4), (3,5) and(4,5).
They are all free excefB, 5). The fdlowing is a well-known result.

Proposition 2.4. Leto, t € §, with 0 < 7. Theno < 7 in & if and only if
=0, ]j),

where(i, j) is a free rise ob.
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In this work we will provide analogous results for the hyperoctahedral group and for the
even-signed permutation group.

In order to give a characterization of the Bruhat order relatio&,inwe introduce the
following notation: foro € S, and for(h, k) € [n]2, we set

olh,kl=[{i e [h]: o) € [k, nl}|,
The characterization is the following (see, e.42]].
Theorem 2.5. Leto, T € S,. Theno < t if and only if
o[h, k] < z[h, K],
for every(h, k) € [n]2.
Finally, the maximum ofg, is
wo=nNn—1(n—-2)...321

Note that, giverv € S, thediagrams of the permutationsyo, o wg andweo wo are
obtained from the diagram of by, respectively, reversing the rows, reversing the columns
and reversing both rows and columns. So the effects of these operations on the Bruhat order
are described iRroposition 2.2

2.3.2. The hyperoctahedral group
We denote byS.n, the symmetrigroup on the setEn]:

Sin = {o : [£n] — [£N] : o is a bijection
(clearly isomorphic t&®y), and byB,, the hyperoctahedral groupdefined by
Bn = {0 € Sip:0(—i) = —o(i) for everyi € [n]}

and we call its elementsigned permutationsTo denote a signed permutatian € B,
we u® thewindow notationwe write ¢ = [o01, 02, ..., 0n], t0 mean thato (i) = o
for everyi € [n] (the images of the negative entries are then uniquely determined). We
also denoter by the sequenchri||oz| ... |on|, with the regative entries underlined. For
exampé, 32 1 denotes the sigrek permuation [—3, —2, 1]. We al® write o in disjoint
cycle form. Sgned permutations are particular permutations of thgisel, so they nherit
the notion of diagram. Note that the diagram of a signed permutation is symmetric with
respect to the center. Fig. 2, thediagram ofc = 32 1 € B3 is represented.

As a set ofgenerators foBy,, we takeS = {s, s1, ..., Si—1}, wheresp = (1, —1) and
s = (,i+1)(—i, —i — 1) for everyi € [n—1]. Itisknown that the hyperoctahedral group
Bn, with this set of generatoris a Coxetegroup of typeB, (see, e.g.,q]).

In [11] we introduced a new formula for computing the lengthBR: the length of
o € Bpis given by

inv(o) + neqo)

Ig(o) = 5 , 1)
where

inv(o) = |{(i, j) € [£N?:i < |, o) > o ())}]
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Fig. 2. The diagram of = 321 € Bs.

(the length ofr in the symmetric grouf®.n), and
neqgo) =|{i € [n]:o(i) < 0}].

For exampe, forc = 321 € B3, we have inyo) = 8, neqgo) = 2, solg(c) = 5.
It is known (see, e.g.7]) that the set of reflections @, is

T=A{d, - eBuUfd DL -]):1=<i<][jl<n}

Itis useful to extend a notation introduced for the symmetric groups ferBy, and for
(h, k) € [£n]? we set

olh, kKl = |{i e [-n,h]: o) € [k, n]}|.

Definition 2.6. Leto, T € B,. We saythat the paif(o, t) satisfies theB-condtion if
olh, k] < t[h, k]

for everyh, k e [£n]2.

The following result gives a combinatorial characterization of the Bruhat order relation
in B, (see, e.g.,4, Theorem 8.1.8]).

Theorem 2.7. Leto,t € Bpn. Theno < t if and only if the pair(o, t) satisfies the
B-condition.

ComparingTheorems 2.&nd2.7, we can conclude the following.

Proposition 2.8. Leto, t € By. Theno < t inthe Bruhat order of B if and only ife < 7
in the Bruhat order of the symmetric group-$

The maximum ofB;, is
wo=12---n

and the effects on the diagram of a signed permutation of composing and conjugating with
wo are the same as described for the symmetric group.

2.3.3. The even-signed permutation group
We danote byDy, theeven-signed permutation grougefined by

Dn = {0 € B, : nedo) is even.
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The notation and terminology are inherited from the hyperoctahedral group. For
example he signed permutatios = 321, whose diagram is representedRig. 2, is
also inDs.
As a set ofgenerators forD,, we takeS = ({s,S1,...,5-1}, Wheresg =
(1, -2)(—-1,2) ands = (i,i + 1)(—i, —i — 1) for everyi € [n — 1]. It is known that
the even-gined permutation groupy, with this set of generatsr is a Coxedr group of

typeDy, (see, e.g.,q]).
As regards the legth function inDy, it is known (see, e.g.2]) that

Ip(c) =1g(oc) —nego).
Thus, by @), the length o € Dy, is given by
inv(o) — neqo)
— s

For exampe, forc = 321 € D3, we havdp(o) = 3.
Finally, it isknown (see, e.g.2]) that the set of reflections dd, is

T={0DEL-P:1<i<]jl=n}

In order to give a combinatorial characterization of the Bruhat order relati@ny jinve
introduce the following notation: far € D, and(h, k) € [—n] x [n], we set

Ip(o) =

ocentelN, Kl = O[4|hx[+k] »
onwlh, Kl = o[—n,h—1x[k+1,n]»
onNiett[N, K] = ofhixk+1.n],
owuplh, Kl = o[—n,h—11x[K]-
We say thath, k) € [—n] x [n] is freefor o if
ocentel, K] = 0.
Definition 2.9. Let o, t € Dy. We saythat (h, k) € [—n] x [n] is a D-cell of the pair
(o, 1) ifitis free for botho andt and
onwlh, kKl = tnwlh, K1.
If (h, k) is aD-cell of (¢, t), then we say tat it is valid if
ontert[n, KT = Tniert[h, K1,
or, equivalently, if
UWup[hv Kl = TWup[hv K.
Finally, we say that the paiw, ) satisfies theD-conditionif every D-cell of (o, 7) is
valid.

The following result gives a combinatorial characterization of the Bruhat order relation
in Dy, (see R, Theorem 8.2.8]).

Theorem 2.10. Leto, t € Dy. Theno < t if and only if the pair(o, ) satisfiesoth the
B-condition and the D-condition.
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Note thato <p 7 implieso <g 7, while the converse is not true.
For example, ansiderthe two even-signed permutations= 6432175 andt =

It is easy to check that the pair, ) satisfies theéB-condition, sor <p .

The D-cdls of the pair(o, t) are(—3, 1), (—3, 2), (-2, 3) and(—1, 3). Among these,
(—3,1) and(—3, 2) are valid, while(—2, 3) and(—1, 3) are not valid. Thus the pais, 1)
does not satisfy th®-condition, sar £p .

The maximum oDy, is

"o — {lg...g, if nis even
°=112...n, ifnisodd

3. General techniques

In this section we expose some general techniques about posets, concerning gradedness,
covering relation andt L-shdlability.
Let P be a finite bounded poset.

Definition 3.1. A successor systeof P is a sibset
HC{x,y)e P?:x <yl
An insertion systerof P is a successor systehh of P suchthat
(insertion property) for everyx, y € P, with X < v, thereexids z € P suchthat
X,22eH and z<y.

A covering system ofP is a pair(H, p), whereH is an insertion system oP and
o : P — NU {0} is a statistic orP suchthat

(p-base property) p(0) = 0;

(p-increasing property) for every(x, y) € H, we have

p(y) =p(X) +1



F. Incitti / European Journal of Combinatorics 26 (2005) 729-753 737

Next proposition gives a general method to prove that a poset is graded with a given
rank function: it suffices to find a covering systemraf

Proposition 3.2. If there exists a covering systdid, p) of P, then P is graded with rank
functionp.

Proof. By the p-base propertyo(ﬁ) = 0. Now letx, y € P, with x <1 y. By the irsertion
property, there iz € P, such hat(x,z) € H andz < y. SinceH is a successor system,
we havex < z, and shcex <y, necessarily = y. By the p-increasing property, we have

p(Y)=p@=px)+1. 0O

A covering systentH, p) also gives a complete description of the covering relation in
P: the pairs of elements which are in covegi reldion are exactly the pairs ifl, as we
state in theollowing.

Proposition 3.3. Let(H, p) be a covering system of P. Letyxe P. Then
X4y & (X,y) € H.

Proof. If x <1y, then we have atrady observed, in the proof éfroposition 3.2 that
(X,y) € H. On theother hand, for everyx, y) € H we havex < y. In fact, from the
insertion property and the-increasing propey, it follows thatp is order-preserving, that
is, foreverys, t € P,s < timpliesp(s) < p(t). Ifwe suppose, by contradiction, that there
isz € P suchthatx < z < vy, then we have(y) > p(x) + 2, which is in contradiction
with p(y) = p(xX) +1. O

Now let Q be a totally ordered set, the setlabels

Definition 3.4. Let H be a successor system Bf A good labellingof H is a function
A : H — Q suchthat

(injectivity property) for every(x, y), (X, z) € H, we have
AX, YY) =AX,2) = y=1

Let H be a successor system Bfand leti be a good labelling oH. Letx € P.
An elementi € Q is asuitable labelof x if there isy € P suchthat(x,y) € H

and A(x,y) = i. By the ifectivity property, such a is unique, and we call it the
transformationof x with respect to the lab&| anddenote it by
tP (x).

The set of all suitable labels afis denoted byA(x).

The following is an equivalent version of the insertion property, once a good labelling
of H is given:

(insertion property) for everyx, y € P, with x < y, there exits a label € A(x) such
that

tP(x) <y.

If (H, p) is a covering system d?, then byProposition 3.3ve havex <y if and only
if (x,y) € H. In this case a good labellingof H is an edge-labelling oP. It is useful
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to introduce the following terminology: ik € P andi € A(x) then we caIItiP(x) the
covering transformationf x with respect to the labé| anddenote it by

ctP (x).

Thus, for everyx € P,i € A(X) we havex < cqp(x). On theother hand, ifx <1y, then
y= cgp(x) for a unique € A(x), and wewrite also

X<Yy.
|
We are nowable to define theninimd chainsin P. Note hat,if (H, p) is a covering
system ofP, then ly the insetion propery, for everyx, y € P, with x < y, the set
i €400t 0 <)
is not empty. This allows us to give the following definition.

Definition 3.5. Let (H, p) be a covering system d®. Letx,y € P, with x < y. The
minimd labelof x with respect toy, denoted bymiy (x) (or simplymi), is

miy(X) = min{i € A(X) : c(x) < y}.

The minimal covering transformatioof x with respect toy, denoted bymcl&,P (x), is the
covering transformation of with respect to the minimal label:

Mt () = ctii(x).
It is useful to state the following, which is a consequence of the definitions.
Proposition 3.6. Let x, y € P, with x < y. Then
X <1 mcg,P x) <y.
By Proposition 3.6thefollowing definition is well-posed.

Definition 3.7. Letx,y € P, with x < y. Theminimd chainfrom x to y is the saturated
chain

X=XoIX1 < --<IXk =Y,
defined by

Xi = mct (Xi—1),
for everyi e [K].

By the definition of a minimal covering transformation, this chain has, among all the
saturated chains fromto y, the lexicographically minimal labelling. The minimal chains
are crucial in the definition of th& L-shdlability: a poset isE L-shellable ifits minimal
chains have increasing labels and if any ofeurated chain in it has at least one decrease
in the labels.

According toDefinition 3.7 the mnimal chains areompletely described if we give a
combinatorial description of the minimal covering transformation. This is what we do for
classical Weyl groups in next three sections.
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4. The symmetric group

By Proposition 2.4we can define a natural edge-labelling®f(the same as introduced
by Edelman in 7] to prove theE L-shdlability of ).

Definition 4.1. Thestandard labellingof S, is the edge-labelling
Lo y) e §ix<ayl— (G, ) e < j)

defined inthe following way: for every, t € &, with o < 7, we set
Mo, T) = (@, |),

where(i, j) is the free rise o& suchthatr = o (i, j).

With the terminology introduced iBection 3 we can say that theuitable labelsof o
are its free rises and that, (i, j) is a free rise ob, then thecovering transformatiownf o
with respect tdi, j) is

ct(?jj)(a) =0, j).

In order to describe the minimal covering transformation, we give the following
definitions.

Definition 4.2. Leto, 1 € §,, with 0 < . Thedifference indexf o with respect tor,
denoted bydi, (o) (or simplydi), is the minimal index on whiclr andz differ:

di;(c) =min{i e [n] : o (i) # t(i)}.

We wiite di, instead ofdi; (o), when there is no ambiguity about the permutations
andr which we are referring to.

Lemma4.3. Leto, T € §, witho < 7. Then
o(di) < t(di).

Proof. Firstnote that, by definition, we have
o(di) # 7(di).

Now suppose, by contradiction, that(di) > z(di). In this case we would have
o[di,o(di)] = z[di,o(di)] + 1. Buto < 7 and, by Theorem 2.5 this implies
o[di, o(di)] < t[di, o(di)], which isa contradiction. [J

Lemma4.4. Leto, T € §, with o < 7. Then he set
{jeldi+1n]l:0(j)€oi)+1, )]} 2
is not empty.

Proof. Setk = o ~1(z(di)). If k € [di — 1], theno (k) = 7(k), that isk = di, which is a
contradiction. Ifk = di, theno andt agree at the indedi, which isalso a contradiction.
Thusk € [di + 1, n]. Also,o (k) = 7(di), sok belongs to the se@j. O

Previous lemmas ensure that next definition is well-posed.
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Definition 4.5. Leto, t € &, with 0 < t. Thecovering indexof o with respect tor,
denoted byci, (o) (or simplyci), is

Ciz(0) =min{j e [di+1,n]:0(j) € [o(di)+ 1, z(di)]}.

By definition(di, ci) is afree riee of o, so it isone of its suitable ladls. In the next two
propositions we prove that it is theinimd label of o with respect tor, in the s@ise of
Definition 3.5

Proposition 4.6. Leto, T € §, witho < 7. Then
ot oy (0) = o(di, ci) < 7.

Proof. Let x = o(di, ci). We may assume, without loss of generality, tiht= 1. Set
R=1[1,ci — 1] x [e(1) + 1, o(ci)]. For every(h, k) [n]2, we have

[olhKI+1, it (hk eR,
xth. k1= {a[h, K. if (h.K) ¢ R.

Thus, byTheorem 2.5to prove thaty < t, weonly have to show that[h, k] > o[h, k]+1
for every(h, k) € R. Butif (h, k) € R, then we have

olh,kl] =0o[h, 7(1) + 1] < r[h,t (1) + 1] < r[h, k] — 1,
sox <t. O
Proposition 4.7. Leto, t € §, with o < 7. Then

mi; (o) = (di, ci).
Proof. Let (i, j) be afree rise of suchthat

ct(?fj)(a) =o(,j) <t

We want toprove that(di, ci) < (i, j). Suppose, by contradiction, thét j) < (di, ci),
so eitheri < di,ori =diandj < ci. Ifi < di, sincesc andr must differ at the index
i, the minimdity of di is contradicted. Ifi = di andj < ci, seté = o(, j). We have
&(di) = o(j) and, sinc& < t, byLemma4.3£(di) < r(di). Soo(j) < t(di) and this
contradicts the minimality ofi. [

Thus in the symmetric group thminimal covering transformatioaf o with respect to
T IS

mcth (o) = o (di, ¢i),

and, as discussed iBection 3 this gives a dscription of the minimal chains in the
symmetric group.
5. The hyperoctahedral group

Definition 5.1. Leto € B,. Arise(i, j) of o is centralif

0,0 €li, jIx[a(),a ()]
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Fig. 4. The covering relation iBp.

A central rise(i, j) of o is symmetridf j = —i.

In order to find a characterization of the covering relatiorBjj) we startdefining a
successor system.

Definition 5.2. Leto, t € By. We saythat(o, t) is a good pairin By, if either

1.t =0, j)(—i,—]),where(i, j) isanon-central free rise af, or
2.t =0, ]), where(, j) is a central symmetric free rise of

Definition 5.2is illustrated inFig. 4, whereblack and white circles denote respectively
o andr, inside he gray areas there are no other dots @ndz, and the éagrans of the
two permutations are supposed to be the same anywhere else.

We set

Hg, = {(0,7) € B2 : (0, 7) isagood pair inBp},

and define thetandard labellingh of By by associating with every good pair, t) € Hg,
the pair(, j) [£n]2 mentioned irDefinition 5.2 which isobviously unique.

By Propositions 2.4nd2.8, it follows thatHg, is a successor system Bf and, since
7 is uniquely determined by and by the labeli, j), A is a good labelling.

Giveno € By, thesuitable labelsof o are then the non-central free risescofind the
central symmetric free rises of. If (i, j) is a suitable label of then thetransformation
of o with respect tdi, j) is

B”)(a) = {“(i’ (=i, —]), if (i, J)isnon-central

.} a(i,j), if (i, j) is central symmetric

Now leto, T € By, with o < t. In order to pove thatthe insertion poperty holds, we
define the label
i (0.7) = (di, ci), if (di, ci) is non-central
Bnl% T =1 (di, —di), if (di,ci)is central
Note thatig, (o, v) is alwaysa sutable label ofo. So wecan define the signed
permutation

_ .Bn _Jodi,ci)(—di, —ci), if (di,ci) is non-central
X8 (0. T) =Tig (6,1) (@) = {o(di, —di), if (di, ci) is central
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Proposition 5.3. Leto, t € By, witho < 7. Then
XBn(0,7T) = T.
Proof. Let x = xg,(o, 7). If (di, ci) is non-central then
x = o (di, ci)(—di, —Ci) = mct*" (wo(Mct" (o)) wo).
Thus, byPropositions 2.22.8and3.6 (apgdied twice), we have
X<Tt.

If (di, ci) is central, thery = o (di, —di). We may assume, without loss of generality,
thatdi = —n. So recessarily (di) = —1. SetR = [+n] x {1}. For every(h, k) € [+n]?
we have

g et ki+l ihkeR
X KE=1 5k, if (h, k) ¢ R

Thus to prove thaly < r it suffices to show that[h, k] > o[h, k] + 1 for every
(h, k) € R. By the symmetry of the diagram, itis enough to show ttjat 1] > o [h, 1]4+1
for everyh € [—n]. But, if h € [—n] we have

olh,1] =o[h,z(di)+ 1] < z[h, (i) +1] < t[h,1]-1. O
Werecall that the length of € By, is given by

inv(c) + nego)
— s

Proposition 5.4. Thepair (Hg,, I8) is a covering system of,B

Ig(o) =

Proof. By Proposition 5.3 Hg, is an insertion system oB,. The p-base property is
trivial. It remains to prove the-increasing property. Considés, t) € Hg, and let
Mo, ) = (, j). We have

inv(e) +2, if (i, j) isnon-central
invie) +1, if (i, j) is central symmetric

inv(t) = {

and

neqr) = nego), if (i, j) is non-central
gr) = neqgo) + 1, if (i, J) is central symmetric

Thusineachcadg(r) =lg(o) +1. O

We have found a covering system Bf,. So we have gharacterization of the covering
relaion in B, which we sate in the following.

Theorem 5.5. Leto, T € B,. Theno < t if and only if either

1. t =of, j)(—i,—]), where(, j) is anon-central free rise of, or

2.t =o0(, j), where(i, j) is a central symmetric free rise of
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If o € By and(i, j) is a suitable label of, then he covering transformation ef with
respect tdi, j) actually is acovering transformationdenoted by

B
Ct(i"‘j)(o).
In the next proposition we prove thias, (o, 7) is theminimd labelof o with respect to
7, in the s@se ofDefinition 3.5
Proposition 5.6. Leto, t € By, witho < 7. Then

. . _ )i, ci) if (di, ci) is non-central
m'f(“)—'Bn(“”)—{(di,—di), if (di, ci) is central

Proof. If (di, ci) is non-central (case 1) thdg, (o, 7) = (di, ci); otherwise(case 2)
iB,(o, 7) = (di, —di). Let (i, j) be a suitable label of suchthatct(?_”j)(a) < 7. We want
to prove that '

ig,(0,7) < (0, ).

Necessarily > di. If i > di thenig, (o, t) < (i, j). S0, supposeé = di.

In case 1, we have to prove that> ci. Suppose, by contradiction, that< ci and set
& =o0(, ). We haves(di) = o(j) and, sinc& < t, byLemma4.3£(di) < t(di). So
o(j) < =(di) and this contradicts the minimality of.

In case 2, we have to prove that> —di (actually, the only possibility i = —di).
If we supposg < ci, as incase 1 we get a contradiction. Thjs ci. Since(di, j) is a
suitable abel ofo and it is central, it has to be symmetric, thajis= —di. O

Thus in the hyperoctahedral group th@nimal covering transformatiof o with
respect ta is

B, _Jodi,ci)(—di, —ci), if (di,ci)isnon-central
met (")—{a(di,—di), if (di, ci) is central

and this gives a combinatorial description of the minimal chair,in

6. The even-signed per mutation group
Definition 6.1. Leto € Dy. A central ris€(i, j) is semi-freaf

kkeli,jl:o® elo@), (D} ={i,—], ]}

that is if the only dot of thediagram ofo lying in therectangldi, j] x [o (i), o (j)] are
those in the cellgi, o (1)), (=], —o (j)) and(j, o (j)).

An example of central semi-free rise is illustrated-ig. 53).
As we did forB,,, we start defimg a successor system Df,.

Definition 6.2. Leto, t € Dy. We saythat (o, t) is agood pairin Dy, if
T :G(Iv J)(_Iv _J)s

where(i, j) is
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Fig. 5. The covering relation iDp.

1. anon-central free rise of, or
2. acentral non-symmetric free rise®for
3. acentral semi-free rise of.

Definition 6.2is illustrated inFig. 5 where weuse the same notation askig. 4.
We set

Hp, = {(0, 1) € D?: (0, 7) isagood pair inDy},

and define thestandard labellings of Dy, by associating with every good pais, 7) €
Hp,, thepair (i, j) € [£n]2 mentioned irDefinition 6.2 which isobviously unique.

Itis easy to see thadp, is a successor systembf, and, since is uniquely determined
by o and ty the label (i, j), A is a good labelling.

Giveno e D, the suitable labelsof o are then the non-central free risesaafthe
central non-symmetric free rises efand the central semi-free rises ®f If (i, j) is a
suitable &bel ofo then thetransformationof o with respect tdi, j) is

te (@) = o, (i, — ).
In order to prove that the insertion property holds, we need the following definition,

which can be given in general for the symmetric group, and which the hyperoctahedral
group and the even-signed permutation group inherit.

Definition 6.3. Leto, t € §,, with 0 < 7. Suppose that the set
{jelci+1,n]:0(j) €loi)+1,0(ci)— 1]}

is not empty. Then theecond covering indegf o with respect tor, denoted bysci, (o)
(or simplysci), is
sci;(o) =min{j e [ci+1,n]:0(]) € [o(di)+ 1, o(ci) — 1]}

Definition 6.4. Leto, t € Dy, with o < 7. We saythat (o, ) is a D-special pair if

1. di <)ci <0;

2. (o(di) <) o(ci) < 0;
3. t(di) = —o(ci);
4

. [ci+1, —ci — 1] x [o(ci), —a(ci)] is empy for o.
Moreover, a special paiw, 7) can be eitheof the firg kind, if
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5. [ci + 1, —ci — 1] x [o(di), —o (di)] is not empty foro,
or of the second kindf
5. [ci + 1, —ci — 1] x [o(di), —o(di)] is empy for .

Leto, T € Dy, with o < . We definethe label

(di, ci), if (o, T) is not aD-special pair
ip, (o, T) = { (di, sci), if (o, 7) is aD-special pair othe first kind
(di, —ci), if (o, 7) is aD-special pair of the second kind

Note that, if(o, ) is a D-special pair of the first kind, then, by 4 and §ci necessarily
exids. Alsonote thatip, (o, 7) is alwaysa sttable label ofo, so wecan define the even-
signed permutation

D
XDy(0, T) = tiD:(a,r)(O)‘

All cases are shown ifig. 6, whereo, T and x = xp, (o, 7) are represented. Black
circles denoter, white squareg and white circlesy. Only the dots in columnsli and
—di of t are represented, possibly with a gray rectangle around, denoting the range of
varidion t(di). Inside he gray rectangles there are no dotsrodind x other than those
indicated and the diagrams @fandy are supposed to be the same anywhere else.

If (o, T) is not aD-special pair, we distinguish between the following cases:

1. (di <)0<ci,o(di) <0< o(ci);

. (di <)0<ci,0<o(d) (< o(ci));

. (di <)0<ci, (o(di) <)o(ci) <O0;

. (di <)ci <0,0<o(di) (< o(ci));

. (di <)ci <0,0(di) <0<o(ci),o(ci) > —o(di);

. (di <)ci <0,0(di) <0<o(ci),o(ci) <—o(di);

. (di <)ci <0, (o(di) <)o(ci) <0, (i) # —o(Ci);

. (di <)ci <0, (c(di) <)o(ci) <0, t(di) = —o(ci),
[ci + 1, —ci — 1] x [o(ci), —o(ci)] is not empty foro.

0O ~NO O WN

Otherwise(o, T) can be either &-special pair of the first kind:
9. (di <)ci <0,(c(di) <)o(ci) <0,7(di) = —o(ci),

[ci + 1, —ci — 1] x [o(ci), —o(ci)] is empy for o,

but[ci + 1, —ci — 1] x [o(di), —o(di)] is not,

and we distinguish between

9a. sci < 0 and
9b. sci > 0;

or aD-special pair of the second kind:

10. (di <) ci <0, (o(di) <) o(ci) <0, 7(di) = —o(Ci),
[ci + 1, —ci — 1] x [o(di), —o(di)] is empy for o.
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not
- empty
for o

,,,,,,,,,,,,,

9a 9b 10

Fig. 6. The minimal covweng transbrmation inDp,.

Theorem 6.5. Leto, T € Dp, With o < 7. Then

XDp(o,7) < T.

The proof ofTheorem 6.5s rather technical and will be revealed in the last section.
Werecall that the length of € Dy, is given by

inv(o) — nego)
— s

Proposition 6.6. Thepair (Hp,, Ip) is a covering system of D

Ip(o) =
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Proof. By Theorem 6.5Hp,, is an insertion system dd,. The p-base property is trivial.
It remains to prove the-increasing property. Considér, 7) € Hp,. We rekr to the cases
as inFig. 6. We have

inv(z) = inv(ie) +4, incases1and 10,
~ linv(e) +2, inall other cases
and
__|nego)+2, incaseslandl10
negr) = {nega), in all other cases

Thusineachcadg(r) =Ip(o) +1. O

We have found a covering system Bf,. So we have a&haracterization of the covering
reldion in Dy, which we séte in the following.

Theorem 6.7. Leto, T € Dy. Theno < 7 if and only if
t=o(, (=1, —]),
where(, j) is
1. anon-central free rise of, or

2. acentral non-symmetric free rise 6f or
3. acentral semi-free rise af.

If o € Dp and(i, j) is a suitable label of, then he transfomation of o with respect
to (i, j) actually is acovering transformatioydenoted by

ety (@) = o (i, (=i, —j).
We now pove thatip, (o, ) is theminimd labelof o with respect tcr.
Proposition 6.8. Leto, t € Dy, With o < t. Then
mi; (o) =ip,(o, 7).

Proof. Let x = xp,(o, 7). If (0, 7) is not a D-special pair (case 1), thém, (o, 7) =
(di, ci), if (o, ) is a D-special pair of the first kind (case 2), tha), (o, t) = (di, sci),
and if (o, 7) is a D-special pair of the second kind (case 3), thgg(o, ) = (di, —ci).
Let (i, j) be a suitable label of suchthatct('ﬁ?]) (o) < tandlett = ct(?'})(a). We want
to prove that

iDn(Gv 7:) =< (Iv J)

Necessarily > di. If i > di thenip, (o, t) < (i, j). So upposd = di.

In case 1, we have to prove that> ci. Suppose, by contradiction, that < ci. By
the definition ofci, we haves (j) > t(di). But&(di) = o(j), so&(di) > z(di), which
contradicts < .

In cases 2 and 3, we have to prove, respectively, thatsci andj > —ci. Suppose
that the contrary is true. Looking &ig. 6 (9a, 9b, 10), it is easy to see that, in both
cases, the only possibilities aje= ci or j < ci ando(j) > z(di). Butif j = ci,
thené = o (di, ci)(—di, —ci) and the pair&, t) does not satisfy th®-condition, since
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(di + 1, —o(ci) + 1) is a non-valid D-cell of (¢, 7), contradictingé < t. On theother
hand, ifj < ci ando(j) > t(di), then he conclusion is the same as in case [

Thus in the even-signed permutation group thieimal covering transformationf o
with respect tar is

o (di, ci)(—=di, —ci), if (o, ) is not aD-special pair
o(di, sci)(—di, —sci), if (o, 1) is aD-special pair of the first
mctP (o) = kind,
o (di, —ci)(—di, ci), if (o, 7) is aD-special pair of the second
kind,

and this completes the descriptions of the minimal chains in classical Weyl groups.

7. Proof of Theorem 6.5

To prove Theorem 6.5we need two preliminary lemmas. We first introduce further
notation: foro € D, and(h, k) € [—n] x [n], we set

on[h, K] = o1+ hx[k+1n]-

Lemma7.1. Leto,t € Dp be such thato, t) satisfies he B-condition. Leth, k) €
[—n] x [n] be such thaenwh, K] = =nwlh, K. If (h, k) is free foro, then(h, k) is also
free fort, herce itis a D-cell of(o, 7).

Proof. Consider the equalityin)x(+n] = Tihixxn](=h). We haveoih)x+n] = onl[h, K]
(since(h, k) is free foro) andtihxp+£n] = N[N, K] + Thyx[£k]- SO

T x[+k] = on[h, K] — N T[h, K],

and
on[h, k] > =n[h, K].

On the othehand, by theB-condition, we have [|h|, k + 1] < z[|h|, k + 1], that is
onwlh, K] + on[h, kI < enwlh, K] + T~ ([h, K].

So, byonwlh, K] = Tnw(h, k], we have
on[h, K] < =n[h, K].

Thuson[h, K1 = =n[h, k] andtjn«[+k = O, thatis, (h, k) is free forz. O

For the second lemma, we introduce the following notation:dore Dp, (h,k) €
[—n] x [n] andk; € [K], we set

olert[N; K1, K] = o[—n,h—11x[k; k]
arightlh; K1, K1 = o(h,njx[ky k-

Lemma7.2. Leto,t € Dyp be such thaio, t) satisfies he B-condition. Leth, k) €
[—n] x [n] be such thatnw(h, K] = tnwlh, K]. Let ki € [K]. Set

olett = otert[N; ke, KI,
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and similarly foroyignt, Tiert and trignt. Then

Tright = Oright,
Oleft < Tleft < Oleft + Oright-
Moreover, ifoyight < Tright, in particular if oyighy = 0, then

Tright = Oright,
Tieft = Oleft,

and ifk € [2, k] wehave
onwlh, k1 — 1] = =nwlh, kg — 1];

otherwise, if k = 1, wehave
owgplh, K1 = twyplh, KI.

Proof. By the B-condition, we haves[h — 1, k1] < t[h — 1, ki], thatis
onwl[h, K] + otert < tnw([h, K] + Tiett-

So, byonwlh, K] = tnwlh, K], we haveoies < Tiett.
Consider the equality[in]x[kl,k] = T[+nx[k k] (= k — ki + 1), thatis

Oleft + Oright = Tleft 1 Tright-
It follows that
Oright — Tright = Tleft — Tleft > 0.

SO Tright < Oright aNAojert < Tieft < Oleft + Tright-
If oright < Tright then olviously tright = oright andTiet = Oer-
In this case, ik; € [2, k] we have

onwlh, k1 — 1] = onwl[h, K] + ot = Tnwlh, K] + Tiett = Tnwl[h, k1 — 1],
and ifk; = 1 we have
owgplh, Kl = oleit = Tiert = Twplh, KI. O
We can now provd heorem 6.5

Proof. Let x = xp, (o, 7). We recall that

o(di, ci)(—di, —ci), if (o, 7) is not aD-special pair
x = { o(di, sci)(—di, —sci), if (o, 1) is aD-special pair othe first kind
o (di, —ci)(—di, ci), if (o, 7) is aD-special pair of the second kind

We réfer to the cases as ifig. 6. Let us showcase by case, that < 7. In evey case
we may assume, without loss of generality, thhat= —n.
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In all cases, except 1, 9 and 10, we have
X =met (o),

so byProposition 3.&andTheorem 2.7thepair (x, 7) satisfies théB-condition.
In case 1, in order to prove thét, t) satisfies theB-condition, we only have to show
thato[h, k] < t[h, k] — 2, whenh € [—ci] andk = —o (di). We have

o[h,k] = olh, T(di) + 1]

< t[h, (di) + 1]
= 7[h, K] — 1 — 7di hyx[k, 7 (di)—1]
< t[h,k] — 1.

Suppose, by contradiction, thafh, k] = t[h, k] — 1. It follows thato [h, t(di) + 1] =
t[h, t(di) + 1] and rgihjx[k.rdiy—1) = O. The pair(o, v) satisfies theB-condition,
onwlh + 1, t(di)] = =nwlh + 1, 7(di)] and (h + 1, (di)) is free for o, thus, by
Lemma 7.1(h + 1, z(di)) is a D-cell of (o, 7). Since(o, t) satisfies theD-condition, it
has to be valid, that isr,Wup[h+1, t(di)] = rwup[h+1, z(di)]. Butawup[h+1, t(di)]=0
and, sincer(di hjx[kz(di)—1 = 0, we havetwup[h + 1, 7(di)] = 1, a contradiction. Thus
olh, k] < t[h, k] — 2.

In case 10, for th&-condtion of (x, t), we have agaito show that [h, k] < t[h, k]—
2,whenh € [ci]andk = —o (ci). As befoe, we haver [h, k] < t[h, k]—1 and, supposing
by contradictionthat [h, k] = t[h, k]—1,we gebnw[h+1, t(di)] = tnwlh+1, T(di)].
Now (h + 1, £(di)) is obviously free for botho andt. So(h + 1, z(di)) is a D-cell of
(o, T) and the conclusion is the same as before.

In case 9a, thd&-condtion of (x, 7) is proved if we $iow thato [h, k] < t[h, k] — 1,
when (h,k) € [ci,sci — 1] x [o(di) + 1, o(sci)]. If we suppose, by contradiction,
thato[h, k] = t[h, k], we getonw[h + 1, t(di)] = tnwl[h + 1, T(di)], with the same
conclusion as in previous cases.

Finally, in cag 9b, we have to show that[h, k] < t[h, k] — 1, when(h, k) € [ci] x
[c(di)+1,0(sci)]or(h, k) € [-sci]x[—a(sci)+ 1,—a(di)]. If (h,Kk) € [ci]x[o(di)+
1,0 (sci)] thisis proved as in case 9a(H, k) € [—sci]x[—o(sci) + 1, —o (di)], suppose
by contradiction that [h, k] = t[h, k], thatis,onw[h + 1,k — 1] = tyw[h + 1, k — 1].
Then, by theD-condition of (o, 7), we getow,[h+ 1, kK — 1] = rw,p[h+1,k—1]. Onthe
other hand, sinceyignh + 1; 7(di) + 1, k] = 0, byLemma 7.2ve getoier[h + 1; 7(di) +
1, Kl = mer[h+1; (di) +1, k], which implies w,,[h+ 1, K— 1] = 1+ow,,[h+1,k—-1],
a contradiction.

It remains to prove thaty, ) satisfies theD-condition. If (h, k) is a D-cell of (x, 1)
which is also aD-cell of (o, 7), then it has tdbe vdid for (o, ), and ths necessarily
implies that it is also valid foty, t), ascan be easily checked in every case. So, case by
case, we have to look for the-cdls of (x, t) which arenot D-cdls of (o, 7) (we call
themnew D-cdls) and show that they are valid foy, 7).

In case 1, if(h, k) is a newD-cdl, then (h, k) € [—ci + 1] x [—o (di), o(ci) — 1] and
onwlh, k] = tywih, k] — 1. From

onwlh, Kl = onwlh, t(di)] < etnwih, t(di)] < enwlh, k] — 1,
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it follows thatonw(h, T(di)] = Tnwlh, T(di)]. Moreover(h, t(di)) is free foro. So,by
Lemma 7.1(h, z(di)) is aD-cell of (o, 7). By the D-condtion of (o, 1), it has tobe vdid,
that is,onert[h, T(di)] = Tnert[h, T(di)]. Since(h, T(di)) is free for botho andz, this
implies xniert[h, K] = onert[h, K] = Tniert [, K]. Thus(h, k) is valid for (o, x).

In case 2, if(h, k) is a newD-cdl, then (h, k) € [—ci + 1] x [o(di), o(ci) — 1] and
onwlh, k] = tnwlh, kK] — 1. In this case the reasoning is the same as in case 1.

In case 3, if(h, k) is a newD-cdl, then there are two subcases: eitli@h(h, k) <
[di +1, —ci] x [0 (ci), —o (di) — 1], or (3")(h, k) € [—Ci 4+ 1] x [0 (Ci), —o (di) — 1]
andonwlh, k] = tnywih, kK] — 1.

In subcase 3we haveonw[h, k] = tnwlh, K] and oignfh; —z(di), k] = 1 <
Trignt h; —7(di), K]. So,by Lemma 7.2we have

otert[h; —7(di), K] = tert[h; —(di), K] 3

andonwl[h, —7(di) — 1] = tnwlh, —t(di) — 1]. Thus(h, —z(di) — 1) is a D-cell of
(o, T), which has to be valid, that isxwup[h, —1(di) —1] = rwup[h, —1(di) — 1]. This,
together with (3), implies(wup[h, k] = qup[h, k] = 'CWup[h, K].

In subcase 3 we have xnwl[h,kl = tnwlh, k] and xigndh; —t(di), k] = 1 <
Tignd N; —7(di), K]. So,by Lemma 7.2we have

xe[h; —7(di), K] = mer[h; —7(di), K] 4)

and xnwlh, —z(di) — 1] = =nwl[h, —7(di) — 1]. But onw[h, —7(di) — 1] =
xnwlh, =7 (di) — 1]; thus(h, —z(di) — 1) is aD-cell of (¢, 7), which has to be alid, so
Xwyplh, —7(di) — 1] = owplh, —7(di) — 1] = Twylh, —7(di) — 1]. This,together with
(4), implies xwyplh, K1 = twplh, K.

In cases 4 and 5 there are no nBwcdls.

In case 6, if(h, k) is a newD-cdl, then(h, k) € [di+1, ci] x [o(Ci), —o(di) —1]. The
pair (x, 7) satisfies thd-condition, we havernwl[h, Kl = tnwlh, K] and xrignd h; 1, K] =
0. So, byLemma 7.2 xwplh, Kl = twplh, KI.

In case 7, ifc(di) > 0 then there are no neld-cells. In fact, ift(di) € [—o(ci) — 1],
then the presence of a nd+cdls implies that(di + 1, t(di)) is a non-valid D-cell of
(o, 7), contradictinge < 7. If t(di) € [—o(ci) + 1,n] and (h, k) is a newD-cdl,
then(h, k) € [di + 1, ci] x [—o(ci), —o(di) — 1]. In paticular, if t(di) € [—o(ci) +
1, —o (di) — 1], sinces ~1(z(di)) € [ci + 1, —ci — 1], thenk € [—o (ci), T(di) — 1]. So

onwlh,kKl=0o[h =1, t(di)+ 1] < t[h—1, t(di) + 1] < tnwlh, k] — 1,

contradictingonwl(h, k] = Tnwlh, K]. It remains to consider case 7, wheidi) < O,
that is, whent(di) € [o(ci)]. If (h, k) is a newD-cdl, then (h,k) € [di + 1,ci] x
[—o(ci), —o(di) — 1]. We haveoyign(h; —7(di), k] = 1 < tigndh; —7(di), K], and the
conclusion is the same as in subcase 3

In case 8 there are no ned+cdls.

In case 9a, ifh, k) is a newD-cdl, then(h, k) € [ci+1, sci] x[—o(sCi), —o (di)—1].
We havesigndh; v(di)+1, k] = 1, so, byLemma 7.26&ther tigy = oleft OF Tieft = Tlert + 1.
If we suppose, by contradiction, thats = o, then (h, 7(di) + 1) is a D-cell of
(0, 7), which has to be valid. Bubw,[h, 7(di) + 1] = 0 # 1 = 7w,[h, z(di) + 1],
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a oontradiction. Soreit = olert + 1 andowy[h, K1 = twplh, K1 + 2. Thusxwyglh, k] =
UWup[h, k] = ‘L'Wup[h, K].

In case 9b, if(h, k) is a newD-cdl, then either(9b)(h,k) € [ci + 1, —sci] x
[—o(sci), —o(di) — 1], or (9b")(h, k) € [—scCi+ 1] x [—o (sci), —o (di) — 1]. In sulzase
9k’ the reasoning is the same as in case 9a. In subcdsesdavey nw(h, K] = tnwih, k]
andoyign(h; t(di)+1, k] = 1. So, byLemma 7.26ther tier = xiett OF Tieft = xier+1. Ifwe
suppose, by contradiction, thats = xeft, thenonw(h, t(di)+1] = xnwlh, t(di)+1] =
tnwlh, 7(di) + 1]. So, by the D-condtion of (o, 7), we getow[h, 7(di) + 1] =
twyplh, T(di) +1]. Butow,p[h, T(di) +1] = 0% 1 = tw,[h, T(di) + 1], a contradiction.
SO Tiet = Xieft + 1, Which implies rwup[h, k] = qup[h, k] + 2, thatis, (h, k) is valid for
(x, 7).

In case 10, if(h, k) is a newD-cdl, then (h, k) € [di 4+ 1] x [—o(di) — 1]. Thepair
(x, t) satisfies théB-condition; we haveryw(h, k] = tywlh, k] and[h, n] x [k] is empty
for x. Thus, as in case 6, dyemma 7.2we getxwup[h, k] = fwup[h, k], that is, once
again,(h, k) is valid for (x, 7).
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