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Summary

Objectives: The metabolism of cells in articular joint tissues in normal and pathological conditions is subject to a complex environmental
control. In addition to soluble mediators such as cytokines and growth factors, as well as mechanical stimuli, reactive oxygen species (ROS)
emerge as major factors in this regulation. ROS production has been found to increase in joint diseases, such as osteoarthritis and
rheumatoid arthritis, but their role in joint diseases initiation and progression remains questionable.

Method: This review is focused on the role of ROS, mainly nitric oxide, peroxynitrite and superoxide anion radicals, in the signaling
mechanisms implied in the main cellular functions, including synthesis and degradation of matrix components. The direct effects of ROS on
cartilage matrix components as well as their inflammatory and immunomodulatory effects are also considered.

Results: Some intracellular signaling pathways are redox sensitive and ROS are involved in the regulation of the production of some
biochemical factors involved in cartilage degradation and joint inflammation. Further, ROS may cause damage to all matrix components,
either by a direct attack or indirectly by reducing matrix components synthesis, by inducing apoptosis or by activating latent metalloprotei-
nases. Finally, we have highlighted the uncoupling effect of ROS on tissue remodeling and synovium inflammation, suggesting that
antioxidant therapy could be helpful to treat structural changes but not to relieve symptoms.

Conclusions: This review of the literature supports the concept that ROS are not only deleterious agents involved in cartilage degradation,
but that they also act as integral factors of intracellular signaling mechanisms. Further investigation is required to support the concept of
antioxidant therapy in the management of joint diseases.
© 2003 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

In normal conditions, chondrocytes are living in an avascu-
lar environment, with low oxygen supply as a consequence.
Nevertheless, some of their metabolic functions are depen-
dent on oxygen, which is mainly supplied by the synovial
fluid. Chondrocytes display a metabolism adapted to
anaerobic conditions. In pathological conditions, oxygen
tension in synovial fluid is subject to fluctuation as a
consequence of ischemia–reperfusion phenomenon,
pathological acceleration of tissue metabolism and sus-
tained abnormal strains on the joint1. In response to partial
oxygen pressure (pO2) variations, mechanical stress, im-
munomodulatory and inflammatory mediators, chondro-
cytes produced abnormal levels of reactive oxygen species
(ROS) that are generally produced by immune cells to
assume host defense2–5. The main ROS produced by
chondrocytes are nitric oxide (·NO) and superoxide anion

(O2
1) that generate derivative radicals, including peroxyni-

trite (ONOO−) and hydrogen peroxide (H2O2)6,7. NO· is
synthesized by ·NO synthase (NOS) enzymes. Of the three
NOS isoforms, two are constitutively expressed, endo-
thelial NOS (eNOS, NOS3) and neuronal NOS (nNOS,
NOS1), and one is inducible (iNOS, NOS2). Chondrocytes
express both eNOS and iNOS. The inducible form is
regulated at the gene level by a variety of growth factors,
cytokines and endotoxins. ·NO production is stimulated by
interleukin (IL)-�, tumor necrosis factor (TNF)-�, interferon
(IFN)-� and lipopolysaccharides (LPS), and inhibited by
transforming growth factors (TGF)-�, IL-4, IL-10 and IL-
138–11. Superoxide anion radicals are produced by the
enzyme complex NADPH, which catalyzes the reduction of
molecular oxygen to superoxide anion radicals. NADPHoxi-
dase complex consists of essentially two membrane-bound
peptides. A flavocytochrome consists of two peptides of 22
and 91 kDa (p22phox and gp91phox, respectively) and a
regulatory peptide named Rap1A. Activation of the oxidase
requires the translocation to the membrane of at least three
further cytosolic components of 40, 47 and 67 kDa
(p40phox, p47phox and p67phox, respectively). Articular
chondrocytes express cell-specific components of NAD-
PHoxidase complex such as p22phox, p40phox, p47phox,
p67phox and gp91phox. NADPHoxidase is activated by
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calcium ionophore inomycin, phorbol myristate acetate but
inhibited by ·NO12–14. Recently, it was reported that
chondrocytes synthesize myeloperoxidase and that myelo-
peroxidase mRNA level is increased in osteoarthritis (OA),
suggesting that chondrocytes produce hypochlorous
acid15. In the presence of iron Fe2+ and H2O2, chondrocyte
releases hydroxyl radicals (OH·) that react with unsaturated
fatty acids of membrane lipids to initiate chain reactions,
resulting in the formation of other, more long-lived lipidic
radicals (RO·, ROO·)16.

Indirect evidence for ROS implication in cartilage degra-
dation comes from the presence of lipid peroxidation prod-
ucts17, nitrite18, nitrotyrosine19, a nitrated type II collagen
peptide20, modified low-density lipoprotein (LDL) and oxi-
dized IgG21 in the biological fluids of patients with
arthritis13–15. Furthermore, nitrotyrosine, nitrated proteins
and oxidized LDL (ox-LDL) have been found to be accumu-
lated in cartilage of arthritic patients demonstrating the
direct implication of ROS in some joint diseases22–24.
Recently, it was demonstrated that intraarticular injection of
N-iminoethyl-L-lysine (L-NIL), a selective inhibitor of iNOS,
reduced the progression of cartilage erosion in an exper-
imental osteoarthritic dog model25 incriminating ·NO and/or
derived ROS as potent mediators of cartilage degradation.

Cellular responses to ROS generation are dependent on
the cellular redox status. When the oxidant level does not
exceed the reducing capacities of cells, ROS are strongly

involved in the control of cellular functions including signal
transduction. In contrast, in some pathological situations,
when the cellular antioxidant capacity is insufficient to
detoxify ROS, oxidative stress may occur that degrades not
only cellular membranes and nucleic acids but also extra-
cellular components including proteoglycans and colla-
gens. Furthermore, ROS can modify proteins by oxidation,
nitrosylation, nitration or chlorination of specific amino
acids, leading to impaired biological activity, changes in
protein structure and accumulation of damaged proteins in
the tissue. Oxidative stress may also cause cell death and
release of cellular content into extracellular environment.
Altogether, degradation products and cellular content con-
taining oxidized molecules may contribute to the exacer-
bation of synovial inflammation and form a vicious circle,
constituted by newly formed ROS and further degradation
products (Fig. 1).

Effects of ROS on intracellular signaling

During the last 10 years, increasing evidence has been
provided that a large number of intracellular signaling
pathways are regulated by intracellular ROS. Several
growth factors and cytokines binding to different types of
cell membrane receptors can elicit a rise in intracellular
ROS. These include cytokine receptors, receptor tyrosine

Fig. 1. Implication of ROS in cartilage degradation and related synovium inflammatory reaction. H2O2=hydrogen peroxide;
ONOO−=peroxynitrite; ·OH=hydroxyl radical; O2

−·=superoxide anion.
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kinases, receptor serine/threonine kinases and G protein-
coupled receptors. Further, it has been reported that ROS
activate mitogen-regulated kinase (MAPK) pathways in
several systems, including extracellular signal-regulated
kinase (ERK)1/2, Jun-NH2-terminal kinase and P38 MAPK
cascades (Fig. 2).

In addition to the activation of different members of
signaling cascades involved in cell growth and differentia-
tion, ROS may directly regulate the activity of transcription
factors through oxidative modifications of conserved
cysteines for example. Several transcription factors have
been shown to be redox-sensitive, including nuclear factor
(NF)-�B, activating protein (AP)-1, specificity protein
(Sp)-1, C-Myb, p53, early growth response (egr)-1 and
hypoxia inducible factor (HIF)-1�. The reactive cysteines
may constitute redox-sulfhydryl switches, which directly
regulate gene expression26. Redox regulation can be ex-
erted also at the level of protein degradation. HIF-1� is
degraded by the ubiquitin pathway which is regulated by
the intracellular redox state and is activated by elevated

levels of ROS. Generally, degradation of HIF-1� prevails
under normoxia, whereas hypoxia inhibits the ubiquitin
pathway, resulting in upregulation of HIF-1� expression27.

In articular chondrocytes evidence has been provided
some years ago that ROS were involved as signaling
intermediates for cytokines and growth factors. TNF-� and
basic fibroblast growth factor (bFGF) were found to induce
ROS production in bovine articular chondrocytes through a
NADPHoxidase enzyme complex, resulting in upregulation
of c-fos expression28. Similarly, IL-1� induction of c-fos and
collagenase expression in articular chondrocytes were
found to be ROS-dependent29. Although ·NO does not
upregulate c-fos expression in chondrocytes28, the inhibi-
tion of its production by a specific iNOS inhibitor partially
reduced the IL-1 induction of collagenase expression. Also,
treatment of chondrocytes with a ·NO donor is able to
stimulate collagenase gene expression29. In that case, it is
likely that AP-1 activity is directly modulated by post-
translational modification of its components, involving
oxidation–reduction of a key cysteine residue which affects

Fig. 2. ROS as signaling molecules in chondrocyte transduction pathways and gene expression. Several growth factors, in particular those
acting through tyrosine kinase receptors, and inflammatory cytokines, such as IL-1 and TNF-�, activate signaling cascades in the cytoplasm.
Directly or via induction of the Ras pathway, the small GTPase Rac is activated and associated with membrane-bound NADPHoxidase,
which generates O2

1. The generated superoxide or the dimutation product H2O2 then regulates the ERK1/2 and JNK pathways. The signaling
events can be inhibited with antioxidants. Finally, the activity of transcription factors and subsequent gene expression are modulated.
Furthermore, ROS can directly interfere with the activity of transcription factors through reactive cysteines that constitute redox-sulfuhydryl
switches (modified from reference79). ASK-1=apoptosis signal regulating kinase; ERK=extracellular signal related kinase;
GCK=glucokinase; MAPK=mitogen-regulated kinase; MKK=MAP kinase kinase; MLK=mixed lineage kinase; PLC=phospholipase C;

PKC=protein kinase C; Sos=son of sevenless; SRF=serum response factor; SFR: S gene family receptor kinase.
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deoxyribonucleic acid (DNA) binding activity30. Further
evidence suggests that the redox regulation of AP-1 DNA
binding is facilitated by the reducing activity of redox
factor-1 protein that may act directly on this critical cysteine
residue31. Similar redox regulation has also been demon-
strated with the small GTP-binding protein Ras. In this
case, ·NO modulates the activity of Ras through nitrosyla-
tion of a critical cysteine residue32. Finally, IL-1-induced
collagenase may be mediated by an autocrine loop
involving Rac 1, ROS and NF-�B33.

Altogether, these studies show that ROS may induce
transcription factors binding activity and then act as signal-
ing intermediates of cytokines and growth factors. These
findings suggest that responses of cells to cytokines and
growth factors are dependent on the cell redox status. The
redox status results from a subtle equilibrium between ROS
production and the intracellular antioxidants level. This
balance is subtly modulated by exogenous factors, such as
oxygen tension or cytokines. In pathological circum-
stances, the redox status can be altered and the responses
of cells to biochemical factors fully modified. This point
should be considered before concluding on the role of
ROS in the homeostasis of tissue and physiopathology of
arthritis.

Effects of ROS on chondrocyte apoptosis

Chondrocyte death is now considered as an important
factor contributing to the breakdown of extracellular matrix
in joint diseases. The loss of cells is likely to be of
multifactorial origin, with both necrosis and apoptosis being
responsible. Damaged chondrocyte viability impairs self-
repair in cartilage and may in fact accelerate the progres-
sion of the lesion34–36. Apoptosis is a complex intracellular
pathway resulting from the imbalance between apoptotic
and non-apoptotic factors and implicating complex pro-
cesses (recently in reference37). ·NO has long been con-
sidered as the primary inducer of chondrocyte apoptosis38

mediated by caspase-3 and tyrosine kinase activation.
However, it has become clear that ·NO by itself cannot
initiate apoptosis and that the concomitant production of
O2

1 is required39, suggesting the role played by ONOO− in
this process.

In contrast, other recent reports have proposed that ·NO
could be anti-apoptotic, primarily when intracellular antioxi-
dant level is very low39. The mechanism proposed involves
scavenging action against other ROS and the inhibition of
Fas-induced caspase-3 activation40.

Effects of ROS on matrix synthesis

Exposure of the chondrocytes to H2O2 inhibits proteo-
glycan and DNA synthesis and depletes intracellular
adenosine triphosphate (ATP) as a result of a simultaneous
inactivation of glyceraldehyde-3-phosphate dehydrogen-
ase41,42. ·NO is implicated in the IL-1 inhibition of aggrecan
synthesis by rabbit articular chondrocyte in explant culture.
Treatment of cartilage fragments with the ·NOS inhibitor
N-monomethyl-L-arginine (L-NMMA) reduces the response
to IL-1 and restores proteoglycan synthesis. Exogenous
·NO has similar suppressive effects on the proteoglycan
production43,44. However, an ·NO donor does not inhibit
proteoglycan biosynthesis as extensively as IL-1, suggest-
ing that ·NO is only one of the effectors by which IL-1 exerts
its inhibition on cartilage matrix synthesis45. It has also

been reported that IL-1 causes an inhibition of proteoglycan
sulfation in human articular chondrocytes, which preferen-
tially affects the 6-sulfated isomer of chondroitin sulfate.
This effect is reversed by an inhibitor of ·NO production,
N-iminoethyl-L-ornithine (L-NIO). Thus, IL-1-induced ·NO
mediates the inhibition of sulfation and alters the sulfation
pattern of newly synthesized glycosaminoglycan chains46.
Similar observations were made with chondrocytes trans-
duced with the iNOS (NOS-2 gene) and they confirmed
the capability of sublethal endogenously produced ·NO to
inhibit matrix synthesis. Further, S-nitroso-N-acetyl-L,D-
penicillamine (SNAP; a donor of ·NO) and SIN-1 (SIN-1,
3-morpholinosydnimine; a compound generating both ·NO
and O2

1) reversibly mimic the IL-� inhibitory effect on
glycosaminoglycan synthesis43. Superoxide dismutase
reverses SIN-1 inhibited GAG synthesis by primary bovine
chondrocytes in monolayer, indicating that the simul-
taneous generation of superoxide is essential to inhibit
proteoglycan synthesis. The concurrent generation of
O2

1 and ·NO is required for the action of IL-1 to inhibit
proteoglycan synthesis47. We have demonstrated that pre-
treatment of chondrocyte with SIN-1 or ONOO− (but not
SNAP), downregulates aggrecan gene expression, sug-
gesting the involvement of ONOO− in the inhibition of
aggrecan synthesis48.

IL-1 can also inhibit the production of type II collagen in
cultured rabbit articular chondrocytes and this effect is
partially prevented by L-NMMA49. The inhibition of prolyl
hydroxylase by ·NO could be responsible for the reduction
of collagen production by IL-1.

Another possible explanation of the ROS effect on syn-
thesis of matrix components is their contribution to the loss
of chondrocyte sensitivity to growth factors. A study with
iNOS knock-out mice suggested that ·NO is responsible for
part of the cartilage insensitivity to insulin-like growth factor
(IGF)-1 by inhibiting IGF-1 receptor autophosphorylation50.
This mechanism could explain why chondrocytes in arthritic
cartilage respond poorly to IGF-1 and may then contribute
to abrogate cartilage repair. In this context, ROS may also
participate in the failure of repair by reducing the capacity of
chondrogenic precursor cells to migrate and proliferate
within an injured area. ·NO was demonstrated to inhibit
chondrocyte migration and attachment to fibronectin via
modification of the actin cytoskeleton51.

Effects of ROS on cartilage matrix breakdown

In vitro studies have largely suggested a role of ROS in
cartilage degradation, as reflected by their effects on matrix
components and chondrocyte behavior. However, only
limited information is available so far on the potential role of
ROS in the onset and progression of cartilage remodeling.
High level of nitrite/nitrate has been found in synovial fluid,
serum and urine of patients with rheumatoid arthritis (RA)
and OA, suggesting the involvement of ·NO in the patho-
physiology of these diseases (Table 1). Some potential
structural effects of antioxidants have been suggested by
animal studies. Pelletier and collaborators have demon-
strated that L-NIL, a specific inhibitor of inducible ·NOS,
prevents cartilage degradation in a dog model of OA
initiated by section of the anterior cruciate ligament52. A diet
supplemented with vitamins E, C, A, B6, B2 and selenium
diminished the development of mechanically induced OA in
male STR/1N mice, indicating that ROS might be involved
in the mechanical induction of OA53. In the transgenic
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KRN/NOD mouse model of RA, �-tocopherol admin-
istration prevented joint destruction (bone and cartilage
loss) without modifying the clinical and histological inflam-
matory aspects (articular index, pannus proliferation and
invasion) of the disease54.

ROS may cause damage to all matrix components.
Several in vitro studies have reported the degradation of
cartilaginous tissue slices by ROS-generating systems.
Damage was supposed to be due to direct attack of
proteoglycan and collagen molecules by free radicals.
Indeed, the incubation of acid soluble type I collagen with
superoxide anion radicals generated by the xanthine
oxidase–hypoxanthine system degrades collagen and pre-
vents the formation of fibrils by this collagen55,56. In the
presence of oxygen, OH· degrades collagen and modifies
the amino acid composition. The amino acid composition of
the peptides obtained by the action of OH· showed a
significant decrease of 4-hydroxyproline and proline resi-
dues and an increase of aspartic acid and glutamic acid57.
Type I collagen exposure to HOCl fails to degrade collagen
but induces the formation of cross-links of unknown nature.
HOCl induces also hyaluronic acid cleavage and reduces
synovial fluid viscosity, probably in a hydroxyl radical-
dependent manner58,59. Further, the reaction of HOCl
with hyaluronic acid and chondroitin sulfate A gives a
novel carbon-centered radical involved in polymer
fragmentation60.

However, ROS also contribute to cartilage degradation
by mediating the activation of latent collagenase and by
upregulating the expression of genes coding for matrix
metalloproteinases (MMP). For example, NG-monomethyl-
L-arginine (L-NMMA) has been found to inhibit IL-�-induced
MMP-9 gene expression61. L-NMMA depressed stro-
melysin and collagenase activity released by bovine and
human explants and the SNAP induced MMP activity in a
dose-dependent fashion. These data provide evidence that
·NO plays a regulatory role in the activation of metal-
dependent proteases in articular chondrocytes and carti-
lage62. HOCl could also be effectors of cartilage matrix
destruction by directly activating proenzymes, including
pro-MMP-863. It is tempting to speculate that the oxidative

potential of ROS may interfere with the propeptides by
directly affecting the cysteine switch activation mechanism.
Further, HOCl and oxygen singlet (1O2) may shift the
balance of proteolytic potential by decreasing the produc-
tion and/or the activity of tissue inhibitors of metallopro-
teinases (TIMPs) and other proteinase inhibitors such as
�2-macroglobulin or �1-antiproteinases64–67.

Recently, it was suggested that lipid peroxides could play
a key role in the structural destabilization of cartilage
matrix. Calcium ionophore treatment of primary rabbit
chondrocytes significantly enhanced lipid peroxidation
activity and the release of labeled matrix in a dose-
dependent manner. This effect is blocked by vitamin E
suggesting that the mechanism of matrix degradation and
release is related to lipid peroxidation68. As a working
hypothesis, it may be suggested that lipid peroxides affect
cells matrix interactions by mediated by membrane-bound
integrins, or by activating MT-MMPs or by generating other
ROS and further metabolites in the pericellular environ-
ment. Another interpretation of these results emerges from
the recent discovery of lectin-like ox-LDL receptor in carti-
lage of arthritic rat24. Interestingly, the induction of the
expression of lectin-like ox-LDL receptor was accompanied
by the accumulation of ox-LDL in chondrocytes, suggesting
the possible interaction of ox-LDL with lectin-like ox-LDL
receptor in cartilage. This observation is important since it
was observed that lectin-like ox-LDL receptor blockade by
anti-lectin-like ox-LDL receptor-1 antibody suppressed joint
swelling, leukocyte infiltration and cartilage degradation in
rat zymosan-induced arthritis24 suggesting a new beneficial
method for treating joint diseases such as RA or OA.

From these animal and in vitro studies, we can conclude
that in pathological conditions, ROS, such as H2O2, ·NO
and/or ·NO-derived nitrogen species contribute to cartilage
degradation by inhibiting matrix synthesis, cell migration
and growth factor bioactivity, by directly degrading matrix
components, by activating MMPs and by inducing cell
death. Altogether, these findings support the concept of
antioxidant therapy to treat rheumatic disease.

ROS modulate the production of
pro-inflammatory biochemical markers

In RA, inflammation of synovium largely contributes to
the genesis of disease symptoms and tissue degradation.
Although OA is considered as a degenerative disease
of cartilage, some synovial inflammation is very often
observed also in this pathology and may also contribute to
the tissue degradation. The inflammatory reaction is con-
trolled by several soluble biochemical factors, including
prostanoids, cytokines and ROS produced by both synovio-
cytes and chondrocytes. Some exert proinflammatory
effects whereas others may have anti-inflammatory proper-
ties, and it is likely that the balance between these two
groups of factors determines the characteristics and the
duration of the inflammatory disease. ROS, mostly ·NO,
play a pivotal role in the pathologic process mainly by
contributing to the inflammatory-related tissue degradation.
On the other hand, the potential role of ROS, particularly
·NO, on the joint swelling, cellular infiltration and pain
remains controversial. ROS have been found to have
anti-inflammatory effects in some circumstances. Data from
three animal studies tend to support this concept. First,
clinical severity of inflammatory process is exacerbated in
inducible ·NOS deficient mice-type. This inflammatory flare
was associated with enhancement of leukocyte infiltration

Table I
Effects of ·NO and derived peroxynitrite in arthritis

Cartilage matrix synthesis
& Aggrecan synthesis
& Type II collagen synthesis
# IL-� inhibitory effect on matrix components synthesis
& Chondrocyte responses to growth factors (IGF-1)
& Chondrocyte migration and attachment to fibronectin

Cartilage matrix breakdown
# Chondrocyte apoptosis
# MMP-3 mRNA level in chondrocytes
# MMP-13 mRNA level in chondrocytes
# IL-�-stimulated collagenolytic activity released by chondro-

cytes
& Synthesis or activity of TIMPs by fibroblasts

Inflammatory mediators production
& NADPHoxidase activity
& Adhesion molecules expression by endothelial cells and

leukocytes
& IL-� or LPS-stimulated IL-6 production by macrophages and

chondrocytes
& IL-� or LPS-stimulated IL-8 production by chondrocytes
& or # IL-� or LPS-stimulated PGE2 production by macro-

phages and chondrocytes
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into perivascular tissues and overexpression of adhesion
molecules (P-selectin and VCAM-1) in synovial tissue of
those animals69,70. Second, in rat adjuvant arthritis, the
delayed administration of L-NMMA during the development
of arthritis fully blocks ·NO synthesis but fails to relieve, and
even increases, clinical manifestations of arthritis71. Third,
the administration of L-NIL, which preferentially inhibits
iNOS and spares the constitutive isoforms (eNOS and
cNOS), exacerbates clinical and histological manifestations
of streptococcal cell wall-induced arthritis, suggesting that
constitutive isoform of ·NOS also contributes to the devel-
opment of acute and chronic inflammation72. Nevertheless,
the effect of ·NO on inflammation seems to depend on the
time of administration. When L-NMMA was administrated
prophylactically, before the appearance of the symptoms,
blockade of the ·NOS suppresses the development of
adjuvant arthritis in rat, whereas ·NO inhibitors were only
weakly efficient, or even detrimental, in established dis-
ease. This suggests that the major effect of ·NO may be
upon immune recognition of the arthrogenic components,
rather than upon delayed deleterious consequences of
inflammation71,72.

In vitro, the ROS effects appear varied and complex,
depending on the cell type, the species and the agent used
for their induction. Clearly, the synthesis of prostaglandin
(PG) E2 and proinflammatory cytokines are linked to ROS
synthesis, but both inhibitory and stimulatory effects of
ROS on these mediators have been reported. We and
others have demonstrated in cultures of human primary
chondrocytes that L-NMMA amplifies IL-�-stimulated PGE2

production, but does not affect cyclooxygenase (COX)-2
mRNA levels73,74. Further, exposure of chondrocytes to
either exogenously added ONOO−, or its in situ generation
by SIN-1 decomposition, decreases both IL-�-induced
COX-2 gene and PGE2 synthesis while SNAP, an ·NO
donor, has no effect, suggesting that ONOO− is the species
relevant to COX-2 inhibition48. In contrast, others have
reported that ONOO−, but not ·NO or O2

1, induces COX in a
macrophage-like cell line and chondrocytes75,76.

Some cytokines are important contributors to cartilage
degradation and synovium inflammation in arthritis. The
association of IL-1�, IL-6 and oncostatin M seems to be
particularly efficient for inducing cartilage degradation77,78.
In previous studies, we have demonstrated that chondro-
cytes produce ·NO in response to IL-1� and LPS and that
the inhibition of ·NO production by L-NMMA results in an
increase of IL-6 and IL-873. We have also reported that the
antioxidant N-acetyl-cysteine (NAC) molecule enhances
LPS-induced IL-� and iNOS gene expression in cultured
human chondrocytes suggesting that ROS, other than ·NO,
are also involved in the regulation of inflammatory gene
expression61. Further, treatments of primary chondrocytes
with sublethal concentrations of ONOO− and SIN-1, but not
SNAP, inhibit IL-�-induced IL-�, IL-6, IL-8, COX-2 and
iNOS gene expressions48. Inversely, SNAP inhibits LPS-
induced gene expression, while H2O2 blocks both LPS and
IL-� induction. These data support the hypothesis that ROS
could have an anti-inflammatory effect by inhibiting the
synthesis of pro-inflammatory mediators. Further, they sug-
gest that this anti-inflammatory effect is dependent on the
nature of the ROS tested and on the signaling pathway
activated. ·NO is a regulator of the LPS activated signaling
pathway whereas the IL-1� activated transduction factors
are more sensitive to ONOO−.

This paragraph points out the uncoupling effect of ROS
on tissue remodeling and synovium inflammation, sug-
gesting that antioxidant therapy could be helpful to treat

structural changes but not to relieve symptoms. One
explanation could be the overproduction by chondrocytes
of pro-inflammatory mediators that contribute to the
progression of synovium inflammation.

Conclusions

Today, ROS are no more considered as only detrimental
agents capable of damaging the structure and function of
several macromolecules, including the extracellular com-
ponents. Evidence has been provided that they are pro-
duced at low level in articular chondrocytes and play great
role as integral actors of intracellular signaling mech-
anisms. They modulate gene expression and, therefore,
are likely to contribute to the maintenance of cartilage
homeostasis. However, in joint diseases, ROS are pro-
duced in greater amounts and then become deleterious for
joint tissue.

Further investigation is required to unravel the signaling
mechanisms whereby ROS production may regulate the
chondrocyte metabolism and its response to the cytokine/
growth factor network that controls the physiopathology of
cartilage. The knowledge of these mechanisms might offer
new targets (i.e., intermediate radicals, redox sensitive
transcription factors or kinases) to design future therapeutic
approaches (i.e., sparing some ROS but specifically block-
ing the production of others) for the treatment of joint
diseases and the prevention of cartilage ageing.
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