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a b s t r a c t

In this work, an analytical technique, namely the homotopy analysis method (HAM), is
applied to obtain an approximate analytical solution of the Fornberg–Whitham equation. A
comparison is made between the HAM results and the Adomian’s decomposition method
(ADM) and the homotopy perturbation method (HPM). The results reveal that HAM is very
simple and effective. The HAM contains the auxiliary parameter h̄,which provides us with
a simple way to adjust and control the convergence region of solution series.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The Fornberg–Whitham equation [1] given as

ut − uxxt + ux = uuxxx − uux + 3uxuxx, (1.1)

has a type of traveling wave solution called a kink-like wave solution and anti kink-like wave solutions. Such kinds of
traveling wave solutions have never been found for the Fornberg–Whitham equation. Eq. (1.1) was used to study the
qualitative behaviour of wave-breaking [2,3].
At the beginning of the 80s, a new method later called ADM for solving various kinds of nonlinear equations had been

proposed by Adomian [4,5]. The convergence of Adomian’smethod has been investigated by several authors (see e.g., [6–9]).
In recent years, a large amount of literature developed concerning the ADM [10–15] by applying it to a large number of
applications in applied sciences.
TheHAM is proposed in 1992 by Liao [16–20]. Thismethod has been successfully applied to solvemany types of nonlinear

problems in science and engineering by many authors; see [21–31] and references therein.
In this article, we shall apply HAM to find the approximate analytical solution of the FW equation and compare it with

the exact solution. With the present method, numerical results can be obtained by using a few iterations. The HAM contains
the auxiliary parameter h̄, which provides us with a simple way to adjust and control the convergence region of solution
series for any values of x and t .
The paper is organized as follows. In Section 2, the analysis of ADM for the nonlinear FW equation is established. In

Section 3, we apply the HAM for solving the nonlinear FW equation. In the last section, numerical experiments are given in
order to assess the efficiency and convenience of the HAM.
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2. Analysis of the Adomian decomposition method

2.1. The Adomian decomposition method

In this section, our attention will focus on the homogeneous Fornberg–Whitham equation. Let us consider the standard
form of (1.1) in the operator form

Ltu− Lxxt(u)+ Lx(u)+ N(u) = 0, (2.1)

where the notations Lt = ∂
∂t , Lx =

∂
∂x , Lxx =

∂2

∂x2
, Lxxt = ∂3

∂x2∂t
symbolize the linear differential operators and the notation

N(u) = 1
2 Lx[u

2
− Lxx(u2)] symbolizes the nonlinear operator. The inverse operator of Lt , noted L−1t , is defined by

L−1t =
∫ t

0
(·)ds.

Thus, applying the inverse operator L−1t to (2.1) yields

u(x, t) = u(x, 0)+ L−1t [Lxxt(u)− Lx(u)− N(u)] . (2.2)
The ADM [4,5] assumes an infinite series solutions for unknown function u(x, t) given by

u(x, t) =
∞∑
n=0

un(x, t). (2.3)

The nonlinear operator N(u) is decomposed as

N(u) =
∞∑
n=0

An(u0, u1, . . . , un), (2.4)

where An is an appropriate Adomian’s polynomial which can be calculated for all forms of nonlinearity according to specific
algorithms constructed by Adomian [4,5]. For nonlinearity operator N(u), these polynomials can be calculated using the
basic formula:

An(u0, u1, . . . , un) =
1
n!

[
dn

dλn
N

(
∞∑
k=0

λkuk

)]
λ=0

, n ≥ 0. (2.5)

This formula is easy to set a computer code to get many polynomials as we need in the calculation of the numerical solution.
We give here the first few Adomian polynomials for N(u) given as:

A0 = N(u0),

A1 = N (1)(u0)
u11
1!
,

A2 = N (1)(u0)u2 + N (2)(u0)
u21
2!
,

A3 = N (1)(u0)u3 + N (2)(u0)u1u2 + N (3)(u0)
u31
3!
,

A4 = N (1)(u0)u4 + N (2)(u0)
(
u1u3 +

1
2
u22

)
+
1
2
N (3)(u0)u21u2 + N

(4)(u0)
u41
4!
,

A5 = N (1)(u0)u5 + N (2)(u0)(u1u4 + u2u3)+
1
2
N (3)(u0)(u21u3 + u1u

2
2)+

1
6
N (4)(u0)u31u2 + N

(5)(u0)
u51
5!
,

...

The rest of the polynomials can be constructed in a similar manner.
Substituting the initial condition into (2.2) identifying the zeroth component u0 by terms arising from initial condition.

Then, we obtain the subsequent components by the following recursive relationship:
u0 = u(x, 0) (2.6)

un+1 = L−1t [Lxxt(un)− Lx(un)− N(un)] . (2.7)
The remaining components un, n ≥ 1, can be completely determined such that each term is computed by using the previous
term. As a result, the components u0, u1, . . . are identified and the series solutions thus entirely determined. For later
numerical computation, let the expansion φn =

∑n−1
k=0 uk(x, t) denote the n-term approximation to u.

The exact solution is u(x, t) = limn→∞ φn(x, t). We will show through several examples, that the number of terms
required to obtain an accurate computable solution is small.
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3. Homotopy analysis method

To describe the basic ideas of the HAM, we consider the following differential equation:

N[u(x, t)] = 0 (3.1)

where N is a nonlinear operator, u(x, t) is an unknown function and x and t denote spatial and temporal independent
variables, respectively.
By means of generalizing the traditional homotopy method, (see Liao [17])

(1− p)L[φ(x, t; p)− u0(x, t)] = ph̄N[φ(x, t; p)] (3.2)

where p ∈ [0, 1] is an embedding parameter, h̄ is a nonzero auxiliary parameter, L is an auxiliary linear operator, u0(x, t) is
an initial guess of u(x, t) and φ(x, t; p) is an unknown function. It is important to note that we have great freedom to choose
auxiliary objects such as h̄ and L in HAM. Obviously, when p = 0 and p = 1, it holds

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t) (3.3)

respectively. Thus, as p increases from 0 to 1, the solution φ(x, t; p) varies from the initial guess u0(x, t) to the solution
u(x, t). Expanding φ(x, t; p) in Taylor series with respect to p, one has

φ(x, t; p) = u0(x, t)+
+∞∑
m=1

um(x, t)pm, (3.4)

where

um(x, t) =
1
m!
∂mφ(x, t; p)

∂pm
|p=0 . (3.5)

If the auxiliary linear operator, the initial guess and the auxiliary parameter h̄ and the auxiliary function are so properly
chosen, then, as proved by Liao [17], the series (3.4) converges at p = 1 and one has

u(x, t) = u0(x, t)+
+∞∑
m=1

um(x, t), (3.6)

which must be one of solutions of the original nonlinear equation, as proved by Liao [17]. As h̄ = −1, Eq. (3.2) becomes

(1− p)L[φ(x, t; p)− u0(x, t)] + pN[φ(x, t; p)] = 0, (3.7)

which is used in the homotopy perturbation method [32].
According to the definition (3.5), the governing equation of can be deduced from the zero-order deformation equation

(3.2). Define the vector
−→un = {u0(x, t), u1(x, t), u2(x, t), . . . , un(x, t)} .

Differentiating Eq. (3.2) m times with respect to the embedding parameter p and then setting p = 0 and finally dividing
them bym!, we have the so-calledmth-order deformation equation,

L[um(x, t)− χmum−1(x, t)] = h̄<m[
−→u m−1(x, t)], (3.8)

where

<m(
−→u m−1) =

1
(m− 1)!

∂m−1N[φ(x, t; p)]
∂pm−1

|p=0, (3.9)

and

χm =

{
0, m ≤ 1,
1, m ≥ 2. (3.10)

It should be emphasized that um(x, t) form ≥ 1 is governed by the linear equation (3.8) with the linear boundary conditions
that come from the original problem, which can be easily solved by symbolic computation software such as Maple and
Mathematica.

4. Numerical applications

In this section, we apply ADMandHAM to solve the Fornberg–Whitham equation. In ourwork, we use theMaple Package
to calculate the numerical solutions obtained by these methods.
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Consider the Fornberg–Whitham equation
ut − uxxt + ux = uuxxx − uux + 3uxuxx, (4.1)

subject to the initial condition of

u(x, 0) = exp
(
1
2
x
)
. (4.2)

Then, the exact solution is given by:

u(x, t) = exp
(
1
2
x−

2
3
t
)
. (4.3)

4.0.1. Implementation of ADM

Considering the given initial condition, we can assume u0(x, t) = exp
( 1
2x
)
as an initial approximation. We next use the

recursive relations (2.6)–(2.7) to obtain the rest of components of un(x, t).

u1(x, t) = L−1t [Lxxt(u0)− Lx(u0)− N(u0)] = −
1
2
exp

(
1
2
x
)
t, (4.4)

u2(x, t) = L−1t [Lxxt(u1)− Lx(u1)− N(u1)] =
1
8
exp

(
1
2
x
)
[−t + t2], (4.5)

u3(x, t) = L−1t [Lxxt(u2)− Lx(u2)− N(u2)] = −
1
96
exp

(
1
2
x
) [
3t − 6t2 + 2t3

]
, (4.6)

u4(x, t) = L−1t [Lxxt(u3)− Lx(u3)− N(u3)] =
1
384

exp
(
1
2
x
)
[−3t + 9t2 − 6t3 + t4], (4.7)

and the rest of the components of iteration formula (2.7) are obtained. The approximate solution which involves few terms
is given by

φ5 =

4∑
i=0

ui =
1
384

exp
(
1
2
x
)
[384− 255t + 81t2 − 14t3 + t4]. (4.8)

4.1. Implementation of HAM

To solve Eq. (4.1) by means HAM, we choose the initial approximation

u0(x, t) = u(x, 0) = exp
(
1
2
x
)
, (4.9)

Eq. (4.1) suggests the nonlinear operator as

N[φ(x, t; p)] =
∂φ(x, t; p)

∂t
−
∂3φ(x, t; p)
∂x2∂t

+
∂φ(x, t; p)

∂x
− φ(x, t; p)

∂3φ(x, t; p)
∂x3

+φ(x, t; p)
∂φ(x, t; p)

∂x
− 3

∂φ(x, t; p)
∂x

∂2φ(x, t; p)
∂x2

, (4.10)

and the linear operator

L[φ(x, t; p)] =
∂φ(x, t; p)

∂t
, (4.11)

with the property
L(c1) = 0,

where c1 is the integration constant.
Using the above definitions, we construct the zeroth-order deformation equation
(1− p)L[φ(x, t; p)− u0(x, t)] = ph̄N[φ(x, t; p)]. (4.12)

Obviously, when p = 0 and p = 1,
φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t).

Therefore, as the embedding parameter p increases from 0 to 1, φ(x, t; p) varies from the initial guess u0(x, t) to the solution
u(x, t).
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Then, we obtain themth-order deformation equation

L[um(x, t)− χmum−1(x, t)] = h̄<m[
−→u m−1], (4.13)

subject to initial condition

um(x, 0) = 0,

where

<m(
−→u m−1) =

∂um−1(x, t)
∂t

−
∂3um−1(x, t)
∂x2∂t

+
∂um−1(x, t)

∂x

+

m−1∑
k=0

[
−uk(x, t)

∂3um−1−k(x, t)
∂x3

+ uk(x, t)
∂um−1−k(x, t)

∂x
− 3

∂uk(x, t)
∂x

∂2um−1−k(x, t)
∂x2

]
. (4.14)

Now, the solution of themth-order deformation equation (4.13) form ≥ 1 becomes

um(x, t) = χmum−1(x, t)+ h̄L−1[<m(
−→u m−1)]. (4.15)

From (4.9) and (4.15), we now successively obtain

u0(x, t) = exp
(
1
2
x
)
,

u1(x, t) = h̄t
1
2
exp

(
1
2
x
)
,

u2(x, t) = exp
(
1
2
x
)[
−

(
4h̄+ 3 h̄2

8

)
t +
h̄2 t2

8

]
.

u3(x, t) = exp
(
1
2
x
)[
t
(
4h̄+ 3 h̄2

8
+
12 h̄2+9 h̄3

25

)
+ t2

(
h̄2

23
+
4 h̄2+6 h̄3

25

)
+
h̄3

3
t3

25

]
.

u4(x, t) = exp
(
1
2
x
)[
t
64h̄+ 144 h̄2+108 h̄3+27 h̄4

27
+ t2

48 h̄2+72 h̄3+27 h̄4

27
+
t3

3
12 h̄3+9 h̄4

26
+
h̄4

3
t4

27

]
,

and so on. Therefore, we use five terms in evaluating the approximate solution

uapp =
4∑
i=0

ui. (4.16)

Then,

uapp = exp
(
1
2
x
)[
1+ t

256h̄+ 240 h̄2+108 h̄3+27 h̄4

27
+ t2

168 h̄2+24 h̄3+27 h̄4

27
+
t3

3
16 h̄3+9 h̄4

26
+
t4

4
h̄4

27

]
.

5. Comparison and discussion

As pointed by Liao [17], the auxiliary parameter h̄ can be employed to adjust the convergence region of the homotopy
analysis solution. To investigate the influence of h̄ on the solution series, we plot the so-called h̄-curve of ut(0, 0) obtained
from the 5th-order HAM approximation solution as shown in Fig. 1. According to this h̄-curve, it is easy to discover the valid
region of h̄which corresponds to the line segment nearly parallel to the horizontal axis. From Fig. 1 it is clear that the series
of ut(0, 0) is convergent when−1.9 < h̄ < −0.8.
We get the same value as in ADM (4.8) or HPM when h̄ = −1. Therefore, the HAM is rather general and contains the

ADM and HPM.
In Table 1, we compute the absolute errors for differences between the exact solution (4.3) and the approximate solution

(4.16) obtained by the HAM (h̄ = −1) at some points. Besides, the behavior of the exact and approximate solutions are
shown in Fig. 2.
In Fig. 3, we study the diagrams of the results obtained by HAM for h̄ = −1 and h̄ = −1.01 in comparison with exact

solution (4.3). We can see that the best value of h̄ in this case is not−1. On the other hand, the HAM solution has the same
shape as the exact solution for large range of t , i.e., t = 5 as shown in Fig. 3 and Table 3, when we take h̄ = −1.01. We
can notice hight errors for h̄ = −1 (see Table 2). Therefore, based on these present results, we can say that HAM is more
effective than ADM.
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Fig. 1. The h̄-curve of ut (0, 0) given by the 5th-order HAM approximate solution.

Table 1
Absolute errors for differences between the exact solution and 5th-order HAM approximate given by HAM for h̄ = −1.

xi/ti 0.2 0.4 0.6 0.8 1

−4 2.22193E−5 9.47416E−6 4.83886E−5 6.71560E−5 5.36314E−5
−2 6.03987E−5 2.57532E−5 1.31533E−4 1.82549E−4 1.45785E−4
0 1.64180E−5 7.00049E−5 3.57546E−4 4.96219E−4 3.96285E−4
2 4.46289E−4 1.90293E−4 9.71910E−4 1.34886E−3 1.07721E−3
4 1.21314E−4 5.17269E−4 2.64192E−3 3.66659E−3 2.92817E−3
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Fig. 2. The behavior of the solutions obtained by (a) HAM for h̄ = −1 (or ADM) (b) exact solution.

Table 2
The absolute errors for differences between the exact solution and 5th-order ADM when t = 5.

xi uexact uADM |uexact−uADM|

−4 0.0048279499 0.0031719207 1.65602E−3
−2 0.0131237287 0.0086221743 4.50155E−3
0 0.0356739933 0.0234374990 1.22364E−2
2 0.0969719679 0.0637097231 3.32622E−2
4 0.2635971382 0.1731809521 9.04161E−2
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5th-order HAM (h=–1)

5th-order HAM (h=–1.01)

Fig. 3. The results obtained by HAM for various h̄ by 5th-order HAM approximate solution (4.16) in comparisonwith the exact solution, when−5 < x < 5,
and t = 5.

Table 3
The absolute errors for differences between the exact solution and 5th-order HAM approximate given by HAM for h̄ = −1.01 when t = 5.

xi uexact uHAM |uexact−uHAM|

−4 0.0048279499 0.0048752608 4.73109E−5
−2 0.0131237287 0.0132523327 1.28604E−4
0 0.0356739933 0.0360235773 3.49584E−4
2 0.0969719679 0.0979222379 9.50270E−4
4 0.2635971382 0.2661802682 2.58313E−3

6. Conclusion

In this work, the homotopy analysis method has been applied for finding the approximate solutions of the nonlinear
Fornberg–Whitham equation. The numerical results showed that this method has very good accuracy and reductions in the
size of calculations compared with the ADM and HPM. In addition, the results of the ADM and HPM can be obtained as a
special case of the HAM, when h̄ = −1.
The HAM contains the auxiliary parameter h̄ 6= 0, which provides us with a simple way to adjust and control the

convergence region of solution series for large values of t . Unlike, other numerical methods are given low degree of accuracy
for large values of t . It is obvious to see that the HAM is a very powerful, easy and efficient technique for solving various
kinds of nonlinear problems in science and engineering without any assumptions and restrictions.
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