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1. I N T R O D U C T I O N  

In this paper ,  we establ ish the  existence of mild solutions for an impulsive abs t rac t  functional 

differential equat ion with  s ta te -dependent  delay descr ibed by  

x'(t> = A x ( 0  + f ( t ,  xp(,,~,~), t e I = [0, a], (1.1) 

x0 = ~ E B, (1.2) 

Ax( t i )  = Ii(xt~), i ---- 1 , . . . ,  n, (1.3) 

where A is the  infinitesimal generator  of a compact  C0-semigroup of bounded  linear operators  

(T(t))~>o defined on a Banach space X;  the  functions x~ : ( - c ~ , 0 ]  ~ X ,  xs(#) = x(s  + 0), 
belongs to some abs t rac t  phase space B described axiomatical ly;  0 < t l  < . . .  < tn < a are 

pre-fixed numbers;  f : I × B -~ X,  p : I × 5 -~ ( - c ~ ,  a], I i  : B --~ X,  i = 1 , . . .  ,n ,  are appropr ia te  
functions and the  symbol  A( ( t )  represents  the  j ump  of the  function ~ at  t, which is defined by 

a ~ ( t )  = ~(t+)  _ ~ ( t - ) .  
The theory  of impulsive differential equat ions has become an impor t an t  a rea  of invest igat ion in 

recent years s t imula ted  by their  numerous appl icat ions  to problems arising in mechanics,  electrical 

engineering, medicine, biology, ecology, etc. Relat ive to ord inary  impulsive differential equations,  
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we cite among other works [1-5]. First-order abstract partial differential equations with impulses 
are treated in [6-9]. 

The literature related to ordinary and partial functional differential equations with delay for 
which p(t, ¢) = t is very extensive and we refer the reader to [10,11] concerning this matter. 

Functional differential equations with state-dependent delay appear frequently in applications 
as models of equations and for this reason the s tudy of this type of equations has received great 
attention in the last years, see, for instance, [12-20] and the references therein. The literature 
related to partial functional differential equations with state-dependent delay is limited, to our 
knowledge, to the recent works [21,22]. The study of impulsive partial functional differential 
equations with state-dependent delay is an untreated topic and it is the motivation of our paper. 

2. P R E L I M I N A R I E S  

Throughout  this paper, A : D(A)  C X ~ X is the infinitesimal generator of a compact 
semigroup of linear operators (T(t))t>_o defined on a Banach spaces X a n d / ~  is a constant such 
that  liT(t)II <- 2f/i for every t • I = [0, a]. For related semigroup theory, we suggest [23]. 

To consider the impulsive condition (1.3), it is convenient to introduce some additional concepts 
and notations. We say that  a function u : [c~, ~-] ~ X is a normalized piecewise continuous function 
on [a, ~-] if u is piecewise continuous and left continuous on (a, ~-]. We denote by 79C([a, T]; X) the 
space formed by the normalized piecewise continuous functions from [a, T] into X.  In particular, 
we introduce the space PC formed by all functions u : [0, a] --~ X such that  u is continuous at 
t ~ t i ,u ( tT)  = u(t~) and u(t +) exists, for all i = 1 , . . .  ,n. In this paper we always assume that 
PC is endowed with the norm [[u][pc = supse[0,~ ] []u(s)[[. I t  is clear tha t  (PC, [[. IIpc) is a Banach 
space. 

To simplify the notations, we put to = 0, tn+l = a and for u • PC we denote by ~ • 
C([ti, ti+l]; X),  i = 0, 1 , . . . ,  n, the function given by 

u(t), for t • (ti, t~+l], 

~,(t) = u(t+), for t = t,. 

Moreover, for B C PC, we denote by/~i ,  i = 0, 1 , . . .  ,n, the set B~ -- { ~  : u • B}. 

LEMMA 2.1. A set B C PC is relatively compact in PC if and only if, the set [~i is relatively 
compact in C([ti, ti+l]; X) ,  for every i = 0, 1 , . . . ,  n. 

In this work we will employ an axiomatic definition of the phase space B which is similar to 
tha t  used in [24]. Specifically, 13 will be a linear space of functions mapping ( -oo ,  0] into X 
endowed with a seminorm []. []• and we will assume that  B satisfies the following axioms. 

(A) If x :  ( - c o ,  a + b] ~ X,  b > 0, is such that  x[[o,~+b] • PC([a, a + b] : X )  and x~ • B ,  then 
for every t E [a, a + b] the following conditions hold: 

(i) xt  is in 13, 

(ii) IIx(t)ll < gllx llB, 
(iii) Ilxtlls <_ K ( t  - a)sup{llx(s)] I : a < s < t} + M ( t  - a)llx~lls, where g > 0 is 

a constant; K, M : [0, c~) --~ [1, (x)), K is continuous, M is locally bounded and 
H, K, M are independent of x(.). 

(B) The space B is complete. 

EXAMPLE. THE PHASE SPACES •Ch(X), "PC°(X). Let g : ( - ~ ,  0] ~ [1, c~) be a continuous, 
nondecreasing function with g(0) = 1, which satisfies the conditions (g-l), (g-2) of [24]. This 
means that  the function 

g(t + e) 
G(t) := sup 

- ~ < e < - t  g(O) 

is locally bounded for t > 0 and that  l i m e ~ _ ~  g(0) = oc. 
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As usual, we said tha t  ~o : ( - c~ ,  0] --* X is normalized piecewise continuous, if T is left 
continuous and the restriction of T to any interval I - r ,  0] is piecewise continuous. 

Next,  we modify slightly the definition of the spaces Cg, C ° in [24]. We denote by PCg(X) the 
space formed by the normalized piecewise continuous functions ~ such tha t  ~/g is bounded on 
( - o o ,  O] and by T'C°(X) the subspace of ~Pgg(X) formed by the functions ~o such tha t  

~(e )  -~ 0 
g(e) 

as 0 -~ - c ~ .  I t  is easy to see tha t  7)Cg(X) and PC°(X) endowed with the norm 

II~llu := sup II~(e)ll 
e<o g(O) 

are phase spaces in the sense considered in this work. Moreover, in these cases K(s)  - 1 for 
s > 0 .  

EXAMPLE. THE PHASE SPACE ~OCr X L2(g, X) .  Let 1 < p < e~, 0 <__ r < ~ and g(.) be a Borel 
nonnegative measurable function on ( - ~ ,  r) which satisfies the conditions (g-5)-(g-6) in the 
terminology of [24]. Briefly, this means tha t  g(.) is locally integrable on ( - o % - r )  and tha t  there 
exists a nonnegative and locally bounded function G on ( -oo ,  0] such tha t  g(~ + 0) <_ G(~)g(O) 
for all ~ < 0 and 0 E ( - o o , - r )  \ N~, where N~ c_ ( - o % - r )  is a set with Lebesgue measure 0. 

Let /3 := ~oC,. × LP(g; X),  r > 0, p > 1, be the space formed of all classes of functions 
T :  ( - o % 0 ]  --+ X such tha t  Tl[-r,0] E ~°C([-r,  0] ,X) ,  T(.) is Lebesgue-measurable on ( - ¢ ~ , - r ]  
and g I ~ I p is Lebesgue integrable on ( - c ~ , - r ] .  The  seminorm in I1' Ilu is defined by 

lip / r-r  \ 
I]¢pI[B := sup Ilqo(O)ll + { / 9 ( e ) l l ~ ( e ) l l  Pde} 

\ a - o o  / 

Proceeding as in the proof of [24, Theorem 1.3.8], it follows tha t  B is a phase space which satisfies 
Axioms A and B. Moreover, for r = 0 and p = 2, this space coincides with Co x L2(g, X) ,  H = 1; 
M(t)  = G( - t )  x/2 and g (t) = 1 + ( f° t  g(r) dT) 1/2, for t > 0. 

REMARK 1. In re tarded functional differential equations wi thout  impulses, the axioms of the 
abst ract  phase space/3  include the continuity of the function t -~ xt, see [24,25] for details. Due 
to the impulsive effect, this proper ty  is not satisfied in impulsive delay systems and, for this 
reason, has been eliminated in our abst ract  description of/3. 

REMARK 2. Let qo E /3  and t < 0. The  notat ion ~t represents the function defined by ~t(0) = 
~( t  + 0). Consequently, if the function x(.) in Axiom A is such tha t  x0 = ~, then xt = ~t. We 
observe tha t  ~t is well defined for t < 0 since the domain of q~ is ( - o c ,  0]. We also note tha t  in 
general ~t ~/3;  consider, for example,  functions of the type  x ' ( t )  = ( t -  #)-~X(~,0], # > 0, where 
2¢(~,0 ] is the characteristic function of (/z, 0], # < - r  and ap E (0, 1), in the space PCr x LV(g; X). 

Additional terminologies and notat ions used in this paper  are s tandard  in functional analysis. 
In particular,  for Banach spaces (Z, I1" [[z), (W, H" [[w), the notat ion £.(Z,W) stands for the 
Banach space of bounded linear operators  from Z into W and we abbrevia te  to  £ ( Z )  whenever 
Z = W. Moreover, Br(x, Z) denotes the closed ball with center at  x and radius r > 0 in Z. 

The  paper  has four sections. In Section 3 we establish the existence of mild solutions for system 
(1.1)-(1.3). Section 4 is reserved for examples. 

To conclude this section, we recall the following well-known result for convenience. 

THEOREM 2.1. (See [26, Theorem 6.5.4].) Let D be a dosed convex subset o f a  Banach space Z 
and assume that 0 E D. Let F : D --+ D be a completely continuous map. Then, either the 
map F has a fixed point in D or {z E D : z = AF(z), 0 < A < 1} is unbounded. 
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3.  E X I S T E N C E  R E S U L T S  

In this section, we establish the existence of mild solutions for the impulsive abstract Canchy 
problem (1.1)-(1.3). To prove our results, we always assume that  p : I x B --, ( - c%a]  is 
continuous and that  ~) and f satisfies the following conditions. 

H~ Let TO(p-) = {p(s ,¢)  : ( s ,¢)  • I x B, p (s ,¢ )  < 0}. The function t ~ ~)t is well defined 
from TO(p-) into B and there exists a continuous and bounded function J~ : TO(p-) --, 
such that  I]~tn~ _< J~(t)lI~llB for every t e TO(p-). 

H1 The function f : I x /3  --, X satisfies the following conditions. 
(i) Let x : ( -oo ,  a] --. X be such that  x0 = ~ and xlI • :PC. The function t -~ 

f ( t ,  xp(t,~,)) is measurable on [O,a] and the function t --* f ( s ,  xt) is continuous on 
T~(p-) U [0, a] for every s • [0, a]. 

(ii) For each t • I ,  the function f ( t ,  .) : 13 --. X is continuous. 
(iii) There exists an integrable function rn : I ~ [0, co) and a continuous nondecreasing 

function W :  [0, ~ )  ~ (0, cx~) such that  

IIf(t ,¢)ll  _< m(t)W(llCH~),  ( t ,¢ )  • I x B. 

REMARK 3. We point out here that  condition H~ is frequently satisfied by functions that  axe 
continuous and bounded. In fact, assume that  the space of continuous and bounded functions 
C b ( ( - ~ ,  0], X) is continuously included in B. Then, there exists L > 0 such tha t  

r sup0<_0 ll¢(8)ll ,,,,, 
I l C t l l B ~  ]~]-~ il~,.m t < o ,  ¢ 5 0 ,  C e C b ( ( - - c ~ , O ] : X ) .  (3.1) 

It is easy to see that  the space Cb((-cx~,O],X) is continuously included in :PCg(X) and 
:PC°(X). Moreover, if g(.) verifies (g-5)-(g-6) and g(.) is integrable on ( - c ~ , - r ] ,  then the space 
Cb((--oc, 0], X) is also continuously included in :PCr x LP(g; X) .  For complementary details re- 
lated this matter,  see Proposition 7.1.1 and Theorems 1.3.2 and 1.3.8 in [24]. 

REMARK 4. In delay differential equations without impulses, the function f is usually assumed 
to be continuous. This turns out to be a poor choice of a condition for an impulsive system since 
in general, the function t ~ xt is discontinuous. This fact is the justification for condition Hi-(i).  

Let x : ( -0% a] --* X be a function such that  x, x '  • :PC. If x is a solution of (1.1)-(1.3), from 
the semigroup theory, we get 

/: x( t )  = T( t )~ , (o )  + T ( t  - s / f  (s ,  xp( . . . .  )) es ,  t • [o,t~) ,  

which implies that  

fo" x(ti-) = T(t~)~(o) + T(t~ - ~) I  (s, ~p(,,~.)) as. 

By using that  x( t  +) = x(t-~) + Ii(xt~), for t • (tl, t2) we find that  

x(t) = T( t  - t l ) x ( t  +) + T( t  - s ) f  (s, %(~,~.)) ds 

= T( t  - t~)(x(t-~) + I~(xt~)) + T( t  - s ) f  (s, %( . . . .  )) ds 

= T ( t - t l )  [T(tl)T(0) + ~ t ,  T(t l  - s ) f  (s, xp( . . . .  )) ds + Ii(xt~) 1 

+ T( t  - s ) f  (s, xp( . . . .  )) ds 
1 

= T(t)~o(o) + T ( t  - ~ ) f ( s ,  x~( . . . .  )) as  + T ( t  - t~)Z~(x~). 
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Reitera t ing these procedures,  we can prove tha t  

Lt  
x(t) = T ( t ) ~ o ( 0 ) +  T ( t - s ) f ( s ,  xp(,:,)) ds+ E T( t - t i ) I i ( x t~) ,  

0<t i< t  

t E I .  

This expression motivates the following definition. 

DEFINITION 3.1. A function x : ( - o o ,  a] -~ X is cMled a mild solution of the abstract Cauchy 
problem (1.1)-(1.3) if xo = ~, x:( .. . .  ) E 13 for every s E I and 

x(t) = T ( t ) ~ ( 0 ) +  T ( t -  s ) f  (s, xp( .. . .  )) ds + E T ( t -  ti)Ii(xt,), t E I. (3.2) 
o<Q<t 

The next lemma is proved using the phase spaces axioms. 

LEMMA 3.1. Let x : (-c~, a] ~ X be a function such that xo = ~ and xl[o,~l E PC. Then 

IIx~ll~ <__ (M~ + J~)II~IIB + K~ sup {11~(0)11; 0 E [0, ma~(0, s} ]} ,  s ~ n ( O - )  U [0, a], 

where Jo ~ = suPten(p_ ) J~'(t), M~ = supte i  M(t) and K~ = supte~ K(t).  

REMARK 5. In the sequel of this  work, M~ = supte[o,~ ] M(t) and K~ = supte[o M K(t)- 

Now, we can establish our first existence result. 

THEOREM 3.1. Assume that there are constants Li, i = 1, 2 , . . . ,  n, such that 

11£(¢~)--I~(¢2)ll<_Ldl¢~-¢~llB, CjeB,  j = l , 2 ,  i = 1 , 2  . . . .  ,n .  

/ f  

/~/K~ lira inf m(s) ds + Li < 1, (3.3) 
~"+~ i=1 

then there exists a mild solution of (1.1)-(1.3). 

PaOOF. Let  Y = {u E PC : u(0) = ~(0)} endowed with the uniform convergence topology. On 

the space Y, we define the  opera tor  r : Y ~ Y by 

L 
t 

rz(t) = T(t)~(O) + T(t - s)f(s,2p(s.~,))ds + ~ T(t - ti)Ii(Sa), 
0<t~<t 

t E I ,  

where 2 : ( - c ~ ,  a] ~ X is such tha t  2o = ~ and • = x on I .  From Axiom A, the  strong continuity 

of (T(t))t>_o and our assumptions on ~ and f ,  we infer t ha t  Fx  E 7)C. 
Next,  we prove tha t  there  exists r > 0 such tha t  P(Br(0,  Y))  C Br(0,  Y). If we assume 

this p roper ty  is false, then for every r > 0 there exist x ~ E B~(0, Y) and t ~ E I such tha t  

r < IIr:(tr)ll. Then,  by using Lemma 3.1 we find tha t  

," < I I r : ( : ) l l  
t ~" n 

_ ~'/HII:IIB + Mfo m(s)W(ll~.(.,<~)~)ll :.B) ds + ~ (LdI~,,IIB + 111dO)ll) 
i=I 

fo: _< ~?HII~II~ + ~ w  ((M. + do ~)11~11~ + Kar) rn(s) ds 

+ IVI E (Li((Ma + Jg)ll~llB + K~r) + IIZi(0)ll), 
i=i 
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and hence, 

I < IgIK= 1 f m(s) ds + L{ , 

which is contrary to our assumption. 

Let r > 0 be such that  F(Br(0, Y)) C B~(0, Y). Next, we will prove that  F is a condensing 

map on Br(0, Y). Consider the decomposition F = F1 + F2 where 

~0 t Fix( t )  = T(t)qo(0) + T(t  - s ) f  (s, ~p(,,~,)) ds, t E I, 

r : ( t )  = ~ T ( t -  ti)Ii(2.t,), t E I. 
O<t~<t 

STEP 1. The set FI(B~(O,Y))(t)  : {Fix(t)  : x E B~(0, Y)} is relatively compact in X for every 
t E I.  The case t = 0 is obvious. Let 0 < e < t < a. If x E B~(O,Y), from Lemma 3.1 it follows 
that  

II~.(t:,)llB _< r* := (M~ + Jo~)ll:llB + K :  

and so 

O r ds fo a T(r  - s) f (s ,  ~p(,,~)) _< r** : :  lf/IW(r*) re(s) ds, 

Consequently, for x E B~(0, Y), we find that  

TE-[ .  

~0 t-E £ Fix( t )  : T(t)~(O) + T(e) T(t  - e - s ) f  (s, ~:(~,~s)) ds + T( t  - s ) f  (s, ~p(~,~s)) ds 
£ 

E {T(t)~o(0)} + T(e)B~.. (0, X )  + C~, 

where diam(C() _< 2/V/W(r*) f:_(re(s) ds, which proves that  r~(Br(0,  Y))(t) is relatively compact 
in X. 

STEP 2. The set of functions F~(Br(0,Y)) is equicontinuous on I.  Let 0 < t < a and e > 0. 

Since the semigroup (T(t))t>o is strongly continuous and F1 (Br(0, Y))( t )  relatively compact in X, 
there exists 0 < 6 < a - t such that  

]]T(h)x-  xll < e, x E FI(Br(O,Y))(t) ,  0 < h < 5 .  

Under these conditions, for x E B~(0, Y) and 0 < h < 6, we get 

f 
t+h 

Ilhx(t+h)- rlz(t)ll < I](T(h)- I ) r : ( t ) ] l  + T(t-s)f(s,.2p(s:s))ds .It 
_ f t+h 

< e + MW(r*)  / re(s) ds, 
Jt 

where r* : (Ma + J0~)lI:lIB + Kar. This proves that  FI (Br (0 ,Y))  is right equicontinuous at 

t E (0, a). Similarly, we can prove the right equicontinuity at zero and the left equicontinuity at 

t E (0, a]. Thus, rl(Br(0, Y)) is equicontinuous on I.  

STEP 3. The map FI( ' )  is continuous on B~(O,Y). Let (xn),eN be a sequence in B~(0, Y) and 
x E B~(O,Y) such that  x n --+ x in PC. From Axiom A, it is easy to see that  ( ~ ) ,  --+ 5s as 

n --+ co uniformly for s E ( - co ,  a]. From this fact, condition H1 and the inequality 

llf (s, :.(.,(:>.>) - f(., :.(.,:.))II -< llf (', 7%(.,(::).)) - : (., :.(.,(:>.>) If,, 
+ II: (',:.(.,<::).>) - :  (., :.(.,:.0 II., 
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we infer tha t  f(s,x-~p(~,(~-w),)) ~ f(~p(~,~,)) as n --* c¢, for every s • I .  Now, a standard 
application of the Lebesgue dominated convergence theorem proves tha t  F ix  = --* F ix  in Y. 
Thus, F~(.) is continuous. 

STEP 4. The map F2(.) is a contraction on B~(0, Y). 

The assertion follows directly from (3.3) and the estimate 
n 

][Fzx - Fzyllgc <_ Kal~/I E L~l[x - yllpc. 
i = 1  

The previous steps prove that  F is a condensing operator from B~(0,Y) into Br(0, Y). Now, 
the existence of a mild solution is a consequence of [27, Theorem 4.3.2]. This completes the 
proof. 

THEOREM 3.2. Assume that p(t, ¢)  <_ t for every (t, ¢)  
continuous, and that there are constants c~, i = 1, 2,. 

1 2 for every ¢ • 13. I f #  = 1 - K a ~ / i ~ = l C i  > e~ I1¢11~ + c,, 1 

where 

| 

• I × B, the maps I~ are completely 
. . , n ,  j = 1,2, such that [[I~(¢)[1 < 
0 and 

K~M re(s) ds < 
W ( s )  ' 

C = 1 M~ + J~o + MHKa Ilqoll/3 + K~,~/ c 
# ~=1 .I 

then there exists a mild solution of (1.1)-(1.3). 

PROOF. Let y : ( - c ¢ ,  a] --~ X the function defined by y(t) = ~(t) on ( - c ¢ ,  O] and y(t) = T(t)~(O) 
on [0, a]. On the space 

~ c  = ( ~ :  ( - ~ , a ]  -~ X;~o = 0,~l[O,al e ~C} 

endowed with the norm I1" live, we define the operator F : B79C --~ BT)C by 

0, t e  ( - ~ , 0 ] ,  

Fx(t) = f o T ( t - s ) f ( s , ~ p ( ~ , ~ ) )  ds+ ~ T ( t - t i ) I i ( s t , ) ,  t e  [0, a], 
0 < t ~ < t  

where ~ = y + x on ( - c ¢ ,  a]. In order to use Theorem 2.1, we will establish a priori estimates 
for the solutions of the integral equation z = AFz, A E (0, 1). Assume that  x x, A • (0, 1), is a 
solution of z = )~Fz. If a~(s) = sup0e[0,~l [IxX(0)ll, then from Lemma 3.1 we have that  

j0 ( ) IIx~(t)ll_< ~ m(s)W (M~+ J~')II~liB+K~ sup II~(0)ll ds 
o~[o,~1 

1 - -  + i f /  ~ c~ ( M ~ + g ) l l ~ l l ~ + N o  sup IIz~'(o)ll + ~ y - ~ c ~  
O<t i_<t  OE[O,t] i = 1  

< IVI ~otm(s)W ((M~ + J~ + -~/IHKa)l]~llt3 + Kaa;~(s)) ds 

O<ti<t i = 1  

since p(s, (=x ) . )  _< s for each s • I. If ~x(t) = (Mo + d~ + ~HKo)II~IIB + Koch(t), we obtain 
tha t  

° f [  ~x( t )<_(Ma+J~+~I / IHK~)I I~I IB+Ka2VI~c2+K~IVI  m(s )W(~( s ) )d s  
i=l  

+go~ ~ c~(t), 
i = 1  
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and so, 

1 I (  ) ~ ] KaMfo t  ~( t )  <_ ~ M~ + J~ + iQHK~ I1~11~ + Ka~I E c2i + m(s)W(~X(s)) ds. 
i = l  ~t 

Denoting by t3~(t) the right-hand side of the last inequality, it follows that 

Zi(t) < K ° M m ( t ) w ( z x ( t ) ) ,  
# 

and hence, 

f ~(t) ds KaMfo~ / 2  ds 
x(o)=e W(s) <- ~ re(s) ds < . w(~)' 

which implies that the set of functions {/3~(.) : A • (0, 1)} is bounded in C(I : N). Thus, 
{x~(.) : A • (0, 1)} is bounded in B'PC. 

To prove that the map F is completely continuous, we introduce the decomposition Fx = 
Fix  + F2x where (Fix)0 = 0, i = 1, 2, and 

~0 t f ix ( t )  -- T ( t -  s ) f  (s ,e . (s ,~))  ds, t • z, 

F2x(t) = E T ( t -  ti)I,(~t,), t • I. 
O<ti<t  

From the proof of Theorem 3.1, we deduce that I'1 is completely continuous. Next, by using 
Lemma 2.1, we prove that F2 is also completely continuous. The continuity of F2 can be proven 
using the phase space axioms. From the definition of F2, for r > O, t • [t~,t~+l] N (0, a], i >__ 1, 
and u • B~ = B~(O, BPC), we find that 

i 
2 T ( t -  tj)Ij(B~.(O;X)), t • (t~,t~+l), 
j= l  

r2u(t) • 2 T(t~+l - t j)Ij(B~.(O; X)), t = t~+~, 
j=0 
i -1 
~2 T(t~ - t j )Xj(B~.(O;X))  + I~(B~.(O;X)),  t = t~, 
j= l  

where r* := (Ma + gM)l l~l ls  + Kor, which proves that [r2(B~)]~(t) is relatively compact in 
X, for every t • [t~,ti+l], since the maps Ij are completely continuous. Moreover, using the 

compactness of the operators Ii and the strong continuity of (T(t))t>_o, we can prove that IF2 (B~)]i 
is equicontinuous at t, for every t • [ti,ti+l]. Now, from Lemma 2.1 we conclude that F2 is 
completely continuous. 

These remarks, in conjunction with Theorem 2.1, show that F has a fixed point x • B'PC. 
Clearly, the function u = x + y is a mild solution of (1.1)-(1.3). The proof is ended. | 

4.  E X A M P L E  

In this section, X = L2([0,~r]) and A:  D(A) C X ~ X is the operator A f  = f"  with domain 
D(A) := {f C X : f "  E X, f(0) = f(Tr) = 0}. It is well known that A is the infinitesimal generator 
of a compact C0-semigroup of bounded linear operators (T(t))t>o on X. Moreover, A has discrete 
spectrum, the eigenvalues are - n  2, n E N, with corresponding normalized eigenvectors 
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the set {zn : n E N} is an orthonormal basis of X and 

T(t)x = ~ e-~2t(x,z~)z~, 
n = l  

for every x E X.  

Consider the differential 
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system, 

= ~--~u(t, ~) + fl(s - t )u (s  -¢(Hu(t)ll),~)ds, (4.1) 
o o  

= = 0 ,  ( 4 . 2 )  

= ~(~-, ~), T <_ 0, (4.3) 

L Au(tj, ~) = ~/j (tj - s)u(s, ~) ds, j = 1, . . . ,  n, (4.4) 

for (t,~) E [0, a] x [0,~], where ~ C B =PCo x L2(g,X) and 0 < tl  < . . .  < t~ < a are pre-fixed. 
To study this system we impose the following conditions. 

(i) The functions/3 : R -~ IR, a : ~ -~ N + are continuous, bounded and 

Lf = ( ~  ~2(S) ds) 1/2 < 

(ii) The functions ~,j : R ~ ~ are continuous and 

LJ := ( L  (~J(-s))2 ds) 1/2 < 

for every j = 1 , 2 , . . . , n .  

By defining the functions p,f,  Ij : B -* X by p ( t ,¢ )  = t - a(ll¢(0)ll), 

f(¢)(~) = fl(s)~2(s, ~) ds 
o~ 

I j (¢)(~)  = 7j(-s)¢(s,~)ds, j = 1 , 2 , . . . , n ,  

we can represent system (4.1)-(4.4) by the abstract  impulsive Cauchy problem (1.1)-(1.3). 
Moreover, the maps f, Ij, j = 1, . . . ,n ,  are bounded linear operators, Ilflln(u,x) <- LI and 
II/jNL(B,x) < Lj for every j = 1 , . . .  ,n.  

PROPOSITION 4.1. Let  p C B be such that  H~ is valid and t -~ ~t is continuous on T~(p-). If 

((; 1+ ag(T) d7 ) ) aL l+  L~ <1, 

then there exists a mild solution of (4.1)-(4.3). 

PROOF. Let x : ( - o c ,  a] --~ X be such tha t  x0 = ~ and x]i 6 ~C. A straightforward estimation 
permit to prove that  t --* f(xt) is continuous on n(p-)  x [0, a] and that  t ~ f(zp(t,x,)) is 
continuous on [0, a]. Now, the existence of a mild solution for (4.1)-(4.3) is a consequence of 
Theorem 3.1. | 

From Remark 3, we obtain the next result. 

COROLLARY 4.1. Assume tha t  ~ E B is continuous and bounded on (-c~, 0]. Then, there exists 
a mild solution of (4.1)-(4.3). 
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