
Discrete Applied Mathematics 156 (2008) 1736–1753
www.elsevier.com/locate/dam

Strategies of loop recombination in ciliates

Robert Brijdera,∗, Hendrik Jan Hoogebooma, Michael Muskulusb

aLeiden Institute of Advanced Computer Science, Universiteit Leiden, Leiden, The Netherlands
bMathematical Institute, Universiteit Leiden, Leiden, The Netherlands

Received 13 March 2007; received in revised form 14 August 2007; accepted 15 August 2007
Available online 27 September 2007

Abstract

The concept of breakpoint graph, known from the theory of sorting by reversal, has been successfully applied in the theory of gene
assembly in ciliates. We further investigate its usage for gene assembly, and show that the graph allows for an efficient characterization
of the possible orders of loop recombination operations (one of the three types of molecular operations that accomplish gene assembly)
for a given gene during gene assembly. The characterization is based on spanning trees within a graph built upon the connected
components in the breakpoint graph. We work in the abstract and more general setting of so-called legal strings.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Gene assembly; Graph rewriting; String rewriting

1. Introduction

Gene assembly is an involved DNA transformation process in ciliates (a large group of single cell organisms)
which transforms a nucleus (the micronucleus) into a functionally different nucleus (the macronucleus). The process is
accomplished using three types of DNA splicing operations, which operate on special DNA sequences called pointers.
Each pointer can be seen as a breakpoint with a ‘tag’ which specifies how the splicing should be done, ensuring that
the end result is fixed. The process, however, is not deterministic: for every gene in its micronuclear form, there can
be several sequences of operations, called strategies, to transform this gene to its macronuclear form. For a given
micronuclear gene, strategies may differ in the number of operations. It has been shown, however, that the number
of loop recombination operations is independent of the chosen strategy [8,7], and that this number can be efficiently
calculated [4,3]. In this paper we characterize for a given set of pointers D, whether or not there is a strategy that
applies loop recombination (called string negative rule in the formal model that we use) on exactly these pointers. This
result depends heavily on the reduction graph, which is motivated by the breakpoint graph in the theory of sorting
by reversal [11,13,1] since it adopts the concept of reality-and-desire for DNA sequences with breakpoints. More
specifically, we define a graph, called the pointer-component graph, ‘on top of’ the reduction graph, thereby depicting
the distribution of pointers over the connected components of the reduction graph [4,3]. We show that one can apply
loop recombination on the pointers in D exactly when D forms a spanning tree in the pointer-component graph. This
characterization implies an efficient algorithm. Also, we characterize in which order the pointers of D can possibly be
applied in strategies.

∗ Corresponding author. Fax: +31 71 5276985.
E-mail address: rbrijder@liacs.nl (R. Brijder).

0166-218X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2007.08.032

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81197383?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/dam
mailto:rbrijder@liacs.nl

R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753 1737

This paper is organized as follows. In Section 2 we recall basic notions and terminology mainly concerning strings
and graphs, and in Section 3 we recall a formal model of the gene assembly process: the string pointer reduction system.
In Section 4 we recall the notion of reduction graph and some theorems related to this notion. In Section 5 we define the
pointer-component graph, a graph that depends on the reduction graph, and we discuss an operation on this graph that
captures the application of string pointer rules. In Section 6 we show that the spanning trees of the pointer-component
graphs reveal crucial information concerning applicability of string negative rules. Section 7 shows that merging and
splitting of vertices in pointer-component graphs relate to the removal of pointers. Using the results of Sections 6 and 7,
we characterize in Section 8 for a given set of pointers D, whether or not there is a strategy that applies string negative
rules on exactly these pointers. Section 9 strengthens results of Section 8 by also characterizing in which order the
string negative rules can be applied on the pointers. We conclude this paper with Section 10. A conference edition of
this paper, containing selected results without proofs, was presented at CompLife ’06 [2].

2. Basic notions and notation

In this section we recall some basic notions concerning functions, strings, and graphs. We do this mainly to fix the
basic notation and terminology.

The restriction of f to a subset A of X is denoted by f |A, and for D ⊆ X we denote by f (D) the set {f (x) | x ∈ D}.
Let ≺ be a binary relation over a finite set X. Then xi and xj in X are called independent, if they are incomparable in
the transitive closure of ≺. A topological ordering of ≺ is a linear ordering (x1, . . . , xn) of X such that if xi ≺ xj , then
i < j .

We will use � to denote the empty string. For strings u and v, we say that v is a substring of u if u = w1vw2, for
some strings w1, w2; we also say that v occurs in u.

Let � and � be alphabets. For � ⊆ �, we denote by erase� : �∗ → �∗ the homomorphism defined by

�(a) =
{

a if a /∈ �,

� if a ∈ �
for all a ∈ �.

We now turn to graphs. We will only consider undirected graphs. A graph is a tuple G = (V , E), where V is a finite
set and E ⊆ {{x, y} | x, y ∈ V }. The elements of V are called vertices and the elements of E are called edges. We also
write o(G)=|V |. We allow x = y, and therefore edges can be of the form {x, x}= {x}—an edge of this form should be
seen as an edge connecting x to x, i.e., a ‘loop’ for x. Vertex x is isolated in G if there is no edge e of G with x ∈ e. The
restriction of G to E′ ⊆ E, denoted by G|E′ , is (V , E′). A multigraph is a graph G = (V , E, �), where parallel edges
are possible. Therefore, E is a finite set of edges and � : E → {{x, y} | x, y ∈ V } is the endpoint mapping. Clearly, if
� is injective, then such a multigraph is equivalent to a graph. We let MGr denote the set of all multigraphs.

A 2-edge coloured graph is a graph G= (V , E1, E2, f, s, t) where E1 and E2 are two finite (not necessarily disjoint)
sets of edges, s, t ∈ V are two distinct vertices called the source vertex and the target vertex, respectively, and there
is a vertex labelling function f : V \{s, t} → � for some finite set �. The elements of � are the vertex labels. We use
2EGr to denote the set of all 2-edge coloured graphs.

Notions such as isomorphisms, paths, connectedness, and trees for graphs carry over to these two types of graphs.
For example, for a multigraph G = (V , E, �) and E′ ⊆ E, we have G|E′ = (V , E′, �|E′). Care must be taken for
isomorphisms. Multigraphs G = (V , E, �) and G′ = (V ′, E, �′) are isomorphic if there is a bijection � : V → V ′ such
that �� = �′, or more precisely, for e ∈ E, �(e) = {v1, v2} implies �′(e) = {�(v1), �(v2)}. Note that the sets of edges
of G and G′ are identical. Also, 2-edge coloured graphs G = (V , E1, E2, f, s, t) and G′ = (V ′, E′

1, E
′
2, f

′, s′, t ′) are
isomorphic if there is a bijection � : V → V ′ such that �(s) = s′, �(t) = t ′, f (v) = f ′(�(v)) for all v ∈ V , and
{x, y} ∈ Ei iff {�(x), �(y)} ∈ E′

i , for all x, y ∈ V , and i ∈ {1, 2}.
For 2-edge coloured graphs G, we say that a path 	 = e1e2 · · · en in G is an alternating path in G if, for 1� i < n,

both ei ∈ E1 and ei+1 ∈ E2, or the other way around.

3. String pointer reduction system

Three (almost) equivalent formal models for gene assembly were considered in [9,6,7]. In this section we briefly
recall the one that we will use in this paper: the string pointer reduction system. For a detailed motivation and other
results concerning this model we refer to [7].

1738 R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753

Fig. 1. Sequence of pointers represented by the legal string u = 543725627̄346.

We fix
�2, and define the alphabet � = {2, 3, . . . ,
}. For D ⊆ �, we define D̄ = {ā | a ∈ D} with D ∩ D̄ = �,
and we define � = � ∪ �̄. The elements of � will be called pointers. Since we work in the general framework of
legal strings, the exact identities of the elements in � is irrelevant, in fact, any finite set � would suffice. However, we
respect the convention of denoting a pointer by an integer larger than 1 with possibly a bar. The name ‘pointer’ is lent
from computer science due to its similarities with pointers defined here (see, e.g., Chapter 16 in [7]). We use the ‘bar
operator’ to move from � to �̄ and back from �̄ to �. Hence, for p ∈ �, ¯̄p = p. For a string u = x1x2 · · · xn with
xi ∈ �, the inverse of u is the string ū = x̄nx̄n−1 · · · x̄1. For p ∈ �, we define p to be p if p ∈ �, and p̄ if p ∈ �̄, i.e.,
p is the ‘unbarred’ variant of p. The domain of a string v ∈ �∗ is dom(v) = {p | p occurs in v}. A legal string is a
string u ∈ �∗ such that for each p ∈ � that occurs in u, u contains exactly two occurrences from {p, p̄}. For a pointer
p and a legal string u, if both p and p̄ occur in u then we say that both p and p̄ are positive in u; if on the other hand
only p or only p̄ occurs in u, then both p and p̄ are negative in u.

Let u = x1x2 · · · xn be a legal string with xi ∈ � for 1� i�n. For a pointer p ∈ � such that {xi, xj } ⊆ {p, p̄}
and 1� i < j �n, the p-interval of u is the substring xixi+1 · · · xj . Two distinct pointers p, q ∈ � overlap in u if both
q ∈ dom(Ip) and p ∈ dom(Iq), where Ip (Iq , resp.) is the p-interval (q-interval, resp.) of u.

Example 1. String u = 4̄377̄4̄3 is a legal string. However, v = 424 is not a legal string. Also, dom(u) = {3, 4, 7} and
ū = 3̄477̄3̄4. The 3-interval of u is 377̄4̄3, and pointers 3 and 4 overlap in u.

A legal string is a representation of a sequence of pointers. The legal string u = 543725627̄346 corresponds to the
sequence of pointers in Fig. 1. Each gene in the micronucleus in ciliates can be represented by such a legal string. For
example, the legal string 344567567893̄2̄289 corresponds to the micronuclear form of the gene that corresponds to
the actin protein in the stichotrich Sterkiella nova (see [12,7,5]). Gene assembly transforms each gene in micronuclear
form to its macronuclear form by three splicing operations which operate on the pointers. These three operations are
formally defined on legal strings through the string pointer reduction system, where each is defined on a specific pattern
of the pointers.

The string pointer reduction system consists of three types of reduction rules operating on legal strings. For all
p, q ∈ � with p
= q:

• the string negative rule for p is defined by snrp(u1ppu2) = u1u2,
• the string positive rule for p is defined by sprp(u1pu2p̄u3) = u1ū2u3, and
• the string double rule for p, q is defined by sdrp,q(u1pu2qu3pu4qu5) = u1u4u3u2u5,

where u1, u2, . . . , u5 are arbitrary (possibly empty) strings over �. We also define Snr={snrp | p ∈ �}, Spr={sprp |
p ∈ �} and Sdr = {sdrp,q | p, q ∈ �, p
= q} to be the sets containing all the reduction rules of a specific type.

Note that each of these rules is defined only on legal strings that satisfy the given form. For example, spr2̄ is defined
on the legal string 2̄323, however, spr2 is not defined on this legal string. Also note that for every non-empty legal
string there is at least one reduction rule applicable. Indeed, every non-empty legal string for which no string positive
rule and no string double rule is applicable must have only non-overlapping negative pointers, thus there is a string
negative rule which is applicable. This is formalized in Theorem 6.

The domain of a reduction rule �, denoted by dom(�), is defined by dom(snrp)=dom(sprp)={p} and dom(sdrp,q)=
{p, q} for p, q ∈ �. For a composition � = �n · · · �2 �1 of reduction rules �1, �2, . . . ,�n, the domain, denoted by
dom(�), is defined by dom(�) = dom(�1) ∪ dom(�2) ∪ · · · ∪ dom(�n).

Example 2. The domain of � = snr2 spr4̄ sdr7,5 snr9̄ is dom(�) = {2, 4, 5, 7, 9}.

Let S ⊆ {Snr, Spr, Sdr}. Then a composition � of reduction rules from S is called an (S-)reduction. Let u be a legal
string. We say that � is a reduction of u, if � is a reduction and � is applicable to (i.e., defined on) u. A successful reduction

R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753 1739

� of u is a reduction of u such that �(u) = �. We then also say that � is successful for u. We say that u is successful in
S if there is a successful S-reduction of u. Note that if � is a reduction of u, then dom(�) = dom(u)\dom(�(u)).

Example 3. Again let u = 4̄377̄4̄3. Then �1 = sdr4̄,3 spr7 is a successful {Spr, Sdr}-reduction of u. However, both
�2 = snr3 spr7 and �3 = snr8 are not reductions of u.

Example 4. If we again consider the legal string 344567567893̄2̄289, which represents the micronuclear form of the
gene corresponding to the actin protein in the stichotrich Sterkiella nova, then spr3 sdr8,9 snr7 sdr5,6 snr4 spr2̄ is a
successful reduction of this legal string. Therefore, this sequence of operations transforms the gene from its micronuclear
form to its macronuclear form.

We say that a linear ordering L=(p1, . . . , pn) of a subset of dom(�) is the Snr-order of �, if �=�n+1snrp̃n
�nsnrp̃n−1· · · �2 snrp̃1 �1 for some (possible empty) {Spr, Sdr}-reductions �1, �2, . . . ,�n+1 and p̃i ∈ {pi, p̄i} for 1� i�n

and n�0. Moreover, we define snrdom(�) = {p1, . . . , pn}.

Example 5. The Snr-order of � = snr2 spr4̄ sdr7,5 snr9̄ is (9, 2), and snrdom(�) = {2, 9}.

Since for every (non-empty) legal string there is an applicable reduction rule, by iterating this argument, we have
the following well-known result.

Theorem 6. For every legal string u there is a successful reduction of u.

4. Reduction graph

In this section we recall the definition of reduction graph and some results concerning this graph. First we give the
definition of pointer removal operations on strings, see also [4].

Definition 7. For a subset D ⊆ �, the D-removal operation, denoted by remD , is defined by remD = eraseD∪D̄ . We
also refer to remD operations, for all D ⊆ �, as pointer removal operations.

Note that for each legal string u, remD(u) is a legal string.

Example 8. Let u = 543725627̄346 be a legal string. We will use this legal string as our running example for this
paper. For D = {4, 6, 7, 9}, we have remD(u) = 532523.

The next lemma is an easy consequence of Lemma 8 from [4]. It cannot be extended to Snr rules: if snrp is applicable
to remD(u), then it is not necessarily applicable to u.

Lemma 9. Let u be a legal string, let � be a composition of reduction rules that does not contain string negative rules,
and let D = dom(u)\dom(�). Then � is a reduction of u iff � is a (successful) reduction of remD(u).

The string negative rules in a reduction can be ‘postponed’ without affecting the applicability. More precisely, if
� = �2 � snrp �1 is a reduction of a legal string u, with p ∈ �, � a string positive rule or string double rule, and
�1, �2 arbitrary compositions of reduction rules, then there is a p̃ ∈ {p, p̄} such that �2 snrp̃ � �1 is a reduction of
u. Thus we can separate each reduction into a sequence without Snr rules, and a tail of Snr rules. We often use this
‘normal form’.

Example 10. We continue the example. Since �=snr6 snr2 spr7̄ snr4 sdr5,3 is a successful reduction of u, it follows
that �′ = snr6 snr2 snr4̃ spr7̄ sdr5,3 is also a successful reduction of u for some 4̃ ∈ {4, 4̄}. One can verify that we
can take 4̃ = 4. However, �′′ = snr4 snr6 snr2 spr7̄ sdr5,3 is not a successful reduction of u. If we consider the legal
string 72̄2̄7̄, for which spr7 snr2̄ is a successful reduction, then by postponing the string negative rule, snr2 spr7 isalso
a successful reduction of this legal string.

1740 R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753

Fig. 2. An illustration of Lemma 9: � = �2 �1 is a successful reduction of u, where �1 is a {Spr, Sdr}-reduction and �2 is a {Snr}-reduction with
dom(�2) = D.

Fig. 3. The reduction graph Ru of u from Example 12.

Fig. 2 illustrates Lemma 9 when � is in this normal form: � = �2 �1 is a successful reduction of u, where �1 is a
{Spr, Sdr}-reduction and �2 is a {Snr}-reduction with dom(�2) = D.

We are now ready to recall the definition of reduction graph. It was introduced in [4], and we restate it here in a
less general form. A reduction graph is a 2-edge coloured graph where the two types of edges are called reality edges
and desire edges. Moreover, all vertices, except for two distinct vertices s and t, are labelled by an element from �.
Recall that the physical representation of our running example u = 543725627̄346 is given in Fig. 1. The reduction
graph is defined in such a way that: (1) each (occurrence of a) pointer of u appears twice (in unbarred form) as a
vertex in the graph to represent both sides of the pointer in Fig. 1, (2) the reality edges (depicted as ‘double edges’
to distinguish them from the desire edges) represent the segments between the pointers, (3) the desire edges represent
which segments should be glued to each other when operations are applied on the corresponding pointers. Positive
pointers are connected by crossing desire edges (cf. pointer 7 in Fig. 3), while negative pointers are connected by
parallel desire edges. We refer to [4] for a more elaborate motivation and for more examples and results concerning
this graph. The notion is similar to the breakpoint graph (or reality-and-desire diagram) known from another branch of
DNA processing theory called sorting by reversal, see e.g. [13,11].

Definition 11. Let u = p1p2 · · · pn with p1, . . . , pn ∈ � be a legal string. The reduction graph of u, denoted by Ru,
is a 2-edge coloured graph (V , E1, E2, f, s, t), where

V = {I1, I2, . . . , In} ∪ {I ′
1, I

′
2, . . . , I

′
n} ∪ {s, t},

E1 = {e0, e1, . . . , en} with ei = {I ′
i , Ii+1} for 1 < i < n, e0 = {s, I1}, en = {I ′

n, t},

E2 = {{I ′
i , Ij }, {Ii, I

′
j } | i, j ∈ {1, 2, . . . , n} with i
= j and pi = pj }

∪ {{Ii, Ij }, {I ′
i , I

′
j } | i, j ∈ {1, 2, . . . , n} and pi = p̄j },

and

f (Ii) = f (I ′
i) = pi for 1� i�n.

The edges of E1 are called reality edges, and the edges of E2 are called desire edges. Notice that for each p ∈ dom(u),
the reduction graph of u has exactly two desire edges containing vertices labelled by p.

In depictions of reduction graphs, we will represent the vertices (except for s and t) by their labels, because the exact
identities of the vertices are not essential for the problems considered in this paper. We will also depict reality edges as
‘double edges’ to distinguish them from the desire edges.

R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753 1741

Fig. 4. The reduction graph of Fig. 3.

Fig. 5. The reduction graph Rrem{2,7}(u) from the example.

Example 12. We continue the example. Reduction graph Ru is given in Fig. 3. The same graph is again depicted in
Fig. 4—we have only rearranged the vertices. Also, Rrem{2,7}(u) is given in Fig. 5.

Each reduction graph has a connected component with a linear structure containing both the source and the target
vertex [4]. This connected component is called the linear component of the reduction graph. The other connected
components are called cyclic components because of their structure.

The definition of reduction functions and the remaining results are also taken from [4]. The p-reduction function
removes vertices labelled by p and ‘contracts’ alternating paths via these vertices into a single edge.

Definition 13. For each vertex label p, we define the p-reduction function rfp : 2EGr → 2EGr, for G = (V , E1, E2,

f, s, t) ∈ 2EGr, by

rfp(G) = (V ′, (E1\Erem) ∪ Eadd, E2\Erem, f |V ′, s, t),

with

V ′ = {s, t} ∪ {v ∈ V \{s, t} | f (v)
= p},
Erem = {e ∈ E1 ∪ E2 | f (x) = p for some x ∈ e}, and

Eadd = {{y1, y2} | e1e2 · · · en with n > 2 is an alternating path in G

with y1 ∈ e1, y2 ∈ en, f (y1)
= p
= f (y2), and

f (x) = p for all x ∈ ei, 1 < i < n}.

Reduction functions commute under composition. Thus, for a reduction graph RremD(u) and pointers p and q,
we have

(rfq rfp)(Ru) = (rfp rfq)(Ru).

Any reduction can be simulated, on the level of reduction graphs, by a sequence of reduction functions with the same
domain, cf. [4, Theorem 17].

Theorem 14. Let u be a legal string, and let � be a reduction of u. Then

(rfpn · · · rfp2 rfp1)(Ru) ≈ R�(u),

where dom(�) = {p1, p2, . . . , pn}.

1742 R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753

Fig. 6. The reduction graph of pqp̄q (and pqpq).

The next lemma is an easy consequence from Lemmas 22 and 23 in [4].

Lemma 15. Let u be a legal string and let p ∈ �. Then Ru has a cyclic component C consisting of only vertices
labelled by p iff either pp or p̄p̄ is a substring of u. Moreover, if C exists, then it has exactly two vertices.

One of the motivations for the reduction graph is the easy determination of the number of string negative rules needed
in each successful reduction [4, Theorem 26].

Theorem 16. Let N be the number of cyclic components in the reduction graph of legal string u. Then every successful
reduction of u has exactly N string negative rules.

Example 17. We continue the example. Since Ru has three cyclic components, by Theorem 16, every successful
reduction � of u has exactly three string negative rules. For example � = snr6 snr2 spr7̄ snr4 sdr5,3 is a successful
reduction of u. Indeed, � has exactly three string negative rules. Alternatively, snr6 snr4 snr3 spr2 spr5spr7 is also
a successful reduction of u, with a different number of (spr and sdr) operations.

The previous theorem and example should clarify that the reduction graph reveals crucial properties concerning the
string negative rule. We now further investigate the string negative rule, and show that many more properties of this
rule can be revealed using the reduction graph.

However, the reduction graph does not seem to be well suited to prove properties of the string positive rule and string
double rule. If we for example consider legal strings u = pqp̄q and v = pqpq for some distinct p, q ∈ �, then u
has a unique successful reduction �1 = sprq̄ sprp and v has a unique successful reduction �2 = sdrp,q . Thus u must
necessarily be reduced by string positive rules, while v must necessarily be reduced by a string double rule. However,
the reduction graph of u and the reduction graph of v are isomorphic, as shown in Fig. 6. Also, whether or not pointers
overlap is not preserved by reduction graphs. For example, the reduction graphs of legal strings pqpr̄qr and pqrp̄qr

for distinct pointers p, q and r are isomorphic, however, p and r do not overlap in the first legal string, but they do
overlap in the latter legal string.

The next lemma is an easy consequence of Lemma 9 and Theorem 16.

Lemma 18. Let u be a legal string, and let D ⊆ dom(u). There is a {Spr, Sdr}-reduction � of u with dom(�(u))=D

iff RremD(u) does not contain cyclic components.

Proof. There is a {Spr, Sdr}-reduction � of u with dom(�(u)) = D iff there is a successful {Spr, Sdr}-reduction of
remD(u) (by Lemma 9) iff RremD(u) does not contain cyclic components (by Theorem 16). �

Using Theorem 16 and Lemma 18 we obtain a first characterization of the sets of pointers that are used in string
negative rules in successful reductions.

Lemma 19. Let u be a legal string, and let D ⊆ dom(u). There is a successful reduction � of u with snrdom(�) = D

iff RremD(u) and Ru have 0 and |D| cyclic components, respectively.

Proof. We first prove the forward implication. Since we can postpone the string negative rules, there is a successful
reduction �′ = �′

2�
′
1 of u, where �′

1 is a {Spr, Sdr}-reduction and �′
2 is a {Snr}-reduction with dom(�′

2) = D. By
Lemma 18, RremD(u) does not contain cyclic components. By Theorem 16, Ru has |D| cyclic components.

We now prove the reverse implication. By Lemma 18, there is a successful reduction � = �2 �1 of u, where �1 is a
{Spr, Sdr}-reduction and dom(�2) = D. Since Ru has |D| cyclic components, by Theorem 16, every pointer in D is
used in a string negative rule, and thus �2 is a {Snr}-reduction. �

R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753 1743

5. Pointer-component graphs

If it is clear from the context which legal string u is meant, we will denote by
 the set of connected components of the
reduction graph of u. We now define a graph on
 that we will use throughout the rest of this paper. The graph represents
how the labels of a reduction graph are distributed among its connected components. This graph is particularly useful
in determining which sets D of pointers correspond to strategies that apply loop recombination operations on exactly
the pointers of D.

Definition 20. Let u be a legal string. The pointer-component graph of u (or of Ru), denoted by PCu, is a multigraph
(
, E, �), where E = dom(u) and � is, for e ∈ E, defined by �(e) = {C ∈
 | C contains vertices labelled by e}.

Note that for each e ∈ dom(u), there are exactly two desire edges connecting vertices labelled by e, thus 1� |�(e)|�2,
and therefore � is well defined.

Example 21. We continue the example. Consider Ru shown in Fig. 4. Let us define C1 to be the cyclic component with
a vertex labelled by 7, C2 to be the cyclic component with a vertex labelled by 5, C3 to be the third cyclic component,
and R to be the linear component. Then
 = {C1, C2, C3, R}. The pointer-component graph PCu = (
, dom(u), �) of
u is given in Fig. 7. As C1 contains all four vertices labelled by 7, this results in a loop for C1 in PCu.

By the definition of pointer-component graph and Theorem 16, every successful reduction of a legal string u has
exactly o(PCu) − 1 string negative rules (recall that o(PCu) denotes the number of vertices of PCu). Let � be a
reduction rule applicable to u. Then by Theorem 6, there is a successful reduction �′ of �(u). Hence, �′� is a successful
reduction of u. Thus, if � is a string positive rule or string double rule, then o(PC�(u)) = o(PCu), and if � is a string
negative rule, then o(PC�(u)) = o(PCu) − 1. Thus we have the following result.

Theorem 22. Let � be a reduction of a legal string u with N = |snrdom(�)|. Then o(PC�(u)) = o(PCu) − N .

For a reduction � of a legal string u, the difference between Ru and R�(u) is formulated in Theorem 14 in terms of
reduction functions. We now reformulate this result for pointer-component graphs. The difference (up to isomorphism)
between the pointer-component graph PC1 of Ru and the pointer-component graph PC2 of rfp(Ru) (assuming rfp

is applicable to Ru) is as follows: in PC2 edge p is removed and also those vertices v that become isolated, except
when v is the linear component (since the linear component always contains the source and target vertex). Since the
only legal string u for which the linear component in PCu is isolated is the empty string, in this case we obtain a graph
containing only one vertex. This is formalized as follows. By abuse of notation we will also denote these functions as
reduction functions rfp.

Definition 23. For each edge p, we define the p-reduction function rfp : MGr → MGr, for G = (V , E, �) ∈ MGr, by

rfp(G) = (V ′, E′, �|E′),

where E′ = E\{p} and V ′ = {v ∈ V | v ∈ �(e) for some e ∈ E′} if E′
= �, and V ′ = {�} otherwise.

Therefore, these reduction functions correctly simulate (up to isomorphism) the effect of applications of a reduction
functions on the underlying reduction graph when the reduction functions correspond to an applicable reduction. Note,
however, when these reduction functions do not correspond to an applicable reduction, the linear component may

Fig. 7. The graph PCu from the example.

1744 R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753

Fig. 8. An illustration of Theorems 14 and 24 as a commutative diagram.

Fig. 9. Pointer-component graph PC1 from the example.

become isolated while there are still edges present. Thus in general the reduction functions for pointer-component
graphs do not faithfully simulate the reduction functions for reduction graphs.

As a consequence of Theorem 14 we now obtain the following result.

Theorem 24. Let u be a legal string, and let � be a reduction of u. Then

(rfpn · · · rfp2 rfp1)(PCu) ≈ PC�(u),

where dom(�) = {p1, p2, . . . , pn}.

Thus, PC�(u) is obtained from PCu (up to isomorphism) by iteratively removing the edges pi and any isolated
vertices that may appear after removing the edges. Thus the only difference between PC�(u) and PCu|D with
D = dom(�(u)) is the possible existence of isolated vertices in PCu|D . The only exception is the case �(u) = �,
since we may not end up with the empty graph (without vertices), and thus one vertex should always remain. Fig. 8
illustrates Theorems 14 and 24.

Example 25. We continue the example. We have (snr4 sdr5,3)(u) = 627̄726. The pointer-component graph PC1 of
this legal string is shown in Fig. 9. It is easy to see that the graph obtained by applying (rf5 rf4 rf3) to PCu (Fig. 7)
is isomorphic to PC1.

6. Spanning trees in pointer-component graphs

In this section we consider spanning trees in pointer-component graphs, and we show that there is an intimate
connection between these trees and the Snr-orders of successful reductions. First we separate loops from other edges
in pointer-component graphs.

Definition 26. Let u be a legal string and let PCu = (V , E, �). We define bridge(u) = {e ∈ E | |�(e)| = 2}.

Thus, bridge(u) is the set of vertex labels p for which there are vertices labelled by p in different connected components
of Ru.

Example 27. We continue the example. We have bridge(u) = {2, 3, 4, 5, 6}, and dom(u) \ bridge(u) = {7}. Indeed,
the only loop in Fig. 7 is 7, indicating that this pointer occurs only in one connected component of Ru.

The following corollary to Theorem 24 observes that an edge in dom(�(u)) is a loop in PC�(u) iff it is a loop
in PCu.

Corollary 28. Let u be a legal string and � a reduction of u. Then bridge(�(u)) = dom(�(u)) ∩ bridge(u) =
bridge(u)\dom(�).

R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753 1745

We now characterize {Spr, Sdr}-reductions in terms of pointer-component graphs.

Theorem 29. Let u be a legal string, and � a reduction of u with D = dom(�(u)). Then the following statements are
equivalent:

(1) � is a {Spr, Sdr}-reduction,
(2) o(PC�(u)) = o(PCu),
(3) PC�(u) ≈ PCu|D ,
(4) either o(PCu|D) = 1 or PCu|D has no isolated vertices.

Proof. Statements (1) and (2) are equivalent by Theorem 22. If (3) holds, then clearly (2) holds. Assume now that (2)
holds. Since an application of rfp that does not remove vertices, only removes edge p, we have, by
Theorem 24, PC�(u) ≈ PCu|D . Thus (3) holds. Assume now that (3) holds. Since the pointer-component graph of a
legal string u does not have isolated vertices except when u=�, it follows that (4) holds. Finally, assume that (4) holds.
If o(PCu|D) = 1, then o(PCu) = 1 and therefore 1�o(PC�(u))�o(PCu) = 1. Consequently, o(PC�(u)) = o(PCu),
and (2) holds. On the other hand, if PCu|D has no isolated vertices, then by Theorem 24 the reduction functions
corresponding to � do not remove vertices, and hence (2) holds. �

Thus, by Theorems 24 and 29, the effect of a rfp operation where p ∈ dom(�) for some applicable Spr or Sdr rule �
is the removal of edge p. We now discuss the Snr case. By Lemma 15, we have the following result. Here v is identical
to C in Lemma 15.

Lemma 30. Let u be a legal string and p ∈ dom(u). Then snrp or snrp̄ is applicable to u iff p ∈ bridge(u) and edge
p in PCu has an endpoint v such that (1) v is not the linear component and (2) p is the only edge with v as an endpoint
(v is of degree 1).

Thus the effect of a rfp operation where p ∈ dom(�) for some applicable Snr rule � is the removal of edge p and the
removal of vertex v as in Lemma 30. Vertex v is unique, otherwise PC�(u) would have two vertices less than PCu—a
contradiction with Theorem 22.

The examples so far have shown connected pointer-component graphs. It turns out that these graphs are always
connected.

Theorem 31. The pointer-component graph of any legal string is connected.

Proof. Let � be a successful reduction of a legal string u (� exists by Theorem 6). Assume that PCu is not connected.
Since PC� is connected, we have �=�2��1 for some reduction rule �, where PC�1(u) is not connected, but PC��1(u)

is. By the paragraph below Theorem 29, � cannot be a string double rule or a string positive rule, and therefore �
is a string negative rule. By the paragraph below Lemma 30, PC��1(u) is obtained from PC�1(u) by removing edge
p ∈ dom(�) and removing one of the two endpoints of p. Therefore, PC��1(u) has the same number of connected
components as PC�1(u)—a contradiction. �

The next theorem characterizes successfulness in {Snr} using spanning trees.

Theorem 32. Let u be a legal string. Then u is successful in {Snr} iff PCu is a tree.

Proof. If u is successful in {Snr}, then, by Theorem 22, PCu has |
| − 1 edges. Since PCu has |
| vertices and is
connected by Theorem 31, it follows that PCu is a tree.

If PCu is a tree, then PCu has |
| − 1 edges. Since the number of edges is |dom(u)|, we have |dom(u)| = |
| − 1,
and by Theorem 22 every p ∈ dom(u) is used in a string negative rule, and thus u is successful in {Snr}. �

By Lemma 30 (and the paragraph below it), the possible orders of string negative rules applicable to the legal string
u in Theorem 32 is restricted by the form of the tree PCu. Indeed, if we take the linear component of Ru as the root

1746 R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753

of PCu, then a successful reduction corresponds to a sequence of reduction functions that iteratively removes leaves
and their connecting edges. We will discuss this in more detail in Section 9.

It turns out that the pointers on which string negative rules are applied in a successful reduction of a legal string u
form a spanning tree of PCu.

Theorem 33. Let u be a legal string, and let D ⊆ dom(u). If there is a successful reduction � of u with snrdom(�)=D,
then PCu|D is a tree.

Proof. By postponing the string negative rules, there is a successful reduction �′=�′
2 �′

1 of u, where �′
1 is a {Spr, Sdr}-

reduction and �′
2 is a {Snr}-reduction with dom(�′

2)=D. By Theorem 32,PC�′
1(u) is a tree. By Theorem 29PC�′

1(u) ≈
PCu|D . �

Example 34. We continue the example. We saw that � = snr6 snr4 snr2 spr7̄ sdr5,3 is a successful reduction of u.
By Theorem 33, PCu|{2,4,6} is a tree. This is clear from Fig. 7 where PCu is depicted.

In the next few sections we prove the reverse implication of the previous theorem. This will require considerably
more effort than the forward implication. The reason for this is that it is not obvious that when PCu|D is a tree, there
is a reduction �1 of u such that D = dom(�1(u)). We will use the pointer removal operation to prove this.

First, we consider a special case of the previous theorem. Since a loop can never be part of a tree, we have the
following corollary to Theorem 33.

Corollary 35. Let u be a legal string and let p ∈ dom(u). If p ∈ snrdom(�) for some (successful) reduction � of u,
then p ∈ bridge(u).

Example 36. We continue the example. Since �= snr6 snr4 snr2 spr7̄ sdr5,3 is a successful reduction of u, we have
2, 4, 6 ∈ bridge(u).

We show in Theorem 47 that the reverse implication of Corollary 35 also holds. Hence, the pointers p ∈ bridge(u)

are exactly the pointers for which snrp or snrp̄ can occur in a (successful) reduction of u.

7. Merging and splitting components

In this section we consider the effect of pointer removal operations on pointer-component graphs. It turns out that
these operations correspond to the merging and splitting of connected components of the underlying reduction graph.
We now introduce the merge operation on pointer-component graphs. Intuitively, the p-merge rule ‘merges’ the two
endpoints of edge p into one vertex, and therefore the resulting graph has exactly one vertex less than the original graph.
Formally the merge operation is as follows.

Definition 37. For each edge p, the p-merge rule, denoted by mergep, is a rule applicable to (i.e., defined on)
G = (V , E, �) ∈ MGr with p ∈ E and |�(p)| = 2. It is defined by

mergep(G) = (V ′, E′, �′),

where E′ =E\{p}, V ′ = (V \�(p))∪ {v′} with a new vertex v′ /∈ V , and �′(e)={h(v1), h(v2)} iff �(e)={v1, v2} where
h(v) = v′ if v ∈ �(p), otherwise it is the identity.

Again, we allow v1 = v2 in the previous definition. Note that p-merge rules commute under composition. Thus, if
(mergeq mergep) is applicable to G, then

(mergeq mergep)(G) = (mergep mergeq)(G).

Theorem 38. Let G = (V , E, �) ∈ MGr, and let D = {p1, . . . , pn} ⊆ E. Then (mergepn
· · · mergep1

) is applicable
to G iff G|D is acyclic.

R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753 1747

Proof. (mergepn
· · · mergep1

) is applicable on G iff for all pi (1� i�n), �(pi)��({p1, . . . , pi−1}) and |�(pi)| = 2.
Furthermore, the latter holds iff G|D is acyclic. �

Surprisingly, the pointer removal operation is crucial in the proofs of the main results. The next theorem compares
PCu with PCrem{p}(u) for a legal string u and p ∈ dom(u). We distinguish three cases: either the number of vertices of
PCrem{p}(u) is one less, is equal, or is one more than the number of vertices of PCu. The proof of this theorem shows
that the first case corresponds to merging two connected components of Ru into one connected component, and the
last case corresponds to splitting one connected component of Ru into two connected components.

Theorem 39. Let u be a legal string.

• If p ∈ bridge(u), then PCrem{p}(u) ≈ mergep(PCu) (and therefore o(PCrem{p}(u)) = o(PCu) − 1).
• If p ∈ dom(u)\bridge(u), then o(PCu)�o(PCrem{p}(u))�o(PCu) + 1.

Proof. Consider p ∈ bridge(u) first. Then the two desire edges with vertices labelled by p belong to different connected
components of Ru. We distinguish two cases: whether or not there are cyclic components consisting of only vertices
labelled by p.

If there is cyclic component consisting of only vertices labelled by p, then by Lemma 15, pp or p̄p̄ are substrings of
u, and Ru is

where we omitted the parts of the graph that are the same compared to Rrem{p}(u). Now, Rrem{p}(u) is

Therefore, PCrem{p}(u) can be obtained (up to isomorphism) from PCu by applying the mergep operation.
Now assume that there are no cyclic components consisting of only vertices labelled by p. Then, Ru is

where we again omitted the parts of the graph that are the same compared toRrem{p}(u). Now, depending on the positions
of q1, . . . , q4 relative to p in u and on whether p is positive or negative in u, Rrem{p}(u) is either

or

Note that since a desire edge connects two ‘segments’ (each represented by a reality edge) corresponding to different
occurrences of p or p̄, it is not possible that q1 and q2 are connected by a reality edge (and also for q3 and q4) in
Rrem{p}(u). Therefore, we have only the above two cases. Since q1 and q2 remain part of the same connected component

1748 R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753

Fig. 10. Reduction graph Rrem{2}(u) from the example.

Fig. 11. PCrem{2}(u) from the example.

(the same holds for q3 and q4), in both cases the two connected components are merged, and thus PCrem{p}(u) can be
obtained (up to isomorphism) from PCu by applying the mergep operation.

Finally, consider p ∈ dom(u)\bridge(u). Then the two desire edges with vertices labelled by p belong to the same
connected component of Ru. By Lemma 15, there are no cyclic components consisting of four vertices which are all
labelled by p. We can distinguish two cases: whether or not there is a reality edge e connecting two vertices labelled
by p. If there is such a reality edge e then Ru is

This occurs precisely when p̄p or pp̄ is a substring of u. Now, Rrem{p}(u) is

Therefore, Rrem{p}(u) has N = o(PCu) cyclic components.
If there is no such a reality edge e, then Ru is

where L represents some (possibly empty) ‘linear subgraph’ of Ru. Now, Rrem{p}(u) is either

or

Therefore, Rrem{p}(u) has either N cyclic components (corresponding with the first case) or N + 1 cyclic components
(corresponding with the second case). �

Example 40. We continue the example. By Theorem 39, we know from Fig. 7 that PCrem{2}(u) ≈ merge2(PCu),
merging components C1 and C2. Indeed, this is transparent from Figs. 7, 10 and 11, where PCu, Rrem{2}(u), and
PCrem{2}(u) are depicted, respectively.

Again by Theorem 39, we know from Fig. 10 that Rrem{2,7}(u) has two or three cyclic components. Indeed, this is
transparent from Fig. 5, where Rrem{2,7}(u) is depicted.

Note that by the definition of mergep, mergep is applicable to PCu precisely when p ∈ bridge(u). Therefore, by
Theorems 38 and 39, we have the following corollary.

R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753 1749

Corollary 41. Let u be a legal string, and let D ⊆ dom(u). If PCu|D is acyclic, then

PCremD(u) ≈ (mergepn
· · · mergep1

)(PCu),

where D = {p1, . . . , pn}.

8. Applicability of the string negative rule

In this section we characterize for a given set of pointers D, whether or not there is a (successful) strategy that applies
string negative rules on exactly these pointers. First we will prove the following result which depends heavily on the
results of the previous section. The forward implication of the result states that by removing pointers from u that form
a spanning tree in PCu we obtain a legal string u′ for which the reduction graph does not have cyclic components.

Lemma 42. Let u be a legal string, and let D ⊆ dom(u). Then PCu|D is a tree iff RremD(u) and Ru have 0 and |D|
cyclic components, respectively.

Proof. We first prove the forward implication. Let PCu|D be a tree. By Corollary 41, PCremD(u) contains a single
vertex. Thus RremD(u) has no cyclic components. Since PCu|D is a tree, we have |D| = |
| − 1.

We now prove the reverse implication. Let RremD(u) not contain cyclic components and |D| = |
| − 1. By Theorem
39 we see that the removal of each pointer p in D corresponds to a mergep operation, otherwise RremD(u) would contain
cyclic components. Therefore, (mergepn

· · · mergep1
) is applicable to PCu with D = {p1, . . . , pn}. Therefore, by

Theorem 38, PCu|D is acyclic. Again since |D| = |
| − 1, it is a tree. �

Example 43. We continue the previous example. Let D1 ={2, 3, 5} and D2 ={2, 3, 4}. Then PCu|D1 (PCu|D2 , resp.)
is given in Fig. 12 (Fig. 13, resp.). Notice that |D1| = |D2| = |
| − 1. Since PCu|D1 is a tree and PCu|D2 is not a tree,
by Lemma 42, it follows that RremD1 (u) does not have cyclic components and that RremD2 (u) does have at least one
cyclic component. This is illustrated in Figs. 14 and 15, where RremD1 (u) and RremD2 (u) are depicted, respectively.

The next theorem is one of the main results of this paper. It follows directly from Lemmas 42 and 19, and improves
Theorem 33 by characterizing exactly which string negative rules can be applied together in a successful reduction of
a given legal string.

Theorem 44. Let u be a legal string, and let D ⊆ dom(u). There is a successful reduction � of u with snrdom(�)=D

iff PCu|D is a tree.

Fig. 12. A subgraph of the pointer-component graph from the example.

Fig. 13. A subgraph of the pointer-component graph from the example.

Fig. 14. The reduction graph RremD1
(u) from the example.

1750 R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753

Fig. 15. The reduction graph RremD2
(u) from the example.

Since there are many well known and efficient methods for determining spanning trees in a graph, it is easy to
determine, for a given set of pointers D, whether or not there is a successful reduction applying string negative rules
on exactly the pointers of D (for a given legal string u).

Example 45. We continue the example. By Theorem 44 and Fig. 12, there is a successful reduction � of u with
snrdom(�) = {2, 3, 5}. Indeed, we can take for example � = snr5 snr2 snr3̄ spr7̄ sdr4,6.

By Theorem 44 (or Theorem 33) and Fig. 13, there is no successful reduction � of u with snrdom(�) = {2, 3, 4}.
For example, (spr5 spr7)(u) = 623̄4̄2̄346 and thus there is no string pointer rule for pointer 6 applicable to this legal
string.

In the next corollary we consider the more general case |D|� |
| − 1, instead of |D| = |
| − 1 in Theorem 44, i.e.,
we consider acyclic graphs rather than trees.

Corollary 46. Let u be a legal string, and let D ⊆ dom(u). There is a (successful) reduction � of u with D ⊆ snrdom(�)

iff PCu|D is acyclic.

Proof. We first prove the forward implication. By Theorem 44, PCu|D is a subgraph of a tree, and therefore acyclic.
We now prove the reverse implication. By Theorem 31, PCu is connected, and since PCu|D does not contain cycles,

we can add edges q ∈ dom(u)\D from PCu such that the resulting graph is a tree. Then by Theorem 44, it follows
that there is a (successful) reduction � of u with D ⊆ snrdom(�). �

The previous corollary with |D| = 1 shows that the reverse implication of Corollary 35 also holds, since PCu|{p}
acyclic implies that the edge p connects two different vertices in PCu.

Theorem 47. Let u be a legal string and let p ∈ dom(u). Then p ∈ snrdom(�) for some (successful) reduction � of
u iff p ∈ bridge(u).

This theorem can also be proven directly.

Proof. To prove the reverse implication, let no reduction of u contain either snrp or snrp̄. We prove that p /∈ bridge(u).
By iteratively applying snr, spr and sdr on pointers that are not equal to p or p̄, we can reduce u to a legal string v

such that for all q ∈ dom(v)\{p}:

• qq and q̄q̄ are not substrings of v.
• q is negative in v.
• q does not overlap with any pointer in dom(v)\{p}.

If rem{p}(v) = �, then v is equal to either pp̄, p̄p, pp or p̄p̄. If rem{p}(v)
= �, then, by the last two conditions, there
is a q ∈ � such that qq is a substring of rem{p}(v). Then, by the first condition, either qpq, qp̄q, qpp̄q, qp̄pq, qppq

or qp̄p̄q is a substring of v.
Thus, either qpq, qp̄q, pp̄, p̄p, pp or p̄p̄ is a substring of v. Since no reduction of u contains snrp or snrp̄, the last

two cases are not possible. The first two cases correspond to the following part of Rv

R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753 1751

The cases where pp̄ or p̄p is a substring of v correspond to the following part of Rv

Consequently, in either case, the two desire edges of Rv with vertices labelled by p belong to the same connected
component. Thus p /∈ bridge(v). By Corollary 28, p /∈ bridge(u). �

9. The order of loop recombination

According to Theorem 44 a set D of pointers can occur as the domain of Snr rules in a successful reduction of
a legal string u exactly when the graph PCu|D is a tree. This result can be strengthened to incorporate the order in
which the Snr rules are applied. We show that in a successful reduction � we can only apply Snr rules in orderings
determined by the tree PCu|D with the linear component as root, where D is the domain of Snr rules in �. These
orderings are similar topological orderings in a directed acyclic graph, however, here we order the edges instead of the
vertices.

Definition 48. Let T =(V , E, �) be a tree, and let R ∈ V . We define the relation ≺T ,R over E as follows. For e1, e2 ∈ E,
we have e1 ≺ e2 iff �(e1)={Cx, Cy}, �(e2)={Cy, Cz}, and Cy (Cz, resp.) is the father of Cx (Cy , resp.) in T considering
R as the root of T. Also, an edge-topological ordering of T (with root R) is a topological ordering of ≺T ,R .

Example 49. We continue the example. Consider again treePCu|D1 shown in Fig. 12. Taking R as the root ofPCu|D1 ,
it follows that (3, 2, 5) is an edge-topological ordering of PCu|D1 .

The next theorem characterizes exactly the possible orderings in which string negative rules can be applied in a
successful reduction of a given legal string.

Theorem 50. Let u be a legal string, let L be a linear ordering of a subset L′ of dom(u). There is a successful
reduction � of u with Snr-order L iff PCu|L′ is a tree, where L is an edge-topological ordering of PCu|L′ with the
linear component R of Ru as root.

Proof. Let L = (p1, p2, . . . , pn). We first prove the forward implication. Recall that we can postpone the application
of string negative rules, thus snrp̃n

snrp̃n−1 · · · snrp̃1 �′ is also a successful reduction of u, where �′ is a {Spr, Sdr}-
reduction and p̃i ∈ {pi, p̄i} for i ∈ {1, . . . , n}. By Theorem 44, PCu|L′ is a tree.

We prove that L is an edge-topological ordering of PCu|L′ with root R. By Theorem 29, PC�′(u) ≈ PCu|L′ . If
n > 0, then snrp̃1 is applicable to �′(u). By Lemma 30, edge p1 is connected to a leaf of PC�′(u). By Theorem 24
and the paragraph below Lemma 30, PC(snrp̃1

�′)(u) is isomorphic to the graph obtained from PC�′(u) by remov-
ing p1 and its leaf. Now (assuming n > 1), since snrp̃2 is applicable to (snrp̃1 �′)(u), p2 is connected to a leaf in
PC(snrp̃1

�′)(u). By iterating this argument, itfollows that L is an edge-topological ordering of PC�′(u) ≈ PCu|L′ with
root R.

We now prove the reverse implication. SincePCu|L′ is a tree, by Theorem 44 there is a successful reduction �=�2 �1
of u, where �1 is a {Spr, Sdr}-reduction and �2 is a {Snr}-reduction with dom(�2)=L′. Let L be an edge-topological
ordering of PCu|L′ with the linear component R of Ru as root. Again, by Theorem 29, PCu|L′ ≈ PC�1(u).

If n > 0, then p1 is connected to a leaf ofPC�1(u). By Lemma 30, snrp̃1 is applicable to �1(u) for some p̃1 ∈ {p1, p̄1}.
Again by Theorem 24 and the paragraph below Lemma 30, PC(snrp̃1

�1)(u) is isomorphic to the graph obtained from
PC�1(u) by removing p1 and its leaf. By iterating this argument, it follows that snrp̃n

snrp̃n−1 · · · snrp̃1 is a successful
reduction of u for some p̃i ∈ {pi, p̄i} and 1� i�n with n�0. �

Example 51. We continue the example. Since (3, 2, 5) is an edge-topological ordering of tree PCu|D1 with root R, by
Theorem 50, there is a successful reduction � of u with Snr-order (3, 2, 5). Indeed, we can take for example � = snr5
snr2 snr3̄ spr7̄ sdr4,6.

We say that two reduction rules �1 and �2 can be applied in parallel to u if both �2 �1 and �1 �2 are applicable to u
(see [10]).

1752 R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753

Fig. 16. A subgraph of the pointer-component graph from the example.

Corollary 52. Let u be a legal string, and p, q ⊆ dom(u) with p
= q. Then snrp̃ and snrq̃ can be applied in parallel
to u for some p̃ ∈ {p, p̄}, q̃ ∈ {q, q̄} iff there is a spanning tree T in PCu such that p and q both connect to leaves
(considering the linear component of Ru as the root).

Let R be the linear component of Ru. Clearly, for spanning tree T in PCu with root R that contains edges p and q,
we have the following: p and q in T are independent for ≺T ,R iff there is no simple path in T from R to another vertex
of T containing both edges p and q. The next corollary considers the case whether or not snrp̃ and snrq̃ can eventually
be applied in parallel.

Corollary 53. Let u be a legal string, and p, q ⊆ dom(u) with p
= q. Then snrp̃ and snrq̃ can be applied in parallel
to �(u) for some p̃ ∈ {p, p̄}, q̃ ∈ {q, q̄}, and some reduction � of u iff there is a spanning tree T in PCu containing
both edges p and q, where p and q are independent for ≺T ,R .

Example 54. We continue the example. Let D3 = {2, 4, 6}. Then in the tree PCu|D3 , depicted in Fig. 16, there is
no simple path from R to another vertex of PCu|D3 containing both edges 2 and 4. By Corollary 53, snr2̃ and snr4̃
can be applied in parallel to �(u) for some 2̃ ∈ {2, 2̄}, 4̃ ∈ {4, 4̄}, and some reduction � of u. Indeed, if we take
� = spr7̄ sdr3,5, then snr2 and snr4 can be applied in parallel to �(u) = 622446.

10. Conclusion

This paper shows that one can efficiently determine the possible sequences of loop recombination operations that
can be applied in the transformation of a given gene from its micronuclear to its macronuclear form. Formally, one can
determine the orderings of string negative rules that can be present in successful reductions of u. This is a characterization
in terms of a graph defined on the (components of the) reduction graph. Future research could focus on similar
characterizations for the string positive rules and the string double rules. However, this would require other concepts,
since the pointer-component graph does not retain information regarding positiveness or overlap of pointers, notions
crucial for the applicability of the other two operations.

Acknowledgement

This research was supported by the Netherlands Organization for Scientific Research (NWO) under Project
635.100.006 ‘VIEWS’.

References

[1] A. Bergeron, J. Mixtacki, J. Stoye, On sorting by translocations, in: S. Miyano, et al. (Eds.), RECOMB, Lecture Notes in Computer Science,
vol. 3500, Springer, Berlin, 2005, pp. 615–629.

[2] R. Brijder, H.J. Hoogeboom, M. Muskulus, Applicability of loop recombination in ciliates using the breakpoint graph, in: M.R. Berthold,
et al., (Eds.), CompLife ’06, Lecture Notes in Computer Science, vol. 4216, Springer, Berlin, 2006, pp. 97–106.

[3] R. Brijder, H.J. Hoogeboom, G. Rozenberg, The breakpoint graph in ciliates, in: M.R. Berthold, et al. (Eds.), CompLife ’05, Lecture Notes in
Computer Science, vol. 3695, Springer, Berlin, 2005, pp. 128–139.

[4] R. Brijder, H.J. Hoogeboom, G. Rozenberg, Reducibility of gene patterns in ciliates using the breakpoint graph, Theoret. Comput. Sci. 356
(2006) 26–45.

[5] A.R.O. Cavalcanti, T.H. Clarke, L.F. Landweber, MDS_IES_DB: a database of macronuclear and micronuclear genes in spirotrichous ciliates,
Nucleic Acids Res. 33 (2005) D396–D398.

R. Brijder et al. / Discrete Applied Mathematics 156 (2008) 1736–1753 1753

[6] A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg, Formal systems for gene assembly in ciliates, Theoret. Comput. Sci. 292
(2003) 199–219.

[7] A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg, Computation in Living Cells—Gene Assembly in Ciliates, Springer, Berlin,
2004.

[8] A. Ehrenfeucht, I. Petre, D.M. Prescott, G. Rozenberg, Circularity and other invariants of gene assembly in ciliates, in: M. Ito et al. (Eds.),
Words, Semigroups, and Transductions, World Scientific, Singapore, 2001, pp. 81–97.

[9] A. Ehrenfeucht, I. Petre, D.M. Prescott, G. Rozenberg, String and graph reduction systems for gene assembly in ciliates, Math. Struct. Comput.
Sci. 12 (2002) 113–134.

[10] T. Harju, C. Li, I. Petre, G. Rozenberg, Parallelism in gene assembly, in: C. Ferretti, et al., (Eds.), DNA 10, Lecture Notes in Computer Science,
vol. 3384, Springer, Berlin, 2004, pp. 138–148.

[11] P.A. Pevzner, Computational Molecular Biology: An Algorithmic Approach, MIT Press, Cambridge, MA, 2000.
[12] D.M. Prescott, M. DuBois, Internal eliminated segments (IESs) of oxytrichidae, J. Euk. Microbiol. 43 (1996) 432–441.
[13] J.C. Setubal, J. Meidanis, Introduction to Computional Molecular Biology, PWS Publishing Company, USA, 1997.

	Strategies of loop recombination in ciliates
	Introduction
	Basic notions and notation
	String pointer reduction system
	Reduction graph
	Pointer-component graphs
	Spanning trees in pointer-component graphs
	Merging and splitting components
	Applicability of the string negative rule
	The order of loop recombination
	Conclusion
	Acknowledgement
	References

