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Abstract

An SOLS (self-orthogonal latin square) of order v with ni missing sub-SOLS (holes) of order
hi (16 i6 k), which are disjoint and spanning (i.e.

∑k
i=1 nihi = v), is called a frame SOLS and

denoted by FSOLS(hn11 h
n2
2 · · · hnkk ). It has been proved that for b¿ 2 and n odd, an FSOLS(anb1)

exists if and only if n¿ 4 and n¿ 1+2b=a. In this paper, we show the existence of FSOLS(anb1)
for n even and FSOLS(an11) for n odd. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A self-orthogonal latin square of order v, or SOLS(v), is a latin square of order v
which is orthogonal to its transpose. It is well known [6] that an SOLS(v) exists for
all values of v, v �=2; 3 or 6.
Let S be a set and H= {S1; S2; : : : ; Sk} be a set of nonempty subsets of S. A holey

latin square having hole set H is a |S| × |S| array, L, indexed by S, which satis=es
the following properties:

(1) every cell of L is either empty or contains a symbol of S,
(2) every symbol of S occurs at most once in any row or column of L,
(3) the subarrays Si × Si are empty for 16 i6 k (these subarrays are referred to as

holes),
(4) symbol x∈ S occurs in row or column y if and only if (x; y)∈ (S×S)\⋃k

i=1(Si×Si).
The order of L is |S|. Two holey latin squares on symbol set S and hole set

H, say L1 and L2, are said to be orthogonal if their superposition yields every or-

� Xu was supported by NSF Grant 994051300 of Henan Province of China and Zhu was supported by
NSFC Grant 19831050.
∗ Corresponding author.
E-mail addresses: hzhang@cs.uiowa.edu (H. Zhang), xuypqy@public2.lyptt.ha.cn (Y. Xu),
lzhu@suda.edu.cn (L. Zhu).

0012-365X/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0012 -365X(01)00213 -8



212 Y. Xu et al. / Discrete Mathematics 250 (2002) 211–230

dered pair in (S × S)\⋃k
i=1(Si × Si). We shall use the notation IMOLS(v; s1; s2; : : : ; sk)

to denote a pair of orthogonal holey latin squares on symbol set S and hole set
H= {S1; S2; : : : ; Sk}, where v= |S| and si= |Si| for 16 i6 k. If H= ∅, we obtain
an MOLS(v). If H= {S1}, we simply write IMOLS(v; s1) for the orthogonal pair of
holey latin squares.
If L1 and L2 form an IMOLS(v; s1; s2; : : : ; sk) such that L2 is the transpose of L1,

then we call L1 a holey SOLS, denoted by ISOLS(v; s1; s2; : : : ; sk). If H= ∅, or {S1},
then a holey SOLS is an SOLS(v), or ISOLS(v; s1) respectively.
If H= {S1; S2; : : : ; Sk} is a partition of S, then an IMOLS is called a frame MOLS.

The type of the frame MOLS is de=ned to be the multiset {|Si|: 16 i6 k}. We
shall use an “exponential” notation to describe types: Type hn11 h

n2
2 · · · hnkk denotes ni

occurrences of hi; 16 i6 k, in the multiset. We brieLy denote a frame MOLS of type
hn11 h

n2
2 · · · hnkk FMOLS(hn11 h

n2
2 · · · hnkk ).

If L1 and L2 form an FMOLS (frame MOLS) such that L2 is the transpose of L1,
then we call L1 an FSOLS.
We observe that the existence of an SOLS(v) is equivalent to the existence of an

FSOLS(1v), and the existence of an ISOLS(v; h) is equivalent to the existence of an
FSOLS (1v−hh1).
Most of our recursive constructions in the following sections rely on information

regarding the location of (holey) transversals in certain latin squares. Suppose L is a
holey latin square on symbol set S with hole S1. A holey transversal with hole S1 is a
set T of |S| − |S1| (occupied) cells in L such that every symbol of S \ S1 is contained
in exactly one cell of T and the |S| − |S1| cells in T intersect each row and each
column indexed by S \ S1 in exactly one cell. |S1| is called the size of the hole of the
holey transversal. A holey transversal T is symmetric if (i; j)∈T implies (j; i)∈T .
Two holey transversals T1 and T2 with the same hole are called a symmetric pair of
holey transversals if (i; j)∈T1 if and only if (j; i)∈T2. If S1 = ∅, then we call the
holey transversal a (complete) transversal. A set of holey transversals are said to be
disjoint if they have no cell in common.
FSOLS has been very useful in recursive constructions of various combinatorial de-

signs, such as 2-perfect m-cycle systems [18], edge-colored designs [11], holey SchrModer
designs [2], intersections of transversal designs [10], and skew Room frames [8]. The
idea of frames in combinatorial designs has appeared for a long time, see for example
[19]. The following are known results concerning FSOLS(an) and FSOLS(anb1). The
=rst two theorems give necessary conditions. The third theorem contains the updated
known results on suNciency, where the =rst two parts give complete solution for the
uniform types, the next four parts give complete solution for special values of a=2; 6,
and almost complete solution for a=1; 3.

Theorem 1.1 (Stinson and Zhu [21]). If there exists an FSOLS(anb1); then n¿ 1 +
2b=a.

Theorem 1.2 (Xu and Lu [22, Theorem 1.3]). If a �= b and there exists an FSOLS
(anb1); then n¿ 4.
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Theorem 1.3.

(1) [6] There exists an FSOLS(1n) if and only if n¿ 4; n �=6.
(2) [21] For a¿ 2; there exists an FSOLS(an) if and only if n¿ 4.
(3) [1, Theorem 2:10] There exists an FSOLS(1v−nn1) for all values of v and n

satisfying v¿ 3n+ 1; except for (v; n)= (6; 1); (8; 2) and possibly for v=3n+ 2;
n∈{6; 8; 10}.

(4) [25] For b¿ 0 and b �=2; there exists an FSOLS(2nb1) if and only if n¿ 4.
(5) [1, Theorem 4:6] For b¿0 and b �=3; there exists an FSOLS(3nb1) if and only if

n¿ 4; with :ve possible exceptions (n; b)= (n; 3n=2−2) for n∈{6; 10; 14; 18; 22}.
(6) [24] For b¿ 0 and b �=6; there exists an FSOLS(6nb1) if and only if n¿ 4.
(7) [23] For b¿ 2 and n odd; FSOLS(anb1) exists if and only if n¿ 5 and n¿ 1 +

2b=a.

The last part of Theorem 1.3 solves the suNciency for b¿ 2 and n odd, leaving the
cases n even and b=1 unsolved. In this paper, we show the existence of FSOLS(anb1)
for n even and FSOLS(an11) for n odd. Our main results are stated in Theorems 7.1
and 7.3. In Theorem 7.1, the existence of an FSOLS(anb1) is solved for a �= b with
a few possible exceptions. For these missing cases, FMOLS are proved to exist in
Theorem 7.3.

2. Direct constructions

Our =rst direct construction is a modi=cation of the starter–adder type constructions.
The idea has been described by several authors including Horton [17], Hedayat and
Seiden [13], Zhu [26], and Heinrich and Zhu [16].

Construction 2.1. Let e=(∅; a01; a02; : : : ; a0(n−1); ∅; a0(n+1); : : : ; a0(2n−1); : : : ; ∅; a0(hn−n+1);
: : : ; a0(hn−1)) be a vector of length hn with entries in (Zhn\{0; n; : : : ; (h−1)n})∪X; where
X = {x1; x2; : : : ; xu} is a set of u index symbols; and ∅ means that the cell it occupies
is empty. Let f =(a0x1 ; a0x2 ; : : : ; a0xu) and g=(ax10; ax20; : : : ; axu0) be vectors of length u
with entries in Zhn\{0; n; : : : ; (h− 1)n}. These vectors are used to construct an array
A=(aij) of order hn+ u with n empty subarrays of order h and one empty subarray
of order u having row and column indices and entries in Zhn ∪ X . The array is
constructed as follows; where all the elements including indices are calculated modulo
hn; and xi’s act as “in:nite” elements.

(1) If aij = ∅; 06 i; j6 hn− 1; then a(i+1)( j+1) = ∅.
(2) If aij ∈Zhn; 06 i; j6 hn− 1; then a(i+1)( j+1) = aij + 1.
(3) If aij ∈X; 06 i6 hn− 1; then a(i+1)( j+1) = ai; j
(4) If 06 i6 hn− 1; and j∈X; then a(i+1) j = aij + 1.
(5) If 06 j6 hn− 1; and i∈X; then ai( j+1) = aij + 1.
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Fig. 1. An FSOLS(2215).

Fig. 2. An FSOLS(2314).

Fig. 3. An FSOLS(2412).

Conditions can be described for the vectors e, f and g so that the array as constructed
is an FSOLS(hnu1). However, we shall simply give the vectors and the reader can check
for himself that they do yield the desired FSOLS(hnu1).
Some FSOLS(anbm) of small size are very useful in the construction of FSOLS(anb1)

and they can only be obtained by direct constructions. By computer search, we found
several FSOLS(anbm) listed in Figs. 1–7.
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Fig. 4. An FSOLS(2216).

Fig. 5. An FSOLS(2217).

Fig. 6. An FSOLS(2315).

Lemma 2.2. There exist FSOLS of types 2215; 2314; 2412; 2216; 2217; 2315; and 2413.

By exhaustive computer search, we have the following nonexistence result.

Lemma 2.3. There do not exist FSOLS of types 1422; 1223; and 1323.
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Fig. 7. An FSOLS(2413).

Fig. 8. An ISOLS(14; 4) with a symmetric holey transversal.

The following lemmas indicate FSOLS with certain holey transversals, which are
useful in the following sections.

Lemma 2.4. There exists an FSOLS(11041) with a symmetric holey transversal with
a hole of size four.

Proof. Fig. 8 is an ISOLS(14; 4) from [1], which has a symmetric holey transversal
consisting of cells (1; 6); (6; 1); (2; 7); (7; 2); (3; 5); (5; 3); (4; 8); (8; 4); (9; 10); (10; 9).

Lemma 2.5. For n∈{6; 10; 14}; there exists an FSOLS(2n) with two symmetric trans-
versals and n−2 pairs of symmetric transversals and all these transversals are disjoint.

Proof. Fig. 9 is an FSOLS(26) which has 10 disjoint transversals occurring as two
symmetric ones and four symmetric pairs. The two symmetric transversals are T1:
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Fig. 9. An FSOLS(26) having 10 disjoint transversals.

(i; i + 3); (i + 1; i − 2) and T2: (i; i − 3); (i + 1; i + 4) (for i even, 06 i6 10; the
calculation is done modulo 12). The other eight transversals are all cyclic with (i; j)
and (i + 1; j + 1) in the same transversal, and they form four symmetric pairs.
Applying Construction 2:1 with the following vectors e, one can obtain an FSOLS(2n)

for n=10 and 14 which have two symmetric transversals and n− 2 pairs of symmet-
ric transversals. The two symmetric transversals of the FSOLS(2n) are T1: (i; i + 1);
(i + 1; i) and T2: (i; i − 1); (i − 1; i) (for i even, 06 i6 2(n − 1); the calculation is
done modulo 2n).

210 : e=(∅; 19; 18; 17; 15; 11; 14; 12; 5; 8; ∅; 6; 13; 16; 7; 4; 3; 9; 2; 1):
214 : e=(∅; 27; 26; 25; 24; 23; 22; 12; 15; 20; 19; 21; 13; 16; ∅; 8; 11; 6; 17; 10; 5; 18; 9; 7; 4; 3;

2; 1).

3. Recursive constructions

Construction 3.1 (Filling in holes) (Xu and Zhu [25]). Suppose there exist FSOLS of
type {si: 16 i6 n} and for 16 i6 n; si=

∑ti
j=1 sij.

(1) If there exist FSOLS of type {snj: 16 j6 tn}; then there exist FSOLS of type
{si: 16 i6 n− 1}⋃{snj: 16 j6 tn}.

(2) Let a¿ 0 be an integer. If there exist FSOLS of type {a}⋃{sij: 16 j6 ti} for
all 16 i6 n−1; then there exist FSOLS of type {a+sn}

⋃
(
⋃n−1
i=1 {sij: 16 j6 ti}).

Given a set X of points, a group divisible design (GDD), or simply divisible design
(DD), is a triple (X;G;A) which satis=es the following properties:

1. G is a partition of X and each member of G is called a group (also called a point
class);
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2. A is a set of subsets of X (each subset is called a block) such that a group and a
block contain at most one common point;

3. Every pair of points from distinct groups occurs in a unique block.

The group type of the GDD is the multiset {|G|: G ∈G}. A GDD (X;G;A) will be
referred to as a K-GDD if |A| ∈ K for every block A in A. A TD(k; n) is a GDD of
group type nk and block size k. It is well known that the existence of a TD(k; n) is
equivalent to the existence of k − 2 MOLS(n).

Construction 3.2 (Weighting) (Stinson and Zhu [21, Lemma 2.5]). Suppose (X;G;A)
is a GDD and let w be a map: X → Z+

⋃{0}. Suppose there exist FSOLS
of type {w(x): x∈A} for every A∈A. Then there exist FSOLS of type {∑x∈G
w(x): G ∈G}.

The following recursive construction is referred to as in=ation construction. It es-
sentially “blows up” every occupied cell of an FSOLS into a latin square such that if
one cell is =lled with a certain latin square, then its symmetric cell is =lled with the
transpose of an orthogonal mate of the latin square. We mention the work of Brouwer
and van Rees [7] and Stinson [20], which can be thought of as sources of inLation
construction.

Construction 3.3 (InLation construction). Suppose there exists an FSOLS(hn11 h
n2
2 · · · hnkk )

and an MOLS(h); then there exists an FSOLS((hh1)n1 (hh2)n2 · · · (hhk)nk ). In particu-
lar, the existence of FSOLS(1n) and MOLS(h) implies the existence of an FSOLS(hn).

The following construction is a generalization of [27, Construction 3:3].

Construction 3.4. Suppose there is an FSOLS(tn) which has p+2q disjoint transver-
sals, p of them being symmetric and the rest being q symmetric pairs, where p; q¿ 0.
Let h be a positive integer, where h �=2 or 6 if p+2q¡ t(n−1). If p¿ 0; let vi¿ 0
be integers such that there exist IMOLS(h+ vi; vi) for 16 i6p. If q¿ 0; let wj¿ 0
be integers such that there exist IMOLS(h+wj; wj) for 16 j6 q. Then there exists
an FSOLS((ht)n(v+ 2w)1); where v=

∑
vi and w=

∑
wj (w=0 if q=0).

Construction 3.5 (Xu and Lu [22, Construction 2.5]). Suppose there is an FSOLS(tn)
which has p + 2q disjoint transversals; p of them being symmetric and the rest
being q symmetric pairs. For 16 i6p and 16 j6 q; let vi¿ 0 and wj¿ 0 be
integers. Let s and h be positive integers; where there exists an FMOLS(sh) if p +
2q¡ t(n−1). Suppose there exist FMOLS(shv1i ) for all 16 i6p; FMOLS(shw1j ) for
all 16 j6 q and FSOLS((st)nk1) for some k¿ 0. Then there exists an FSOLS((tsh)n

b1); where b= k +
∑
vi + 2

∑
wj.

The following is a modi=cation of Construction 3.4, in which holey transversals are
used.
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Construction 3.6 (Zhu [27, Construction 3.4]). Suppose there is an FSOLS(tnh1); where
H is the size h hole; having p + 2q disjoint holey transversals with hole H such
that p of them are symmetric and the rest form q symmetric pairs. For 16 i6p
and 16 j6 q; let vi and wj be non-negative integers. Let m be a positive inte-
ger, where m �=2 or 6; and suppose there exist IMOLS(m+ vi; vi) for 16 i6p and
IMOLS(m+wj; wj) for 16 j6 q. Then there exists an FSOLS((mt)n(mh+ v+2w)1);
where v=

∑
vi and w=

∑
wj.

Lemma 3.7. Suppose there is an SOLS(n) with p + 2q disjoint transversals and oc-
curring as p symmetric ones; one of which is on the main diagonal; and q symmetric
pairs; where p¿ 0, q¿ 0. For 16 i6p − 1 and 16 j6 q; let vi¿ 0; wj¿ 0 be
integers; so that there exist FMOLS(shv1i ) for 16 i6p − 1 and FMOLS(shw1j ) for
16 j6 q.Moreover; suppose v¿ 0; s¿ 0 and h¿ 0 and there exists an FSOLS(shv1)
(and there exists an FMOLS(sh) if p+2q¡n). Then there exists an FSOLS((sn)hb1);
where b=

∑
vi + 2

∑
wj + v.

Proof. Apply inLation construction with SOLS(n) as the initial square. Fill every oc-
cupied cell on the main diagonal with an FSOLS(shv1). Fill every symmetric pair of
cells with FMOLS(shv1i ); or FMOLS(s

hw1j ); or FMOLS(s
h) if the cell is on the ith

symmetric transversal, or on the jth symmetric pair of transversals, or not on any
transversal and p + 2q¡n. When one cell is =lled with a square, its symmetric cell
is =lled with the transpose of the orthogonal mate in the FMOLS. Place the size vi or
wj hole at the lower right corner, forming a big hole of size b. Then we obtain the
desired FSOLS.

To apply the above constructions we need some “ingredients” provided in the follow-
ing theorems and lemmas.

Theorem 3.8 (Bose et al. [5]). There exists an MOLS(v) for any positive integer v;
v �=2; 6.

Theorem 3.9 (Heinrich and Zhu [15]). There exists an IMOLS(v; n) for all values of
v and n satisfying v¿ 3n except that IMOLS(6; 1) does not exist.

Theorem 3.10 (Du [12], Bennett and Zhu [3,4]). For all even n; n �∈{2; 6; 10; 14}; there
exists an FSOLS(1n) with n− 1 disjoint symmetric transversals.

Theorem 3.11 (Heinrich et al. [14, Theorem 2:5]). If n¿ 5 is an odd prime power;
then there exists an FSOLS(1n) with n−1 disjoint transversals occurring as (n−1)=2
pairs of symmetric transversals.

Theorem 3.12. Suppose n is odd. If n �≡ 0 (mod 3) or n ≡ 0 (mod 9); then there exists
an SOLS(n); or equivalently an FSOLS(1n); with n−1 disjoint transversals occurring
as (n− 1)=2 pairs of symmetric transversals.
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Proof. From Theorem 3:11 the conclusion is true for n a prime power. Now, write
n= q1q2 · · · qk ; where q′i s are distinct prime powers, qi �=3; for 16 i6 k. So, the con-
clusion holds for k =1. Suppose the conclusion is true for n= q1q2 · · · qk and suppose
n′= nq; where q �=3; is an odd prime power. For the main diagonal of the given
FSOLS(1n); the inLation construction provides n holes of size q each. By =lling in
these holes with an FSOLS(1q) we get q − 1 disjoint transversals in an FSOLS(1n′);
occurring as (q − 1)=2 pairs of symmetric transversals. For each pair of symmetric
transversals in the FSOLS(1n); the inLation construction provides q pairs of sym-
metric transversals in the FSOLS(1n

′
). These transversals are disjoint and altogether

(q − 1)=2 + q × (n − 1)=2= (n′ − 1)=2 in number. Then the conclusion comes from
induction.

Theorem 3.13 (Xu and Lu [22, Theorem 2:14]). Suppose n¿ 5 is an odd prime; then
there exists an FSOLS(1n) with one symmetric holey transversal and (n− 5)=2 sym-
metric pairs of holey transversals with a common hole of size one; and all these holey
transversals are disjoint.

Lemma 3.14. If (n; u)∈{(10; 3); (14; 4); (14; 5)}; then there exists an FSOLS(1nu1)
with (n − 1) − 2u disjoint holey transversals with a common hole of size u and
occurring as a symmetric one and (n− 2)=2− u symmetric pairs.

Proof. For (n; u)= (10; 3) and (14,5), the FSOLS(1nu1) is from [22, Lemma 2:18].
FSOLS(11441) with =ve disjoint holey transversals with hole of size four and occurring
as a symmetric one and two symmetric pairs can be constructed by Construction 2:1
with the following vectors: e=(∅; 13; 12; 11; 10; 8; x1; 6; 9; x2; x3; x4; 5; 1); f =(2; 3; 4; 7);
g=(4; 9; 5; 11).

A transversal design TD(k; n) is a GDD with kn points, k groups of size n; and
n2 blocks of size k. It is well known that a TD(k; n) is equivalent to k − 2 MOLS
(mutually orthogonal latin squares) of order n and that for any prime power p; there
exist p−1 MOLS of order p. From [9] (Tables 2:68 and 2:72; the cases of 39 and 54
are from http:==www.emba.uvm.edu=∼dinitz=newresults.html), we have the following
theorem.

Theorem 3.15. There is a TD(6; m) if m¿ 5 and m �∈ E6 = {6; 10; 14; 18; 22}. There
is a TD(7; m) if m¿ 7 and m �∈ E7 =E6 ∪ {15; 20; 26; 30; 34; 38; 46; 60; 62}.

4. Existence of FSOLS(anb1) for n and a both even

Lemma 4.1. Suppose n and a are both even; n �∈ {2; 6; 10; 14} and a �∈ {2; 6}. Then
there exists an FSOLS(anb1) for 06 b6 a(n− 1)=2.
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Proof. From Theorem 3.10 we know that there exists an FSOLS(1n) with n−1 disjoint
symmetric transversals. Applying Construction 3:4 with t=1, p= n− 1, q=0, h= a,
06 vi6 a=2 (16 i6 n − 1), the input designs are from Theorems 3.8 and 3.9, we
obtain an FSOLS(anb1), where 06 b6 (n−1)a=2. Note that Construction 3:4 requires
h �∈ {2; 6}, which is satis=ed since a �∈ {2; 6} and h= a.

Lemma 4.2. Suppose a¿ 8 is even and n∈{6; 10; 14}; Then there exists an FSOLS
(anb1) for 06 b6 a(n− 1)=2.

Proof. From Lemma 2.5 we know that there exists an FSOLS(2n) with 2n − 2 dis-
joint transversals occurring as two symmetric ones and n − 2 symmetric pairs for
n∈{6; 10; 14}.
(i) If a ≡ 0 (mod 4), applying Construction 3:4 with t=2, p=2, q= n− 2, h= a=2,

and 06 vi; wj6 a=4, the input designs are from Theorems 3.8 and 3.9, then we
obtain FSOLS(anb1) for n∈{6; 10; 14}, and 06 b6 (n− 1)a=2.

(ii) If a ≡ 2 (mod 4), a �=10, applying Construction 3:5 with t=2, p=2, q= n− 2,
s=1, h= a=2, 06 vi; wj6 (a − 2)=4, 06 k6 n − 1, the input designs are from
Theorem 1.3 (3) and (4), then we obtain FSOLS(anb1) for n∈{6; 10; 14}, and
06 b6 (n− 1)a=2.

For a=10, we consider the same construction. Although vi and wj can no longer
take the value 1 since an FSOLS(16) does not exist, this construction still works since
we can take vi; wj ∈{0; 2} and 06 k6 n − 1. This still covers the whole interval
06 b6 5(n− 1).

Lemma 4.3. There exists an FSOLS(4nb1) for n∈{6; 10; 14} and 16 b6 2(n− 1).

Proof. FSOLS(46b1) for 16 b6 3 can be constructed by Construction 2:1:

4611: e=(∅; 23; 22; 20; 15; 13; ∅; 14; 7; 19; 11; x; ∅; 10; 17; 5; 8; 21; ∅; 4; 9; 16; 3; 1); f =(2);
g=(15).

4621: e=(∅; 23; 22; 20; 19; 15; ∅; 10; 16; 13; 9; 8; ∅; x1; x2; 2; 17; 7; ∅; 11; 5; 4; 3; 1); f =(21;
14); g=(13; 19):

4631: e=(∅; 23; 22; 20; 19; 21; ∅; 10; 16; x1; 11; 15; ∅; x2; x3; 14; 13; 7; ∅; 8; 5; 4; 3; 1); f =(9;
2; 17); g=(10; 11; 19).

For n=10; 14 and 06 b6 2(n−4), applying inLation construction with an ISOLS(4),
=lling every cell with an FSOLS(1nk1) where 06 k6 (n−4)=2, and taking the needed
input designs from Theorem 1.3 (3), we obtain an FSOLS(4nb1).
From Theorem 3.13 we know that for n=6; 10, there exists an FSOLS(1n+1) with

(n − 4)=2 symmetric pair of holey transversals and one symmetric holey transversal,
each of which has a hole of size one and all of them are disjoint. Applying Con-
struction 3.6 with t= h=1, p=1, q=(n − 4)=2, m=4, 06 v16 2, 06wj6 2, we
obtain an FSOLS(4nb1), for n=6; 10 and 46 b6 2(n − 1), because of the existence
of IMOLS(4 + v1; v1) and IMOLS(4 + wj; wj) by Theorem 3.9.
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Applying Lemma 3.14 and Construction 3:6 with t=1, n=14, h=5, p= q=1,
m=4, 06 v1; w16 2, the input designs are from Theorems 3.8 and 3.9, we obtain the
FSOLS(414b1) for 206 b6 26.

Combine Lemmas 4.1–4.3 and Theorem 1.3 (2), (4), (6) we have the main result
of this section.

Theorem 4.4. Suppose n¿ 4 and a¿ 2 are even. Then there exists an FSOLS(anb1)
for 06 b6 a(n− 1)=2.

5. Existence of FSOLS(anb1) for n even and a odd

Lemma 5.1. Suppose n¿ 4 is even; n �∈ {6; 10; 14}, and a¿ 5 is odd. Then there
exists an FSOLS(anb1) for 06 b6 a(n− 1)=2; with possible exceptions (n; b)∈{(18;
(17a− 1)=2); (22; (21a− 1)=2)}. Furthermore; if there exist both FMOLS(11881) and
FMOLS(122101), then there exists an FMOLS(anb1) for 06 b6 a(n− 1)=2.

Proof. For a¿ 5, from Theorem 3.10 we know that there is an FSOLS(1n) with
n − 1 disjoint symmetric transversals. Applying Construction 3:5 with t=1; p= n −
1; q=0; s=1; h= a; 06 vi even6 (a−1)=2; 06 k6 n=2−1 (for n=18; 22; 06 k6
n=2−2), the input designs are from Theorem 1.3(3), we obtain an FSOLS(anb1), where
06 b6 n=2 − 1 + (n − 1)(a − 1)=2 = a(n − 1)=2 − 1

2 = �a(n − 1)=2� for n �=18; 22
and 06 b6 ((n − 1)a − 3)=2 for n=18; 22. The missing cases come from the fact
that we do not have FSOLS(11881) and FSOLS(122101) as input designs in the con-
struction. However, since we have both FMOLS(11881) and FMOLS(122101), if we
use FMOLS instead of FSOLS as input designs, we obtain an FMOLS(anb1), where
06 b6 �a(n− 1)=2�.

Lemma 5.2. For a=5; 7; 9; 11; there exists an FSOLS(a6b1) for 06 b6 a− 1.

Proof. For a=5, applying Construction 2:1 with e, f and g listed as follows.

5611: e=(∅; 29; 28; 26; 25; 27; ∅; 23; 16; 22; 13; 21; ∅; 2; x; 19; 15; 14; ∅; 20; 7; 11; 17; 8; ∅; 9; 5;
4; 3; 1); f =(10); g=(11).

5621: e=(∅; 29; 28; 26; 25; 27; ∅; 22; 16; 19; 23; 15; ∅; x1; x2; 14; 2; 20; ∅; 8; 21; 11; 17; 10; ∅; 9;
5; 4; 3; 1); f =(7; 13); g=(27; 11).

5631: e=(∅; 29; 28; 26; 25; 27; ∅; 23; 21; 10; 20; x1; ∅; x2; 13; 19; x3; 14; ∅; 22; 15; 2; 11; 8; ∅; 9;
5; 4; 3; 1); f =(7; 16; 17); g=(17; 20; 8).

5641: e=(∅; 29; 28; 26; 25; 27; ∅; 23; 21; 19; 14; 22; ∅; x1; 11; 16; x2; 7; ∅; x3; x4; 20; 17; 8; ∅; 9;
5; 4; 3; 1); f =(2; 10; 13; 5); g=(3; 19; 8; 17).

For a=7, from [9, p. 199, Example 2:47] we know there exists a {5; 7}–GDD(7631),
applying Construction 3:2 with weight one to each point we get an FSOLS of the same
type.
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Start with a TD(7; 7) and apply Construction 3:2. Take two disjoint blocks B1 and
B2. Give weight zero to the intersecting points with group seven. For other points of
group seven, give weight one each. For points in the =rst 6 groups, give weight zero
to points in B1 and weight two to points in B2, and give weight one to other points.
The input designs, FSOLS of types 26; 17; 15 and 1521, are from Theorem 1.3. Then
we obtain an FSOLS(7651).
FSOLS of types 7611; 7621; 7641 and 7661 can be obtained by applying Construction

2:1 with e; f and g listed as follows.

7611: e=(∅; 41; 40; 38; 37; 39; ∅; 35; 34; 29; 21; 26; ∅; 32; 28; 23; 15; 27; ∅; 2; x; 25; 19; 10; ∅;
20; 7; 17; 31; 14; ∅; 11; 33; 22; 13; 9; ∅; 8; 5; 4; 3; 1); f =(16); g=(17).

7621: e=(∅; 41; 40; 38; 37; 39; ∅; 35; 34; 32; 31; 22; ∅; 28; 17; 29; 33; 14; ∅; 27; x1; 25; 21; x2;
∅; 26; 16; 10; 23; 7; ∅; 20; 19; 13; 11; 9; ∅; 8; 5; 4; 3; 1); f =(2; 15); g=(27; 10).

7641: e=(∅; 41; 40; 38; 37; 39; ∅; 35; 34; 32; 31; 26; ∅; 27; 15; 25; x1; x2; ∅; 16; 7; 10; x3; x4; ∅;
33; 29; 2; 23; 19; ∅; 14; 17; 13; 11; 9; ∅; 8; 5; 4; 3; 1); f =(20; 21; 22; 28); g=(11; 4;
20; 41).

7661: e=(∅; 41; 40; 38; 37; 39; ∅; 35; 34; 32; 31; 28; ∅; 27; 29; 25; x1; 20; ∅; 2; 10; 22; x2; x3;
∅; x4; 23; x5; x6; 16; ∅; 26; 17; 13; 11; 9; ∅; 8; 5; 4; 3; 1); f =(7; 14; 15; 19; 21; 33);
g=(8; 31; 20; 11; 41; 4).

For a=9, start with a TD(7; 7) and apply Construction 3:2, take two disjoint blocks
B1 and B2. Give weight zero or two to the intersecting points with group seven. For
other points of group seven, give weight one each. For points in the =rst 6 groups,
give weight two to points in B1 or B2, and give weight one to other points. The input
designs, FSOLS of types 26; 27, 17; 1522 and 1521 are from Theorem 1.3 and Lemma
2.2. Then we obtain an FSOLS(96b1) for b=5 and 7.
Other desired FSOLS(96b1) can be obtained by applying Construction 2:1:

9611: e=(∅; 53; 52; 50; 49; 51; ∅; 47; 46; 44; 43; 38; ∅; 45; 40; 26; 39; 32; ∅; 35; 41; 22; 19;
31; ∅; 14; x; 37; 27; 33; ∅; 34; 17; 20; 29; 25; ∅; 2; 21; 16; 11; 15; ∅; 23; 10; 13; 9; 7; ∅; 8; 5;
4; 3; 1); f =(28); g=(29).

9621: e=(∅; 53; 52; 50; 49; 51; ∅; 47; 46; 44; 43; 45; ∅; 41; 37; 40; 35; 32; ∅; 22; 17; 29; 38;
34; ∅; x1; 25; 31; x2; 39; ∅; 21; 33; 28; 23; 2; ∅; 20; 11; 16; 27; 26; ∅; 15; 10; 13; 9; 7; ∅; 8; 5;
4; 3; 1); f =(14; 19); g=(29; 32).

9631: e=(∅; 53; 52; 50; 49; 51; ∅; 47; 46; 44; 43; 45; ∅; 41; 40; 26; 37; 33; ∅; 34; 39; 31; 17; 22;
∅; 28; x1; 35; 29; x2; ∅; x3; 21; 23; 38; 32; ∅; 20; 11; 16; 25; 19; ∅; 14; 10; 13; 9; 7; ∅; 8; 5;
4; 3; 1); f =(2; 15; 27); g=(41; 23; 29).

9641: e=(∅; 53; 52; 50; 49; 51; ∅; 47; 46; 44; 43; 45; ∅; 41; 40; 34; 37; 33; ∅; 22; 28; 32; 23; x1;
∅; x2; x3; 31; 25; 39; ∅; 26; x4; 16; 21; 20; ∅; 15; 11; 38; 17; 2; ∅; 14; 10; 13; 9; 7; ∅; 8; 5;
4; 3; 1); f =(19; 27; 29; 35); g=(23; 29; 44; 43).

9661: e=(∅; 53; 52; 50; 49; 51; ∅; 47; 46; 44; 43; 45; ∅; 41; 40; 38; 37; 28; ∅; 29; 39; x1; 19; 27;
∅; 26; x2; 16; 23; x3; ∅; x4; x5; 32; x6; 25; ∅; 15; 11; 22; 17; 2; ∅; 14; 10; 13; 9; 7; ∅; 8; 5;
4; 3; 1); f =(20; 21; 31; 33; 34; 35); g=(3; 8; 29; 41; 39; 16).
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9681: e=(∅; 53; 52; 50; 49; 51; ∅; 47; 46; 44; 43; 45; ∅; 41; 40; 38; 37; x1; ∅; x2; x3; 32; 11; 33;
∅; x4; x5; 26; 23; 19; ∅; x6; x7; x8; 35; 39; ∅; 34; 16; 22; 17; 2; ∅; 14; 10; 13; 9; 7; ∅; 8; 5; 4; 3;
1); f =(15; 20; 21; 25; 27; 28; 29; 31); g=(19; 3; 29; 27; 8; 41; 39; 16).

For a=11, applying Construction 3:2 with a TD(7; 7), =x two blocks, say B1 and
B2, which have no point in common. Give weight zero to each point of B1 and weight
one to each point of B2. For the other =ve points in the group seven, we give weight
zero, or one, or two to one point and weight zero or two to the rest. Give weight two
to each of the remaining points of the TD(7; 7). The input designs are from Theorem
1.3 and Lemma 2.2. Then we obtain an FSOLS(116b1) for 06 b6 10.

Lemma 5.3. Suppose there is a TD(7; t). Then there exists an FSOLS(a6b1) for
a=2t + 1 and 06 b6 a− 1.

Proof. Applying weighting construction with a TD(7; t), =x a block B and a group
G. Let x be the common point in both B and G. Give weight three to each point of
B\{x}. Give weight zero, or one, or two to x. Give weight zero or two to each point of
G \ {x}. Give weight two to each of the remaining points. The input designs are from
Theorem 1.3, then we obtain an FSOLS(a6b1) for a=2t + 1 and 06 b6 a− 1.

Lemma 5.4. Suppose there is a TD(7; t). Then there exists an FSOLS(a6b1) for
a=2t − 1 and 06 b6 a− 1.

Proof. Start with a TD(7; t), =x two blocks, say B1 and B2, which have no common
point. Give weight zero to each point of B1. In B2, give weight zero, or one, or two to
the point of group seven and weight three to other points. For the other t−2 points in
the group seven, we give each of them weight zero or two. Give weight two to each
of the remaining points of the TD(7; t). The input designs are from Theorem 1.3, then
we obtain an FSOLS(a6b1) for a=2t − 1 and 06 b6 a− 1.

Lemma 5.5. There exists an FSOLS(a6b1) for odd a¿ 13 and 06 b6 a− 1.

Proof. Combine Theorem 3.15 with Lemma 5:3 or Lemma 5.4 we obtain an FSOLS
(a6b1) for 06 b6 a− 1 except for a=29.
For a=29, applying Construction 3:2 with a TD(7; 11), =x two blocks, say B1 and

B2, which have no point in common. Give weight zero to each point of B1. In B2,
give weight zero, or one, or two to the point of group seven and weight two to other
points. For the other nine points in the group seven, we give each of them weight zero
or three. Give weight three to each of the remaining points of the TD(7; 11). The input
designs are from Theorem 1.3, then we obtain an FSOLS(296b1) for 06 b6 28.

Lemma 5.6. There exists an FSOLS(a6b1) for odd a; a¿ 5; and a6 b6 (5a− 3)=2.

Proof. From Theorem 3.13 we know that there exists an FSOLS(17) with one sym-
metric pair of holey transversals and one symmetric holey transversal, each of which
has a hole of size one as a common hole and all of them are disjoint elsewhere.
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Applying Construction 3:6 with t= h=1; n=6; p= q=1; m= a; 06 v16
(a−1)=2; 06w16 (a−1)=2 (if a=5, then v1 �=1, w1 �=1) and taking the input IMOLS
from Theorem 3.9, we obtain an FSOLS(a6b1) for a6 b6 (5a− 3)=2; a¿ 7 and an
FSOLS(56b1) for odd b; 56 b6 11. FSOLS of types 5661; 5681 and 56101 can be
constructed by Construction 2:1:

5661: e=(∅; 29; 28; 26; 25; 27; ∅; 22; x1; 20; x2; 21; ∅; 2; x3; 14; 19; x4; ∅; x5; 17; x6; 23; 10;
∅; 9; 5; 4; 3; 1); f =(7; 8; 11; 13; 15; 16); g=(8; 16; 13; 4; 25; 20).

5681: e=(∅; 29; 28; 26; 25; 27; ∅; 23; 22; 20; x1; 19; ∅; 17; x2; 10; 15; x3; ∅; x4; 21; x5; x6; x7;
∅; x8; 5; 4; 3; 1); f =(2; 7; 8; 9; 11; 13; 14; 16); g=(10; 3; 13; 19; 20; 15; 27; 17).

56101: e=(∅; 29; 28; 26; x1; 25; ∅; 23; 22; 20; 19; 21; ∅; 17; x2; 10; 15; x3; ∅; x4; x5; x6; x7; x8;
∅; x9; 27; x10; 3; 1); f =(2; 4; 5; 7; 8; 9; 11; 13; 14; 16); g=(3; 13; 19; 17; 21; 7; 15; 8;
22; 27).

Lemma 5.7. There exists an FSOLS(a10b1) for odd a and 4a6 b6 (9a− 1)=2.

Proof. From Lemma 2.4 we know that there exists an FSOLS(11041) with a symmetric
holey transversal with a hole of size four. Applying a variation of Construction 3:6 with
t=1; n=10; h=4, p=1; q=0; m= a; 06 v16 (a−1)=2 (if a=5, then v1 �=1), the
input designs are from Theorems 3.8 and 3.9, then we obtain an FSOLS(a10b1) for
4a6 b6 (9a− 1)=2; a �=5 and FSOLS(510b1) for b∈{20; 22}.
From Lemma 3.14 we know that there exists an FSOLS(11031) with three

symmetric holey transversal with a common hole of size three and occurring as a
symmetric one and a symmetric pair. Applying a variation of Construction 3.6 with
t=1, n=10, h=3; p=1; q=1, m=5; v1 = 2, w1 = 2, then we obtain an
FSOLS(510211).

Lemma 5.8. There exists an FSOLS(a10b1) for odd a¿ 5 and 06 b6 4a.

Proof. (i) If a �≡ 0 (mod 3) or a ≡ 0 (mod 9), then from Theorem 3.12 we know that
there is an FSOLS(1a) with a−1 disjoint transversals occurring as (a−1)=2 symmetric
pairs. Filling in size one holes provides another symmetric transversal in the resulting
SOLS(a).
Applying Lemma 3.7 with n= a; p=1; q=(n−1)=2; s=1; h=10; 06 v; wj6 4,

06 j6 (n − 1)=2, the input designs are from Theorem 1.3 (3), then we get an
FSOLS(a10b1) for 06 b6 4a.
(ii) If a ≡ 0 (mod 3) and a �≡ 0 (mod 9), then we write a=3n, and there exists

an SOLS(n) with n disjoint transversals occurring, a symmetric one on the main
diagonal and (n−1)=2 symmetric pairs. Applying Lemma 3.7 with p=1; q=(n−1)=2;
s=3; h=10, 06 v; wj6 13; 06 j6 q, the input designs are from Theorem 1.3 (5)
and Lemma 5.7, then we get an FSOLS((3n)10b1) for 06 b6 13n.

Lemma 5.9. There exists an FSOLS(a14b1) for odd a¿ 5 and 06 b6 5a.
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Proof. (i) If a �≡ 0 (mod 3) or a ≡ 0 (mod 9), then from Theorem 3.12 we know
that there is an SOLS(a) with a disjoint transversals occurring, a symmetric one
on the main diagonal and (a − 1)=2 symmetric pairs. Applying Lemma 3.7 with
n= a; p=1; q=(a − 1)=2; s=1, h=14; 06 v; wj6 5; 06 j6 (a − 1)=2, the in-
put designs are from Theorem 1.3(3), then we get an FSOLS(a14b1) for 06 b6 5a.
(ii) If a ≡ 0 (mod 3) and a �≡ 0 (mod 9), then we write a=3n, and there exists an

SOLS(n) with n disjoint transversals occurring, a symmetric one on the main diago-
nal and (n − 1)=2 symmetric pairs. Applying Lemma 3.7 with p=1; q=(n − 1)=2;
s=3; h=14; 06 v; wj6 18, 06 j6 q, the input designs are from Theorem 1.3 (5),
then we get an FSOLS((3n)14b1) for 06 b6 18n.

Lemma 5.10. There exists an FSOLS(a14b1) for odd a and 5a6 b6 (13a− 3)=2.

Proof. From Lemma 3.14 we know that there exists an FSOLS(11451) with three
disjoint holey transversals with a common hole of size =ve occurring as a symmetric
one and a symmetric pair, and an FSOLS(11441) with =ve disjoint holey transversals
with a common hole of size four occurring as a symmetric one and two symmetric
pairs.
Start with the FSOLS(11451), applying Construction 3:6 with t=1, n=14; h=5;

p= q=1, m= a; 06 v1; w16 (a − 1)=2 (for a=5; v1 �=1; w1 �=1), and taking the
input designs from Theorems 3.8 and 3.9, we obtain an FSOLS(a14b1) for 5a6 b6
(13a− 3)=2; a �=5 and an FSOLS(514b1) for b∈{25; 27; 29; 31}.
Start with the FSOLS(11441), applying Construction 3:6 with t=1, n=14; h=4;

p=1, q=2, m=5; v1 =w1 =w2 = 0 or 2, we can obtain an FSOLS(514b1) for b∈
{26; 28; 30}.

Combine Lemmas 5.1, 5.2, 5.5–5.10, Theorem 1:3 (5) we have the main result of
this section.

Theorem 5.11. Suppose n¿4 is even and a¿ 1 is odd. Then there exists an
FSOLS(anb1) for 06 b6 a(n−1)=2; with possible exceptions (n; b)∈{(6; (5a−1)=2);
(14; (13a− 1)=2); (18; (17a− 1)=2); (22; (21a− 1)=2)}.

6. Existence of FSOLS(an11) for n odd

In this section, we extend Theorem 1.3 (7) and give the existence of FSOLS(an11)
for n odd.

Lemma 6.1. Suppose n is odd and n¿ 7. Then there exists an FSOLS(an11).

Proof. From Theorem 1.3 (1) we know that there is an FSOLS(1n). Applying Con-
struction 3:5 with = q=0; t= s= k =1; h= a (a �=2; 6) we obtain an FSOLS(an11).
FSOLS(2n11) and FSOLS(6n11) are from Theorem 1.3.
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Lemma 6.2. Suppose there is a TD(6; t). Then there exists an FSOLS(a511) for
a=2t − 1 and a=2t + 1.
Proof. Applying weighting construction with a TD(6; t), take a block B and its inter-
secting point x with the last group. Give weight zero to x and weight one to other
points in B. Give each point of the last group weight zero except one point y diRerent
from x; y receives weight one. Give weight two to each of the remaining points. The
input designs are from Theorem 1.3 and Lemma 2.2, then we obtain an FSOLS(a511)
for a=2t − 1.
If we give weight three instead of weight one to each point except x in B, we obtain

an FSOLS(a511) for a=2t + 1.

Lemma 6.3. There exists an FSOLS(a511) for odd a¿ 1.

Proof. FSOLS(a511) for a¿ 9 can be obtained by applying Lemma 6.2 and Theorem
3.15.
FSOLS(3511) is from Theorem 1.3 (5). FSOLS(5511) and FSOLS(7511) can be

constructed by Construction 2:1:

5511: e=(∅; 24; 23; 4; 18; ∅; 9; 16; x; 21; ∅; 17; 6; 12; 22; ∅; 13; 8; 11; 7; ∅; 3; 14; 2; 1); f =(19);
g=(11).

7511: e=(∅; 34; 33; 22; 28; ∅; 18; 16; 19; 17; ∅; 24; 29; 12; 32; ∅; 9; 4; 6; 11; ∅; 27; 23; x; 21; ∅;
7; 13; 31; 8; ∅; 3; 26; 2; 1); f =(14); g=(26).

Lemma 6.4. There exists an FSOLS(a511) for a even.

Proof. We know that an SOLS(n) exists if n �=2; 3; 6. Note that the main diagonal is
a symmetric transversal. Applying Lemma 3.7 with p=1; q=0; s=2; h=5; v=1,
the input designs FSOLS(2511) and FSOLS(25) are from Theorem 1.3 (4), then we
obtain an FSOLS((2n)511).
Start with an SOLS(4), applying Lemma 3.7 with p=1; q=0; s=3; h=5, v=1

we obtain an FSOLS(12511).
FSOLS(6511) is from Theorem 1.3 (6).
Start with a TD(6; 5) (Theorem 3.15) and delete six points from one block to

get a 5–GDD(46). Delete 3 points from a group of the GDD, this gives a {4; 5}
–GDD(4511). Applying Construction 3:2 and giving weight one to each point lead to an
FSOLS(4511).

From the above discussion, we can extend Theorem 1.3 (7) as follows.

Theorem 6.5. For every n odd; there exists an FSOLS(anb1) if and only if n¿ 5 and
n¿ 1 + 2b=a; except for (a; n; b)= (1; 5; 1).

7. Concluding remarks

The following theorem provides a summary of the main results of this article.
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Fig. 10. An FMOLS(1621) with a holey transversal.

Theorem 7.1. Suppose a; n and b are positive integers and a �= b. Then there exists an
FSOLS(anb1) if and only if n¿ 4 and n¿ 1+2b=a; except for (a; n; b)= (1; 6; 2) and
except possibly for (a; n; b)∈{(t + 2; 6; (5a− 1)=2); (t; 14; (13a− 1)=2); (t; 18; (17a−
1)=2); (t; 22; (21a− 1)=2): t is odd}.

Proof. The necessity comes from Theorems 1.1 and 1.2. The suNciency comes from
Theorems 1.3 (3), 4:4, 5:11 and 6:5.

For frame mutually orthogonal latin squares (FMOLS), we have the following.

Lemma 7.2. There exists FMOLS(1nu1) if and only if n¿ 2u+ 1; where u¿ 1.

Proof. From Theorems 1.1 and 1.3 (3), we need only to show the existence of
FMOLS(1nu1) for (n; u)∈{(6; 2); (14; 6); (18; 8); (22; 10)}.
An FMOLS(1621) is shown in Fig. 10.
FMOLS of type 11461 with a holey transversal with a hole of size six can be obtained

by a modi=cation of Construction 2:1 with the following vectors: e1 = (∅; 13; 12; 11; 10; 9;
8; 6; x1, x2; x3; x4; x5; x6), f1 = (5; 7; 4; 3; 2; 1), g1 = (3; 9; 1; 11; 7; 5); e2 = (∅; x1; x2; x3;
x4; x5, x6; 13; 12; 11; 9; 8; 10; 6), f2 = (1; 2; 3; 4; 5; 7), g2 = (1; 3; 5; 8; 9; 10).
The modi=cation of Construction 2:1 is: Construct an array A=(aij) by Construction

2:1 with vectors e1, f1 and g1 and array B=(bij) with e2, f2 and g2. Then A and B
form an FMOLS.
Start with an FSOLS(64), =lling the =rst three of the four holes of size six with

three FMOLS(1621) we get an FMOLS of type 11881.
Start with an ISOLS(5; 1) shown in Fig. 11, which has two disjoint symmetric holey

transversals with a common hole of size one, one is on cells (1, 1), (2, 2), (3, 3),
(4, 4), the other is on cells (1, 4), (2, 3), (3, 2), (4, 1), =ll each of the occupied
cells on the holey transversals with an FSOLS(1521), for the =rst transversal and an
ISOLS(7; 2,1) for the second, which exists because of the existence of an ISOLS(7,2),
then we get a holey MOLS with a sub-MOLS of order eight in the lower right corner
missing. Filling the missing sub-MOLS with an FOLS(142112) we get an FMOLS of
type (122101).
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Fig. 11. An ISOLS(5; 1) with two holey transversals.

Theorem 7.3. Suppose a; n and b are positive integers and a �= b. Then there exists
an FMOLS(anb1) if and only if n¿ 4 and n¿ 1 + 2b=a.

Proof. For necessity, Theorems 1.1 and 1.2 are also true for FMOLS. For suNciency,
we need only to give the existence of the exception and possible exceptions of Theorem
7.1 for FMOLS.
Fig. 10 is an FMOLS of type 1621 with a holey transversal on cells (1; 2); (2; 1); (3; 4);

(4; 3); (5; 6); (6; 5), having a size two hole. Filling every pair of symmetric occupied
cells not on the transversal into an MOLS(a) (a¿ 1 is odd) and that on the transversal
into an IMOLS(a + (a − 1)=2; (a − 1)=2). If one cell is =lled with a square, then the
symmetric cell is =lled with the transpose of the orthogonal mate of the square. Then
we obtain an FMOLS of type a6((5a− 1)=2)1, where the size (5a− 1)=2 hole contains
the new size (a− 1)=2 hole and the inLated size 2a hole from the size two hole in the
FMOLS(1621).
From the proof of Lemma 7.2 we know that there exists an FMOLS of type 11461

with a holey transversal with a hole of size six. Using the same way as in the con-
struction of FMOLS(a6((5a− 1)=2)1), we obtain an FMOLS(a14((13a− 1)=2)1).
Lemma 5.1 provides FMOLS(a18((17a − 1)=2)1) and FMOLS(a22((21a − 1)=2)1),

because the existence of FMOLS(11881) and FMOLS(122101) comes from Lemma 7.2,
This completes the proof.
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