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We show that the Cauchy integral operator is bounded from Hp,ϕ(R1) (the predual of a Morrey
space) to hp,ϕ(R1) (the local version of Hp,ϕ(R1)). To prove our theorem we will introduce
generalized atoms and consider a variant of “Tb theorem.”

1. Introduction

Let Rn be the n-dimensional Euclidean space. The Cauchy integral operator CA and
Calderón’s commutator Tk

A are defined, respectively, by

CAf(x) = p.v.

∫
R1

1
x − y + i

(
A(x) −A

(
y
))f(y)dy,

Tk
Af(x) = p.v.

∫
R1

(
A(x) −A(y)

)k
(
x − y

)k+1 f
(
y
)
dy,

(1.1)

where A(x) is a real-valued function, and k is a positive integer. These operators are
very important in real and complex analysis, and have attracted many mathematicians to
investigate them; see, for example, [1–6].

The space, now called theMorrey space, was introduced byMorrey [7]. Since then, the
space and the predual of it have been studied extensively; see, for instance, [8–11]. Recently,
in [12], the author proved that Calderón’s commutator T1

A is a bounded operator from
Hp,ϕ(R1) to hp,ϕ(R1), whereHp,ϕ(R1) is the predual of a Morrey space defined by using atoms
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and hp,ϕ(R1) is a variant ofHp,ϕ(R1)which is similar to the local Hardy space (see Section 2).
A natural question is whether CA is bounded fromHp,ϕ(R1) to hp,ϕ(R1). In Section 3, we will
give the affirmative answer.

The relation between CA and T1
A is written in [13]. Compared with Calderón’s

commutator, the Cauchy integral operator is difficult to study. Because we can calculate T1
A1

and apply “T1 theorem” by David and Journé [14], to prove the theorem, motivated by [6],
we introduce a generalized atom and consider a variant of “Tb theorem.”

2. Definitions and Notation

Throughout this paper, we always use the letter C to denote positive constants that may vary
at each occurrence but is independent of the essential variables. And we assume that, unless
otherwise stated, all given functions are complex valued.

We denote a Euclidean ball centered at x of radius r by B(x, r) and the Lebesgue
measure of a measurable set E by |E|.

First we recall some definitions of the ordinary atom and the ordinary Hardy space
(see [4, 15, 16]).

Definition 2.1. Let 1 < p ≤ ∞ and n/(n + 1) < q ≤ 1. We say that a function a(x) is an ordinary
(Hq, p)-atom centered at x0 if there exists a ball B(x0, r) such that the following conditions
are satisfied:

supp(a) ⊂ B(x0, r), (2.1)
∫
Rn

a(x)dx = 0, (2.2)

‖a‖Lp ≤ rn(1/p−1/q). (2.3)

Definition 2.2. Let Hq(Rn) be Fefferman-Stein’s Hardy space.

Remark 2.3. In general, the Hardy space is denoted by the symbol Hp. But in this paper, we
will frequently use the symbol Hp to denote another Hardy space. So we use the symbol Hq

for the ordinary Hardy space.

Definition 2.4. For 0 < α ≤ 1, the Lipschitz spaceΛα(Rn) and the local Lipschitz spaceΛα
loc(R

n)
are the set of all functions f satisfying the following conditions, respectively,

∥∥f∥∥Λα = sup
0<|x−y|

∣∣f(x) − f
(
y
)∣∣∣∣x − y

∣∣α < ∞,

∥∥f∥∥Λα
loc

= sup
0<|x−y|<2

∣∣f(x) − f
(
y
)∣∣∣∣x − y

∣∣α < ∞.

(2.4)

It is easy to see that Λ1(Rn) = Λ1
loc(R

n) and Λα(Rn) ⊂ Λα
loc(R

n) (0 < α < 1), where
the inclusion is proper. A simple example is f(x) = x, for which we can check that it is in
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Λα
loc(R

1) but not in Λα(R1) (0 < α < 1). Furthermore, we know that the dual space of Hp(Rn)
is Λn(1/p−1)(Rn), that is, (Hp(Rn))∗ = Λn(1/p−1)(Rn), where n/(n + 1) < p < 1 (see [17]).

Following Alvarez [8], we define the space H1,p,ϕ(Rn) by using atoms.

Definition 2.5. Let 1 < p ≤ ∞ and a function ϕ : (0,∞) → (0,∞) be given. We say that a
function a(x) is an (H1, p, ϕ)-atom centered at x0 if there exists a ball B(x0, r), which satisfies
the conditions (2.1), (2.2), and

‖a‖Lp ≤ rn(1/p−1)ϕ(rn)−1. (2.5′)

Definition 2.6. We assume that 1 < p ≤ ∞ and the function ϕ(t) is non-increasing and the
function tp

′
ϕ(t) is non-decreasing, where 1/p + 1/p′ = 1.

We denote by H1,p,ϕ(Rn) the family of distributions f which can be written as f =∑∞
i=1 λiai, where a,

i are (H1, p, ϕ)-atoms and
∑∞

i=1 |λi| < ∞. And let the norm ‖f‖H1,p,ϕ be the
infimum of

∑∞
i=1 |λi| over all representations of f .

Remark 2.7. If a is an (H1, p, ϕ)-atom, then a is inH1,p,ϕ(Rn) and ‖a‖H1,p,ϕ ≤ Cn,p. Furthermore
H1,p,ϕ(Rn) ⊂ H1,q,ϕ(Rn) if q < p.

Remark 2.8. The space H1,p,ϕ(Rn) is a Banach space and the dual of it is the Morrey space
Lp′,ϕ(Rn) (see [8, 11]).

Following Goldberg [18], we define the local version of H1,p,ϕ(Rn).

Definition 2.9. Let 1 < p ≤ ∞ and a function ϕ : (0,∞) → (0,∞) be given. We say that a
function a(x) is a large (h1, p, ϕ)-atom centered at x0 if there exists a ball B(x0, r) of radius
r ≥ 1 such that the conditions (2.1), (2.5′) are satisfied.

Definition 2.10. We assume that 1 < p ≤ ∞ and the function ϕ(t) is non-increasing and the
function tp

′
ϕ(t) is non-decreasing.

We denote by h1,p,ϕ(Rn) the family of distributions f which can be written as f =∑∞
i=1 λiai, where ai is an (H1, p, ϕ)-atom or a large (h1, p, ϕ)-atom and

∑∞
i=1 |λi| < ∞. And let

the norm ‖f‖h1,p,ϕ be the infimum of
∑∞

i=1 |λi| over all representations of f .

Remark 2.11. One has‖f‖h1,p,ϕ ≤ ‖f‖H1,p,ϕ .

Remark 2.12. When ϕ ≡ 1, h1,p,ϕ(Rn) is the same as the original local Hardy space h1(Rn)
defined by Goldberg [18] for all p > 1.

Remark 2.13. For the simplicity of notation, we write H1,p,ϕ(Rn) = Hp,ϕ(Rn), h1,p,ϕ(Rn) =
hp,ϕ(Rn), and we denote the (H1, p, ϕ)-atom by (Hp, ϕ)-atom, and the (h1, p, ϕ)-atom by
(hp, ϕ)-atom.

Next we define Calderón-Zygmund operator. It can be referred to [4, 16]. But since we
are interested in the Cauchy integral operator, our definitions will be presented as follows
(see [6]).
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Definition 2.14. Let 0 < δ ≤ 1. A locally integrable function K(x, y) defined on {(x, y) ∈
Rn × Rn : x /=y} is called a Calderón-Zygmund kernel if it satisfies the following conditions:

∣∣K(
x, y

)∣∣ ≤ C∣∣x − y
∣∣n ,

∣∣K(
x, y

) −K(x, z)
∣∣ + ∣∣K(

y, x
) −K(z, x)

∣∣ ≤ C

∣∣y − z
∣∣δ

|x − z|n+δ
, 2

∣∣y − z
∣∣ < |x − z|.

(2.6)

We say that an operator T is a δ-Calderón-Zygmund operator associated with a
Calderón-Zygmund kernel K(x, y) if for every f ∈ L2(Rn),

Tf(x) = lim
ε→ 0

∫
|x−y|>ε

K
(
x, y

)
f
(
y
)
dy (2.7)

exists almost everywhere in Rn and T is bounded on L2(Rn), that is, ‖Tf‖L2 ≤ C‖f‖L2 .

Definition 2.15. The transpose of an operator T is denoted by

tTf(x) = lim
ε→ 0

∫
|x−y|>ε

K
(
y, x

)
f
(
y
)
dy. (2.8)

Definition 2.16. For a bounded function b, we define

t̃Tb(x) = lim
ε→ 0

∫
|x−y|>ε

{
K
(
y, x

) −K
(
y, 0

)
χ|y|≥1

(
y
)}

b
(
y
)
dy. (2.9)

Note that if b ∈ L2(Rn) ∩ L∞(Rn), then t̃Tb(x)=tTb(x) +Cb a.e. where Cb is a constant.

Definition 2.17. Let β > 0. A bounded function b is said to be β-accretive if Reb(x) ≥ β for
almost all x.

3. Theorems

First we recall some known results. The Lp boundedness of CA and Tk
A is well known, and the

following theorem is the most essential (see [2, 4]).

Theorem 3.1. IfA′ ∈ L∞(R1), then the Cauchy integral operator CA and the Calderón’s commutator
Tk
A are both 1-Calderón-Zygmund operator.

Recently, in [12], Komori showed that T1
A is bounded from Hp,ϕ(R1) to hp,ϕ(R1), as

follows.

Theorem 3.2. Let 0 < α < 1 < p ≤ 1/(1 − α). If A′ ∈ L∞(R1) ∩∧α(R1), then T1
A is bounded from

Hp,ϕ(R1) to hp,ϕ(R1).
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The author proved this theorem as a corollary of the following theorem.

Theorem 3.3. Let 0 < α < 1 < p ≤ n/(n − α). If T is a δ-Calderón-Zygmund operator such that
t̃T1 ∈ ∧α(Rn), then T is a bounded operator fromHp,ϕ(Rn) to hp,ϕ(Rn) and

∥∥Tf∥∥hp,ϕ ≤ C
∥∥f∥∥Hp,ϕ . (3.1)

Remark 3.4. Alvarez, in [8], proved that T is a bounded operator onHp,ϕ(Rn) provided t̃T1 =
C.

Remark 3.5. Together with in [19, Theorem 2] and Theorem 3.3, we can check that the higher-
order Calderón’s commutator Tk

A(k > 1) is also bounded from Hp,ϕ(R1) to hp,ϕ(R1).

Next we turn to the Cauchy integral. Our main result is the following theorem.

Theorem 3.6. Let 0 < α ≤ 1 < p ≤ 1/(1 − α) and p < ∞. If A′ ∈ L∞(R1) ∩ ∧α
loc(R

1), then CA is
bounded fromHp,ϕ(R1) to hp,ϕ(R1).

In order to prove Theorem 3.6, we introduce a variant of “Tb theorem”.

Theorem 3.7. Let 0 < α ≤ 1 < p ≤ n/(n − α) and p < ∞. Assume that T is a δ-Calderón-Zygmund
operator. If there exists a β-accretive function b such that b, t̃Tb ∈ ∧α

loc(R
n), then T is a bounded

operator from Hp,ϕ(Rn) to hp,ϕ(Rn) and

∥∥Tf∥∥hp,ϕ ≤ C
∥∥f∥∥Hp,ϕ . (3.2)

4. Some Lemmas

In this section, we define atoms and molecules on hp,ϕ(Rn) and study some properties of
them.

Definition 4.1. Let 1 < p ≤ ∞ and a function ϕ : (0,∞) → (0,∞) be given. We say that a
function a(x) is a small (hp, ϕ)-atom centered at x0 if there exists a ball B(x0, r) of radius
r < 1, which satisfies the conditions (2.1), (2.5′), and

∣∣∣∣
∫
Rn

a(x)dx
∣∣∣∣ ≤ rn(1−1/p). (4.1′)

Lemma 4.2. If a is a small (hp, ϕ)-atom, then a ∈ hp,ϕ(Rn) and

‖a‖hp,ϕ ≤ C. (4.2)
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Proof. Assuming a supported in B = B(x0, r), we write

a(x) =
(
a(x) − aBχB(x)

)
+ aBχB(x)

= a1(x) + a2(x),
(4.3)

where aB = (1/|B|) ∫B a(y)dy.
It is easy to check that a1(x)/2 is an (Hp, ϕ)-atom, so

‖a1‖hp,ϕ ≤ ‖a1‖Hp,ϕ ≤ C. (4.4)

Since supp(a2) ⊂ B ⊂ B(x0, 1) and

‖a2(x)‖Lp = Crn(1/p−1)rn(1−1/p)

≤ Cϕ(1)ϕ(1)−1,
(4.5)

a2 is a constant multiple of a large (hp, ϕ)-atom and we have

‖a‖hp,ϕ ≤ C. (4.6)

Definition 4.3. Let b be β-accretive and 1 < p < ∞. A function a(x) is a small (hp, ϕ, b)-atom
centered at x0 if there exists a ball B(x0, r) of radius r < 1, which satisfies the conditions (2.1),
(2.5′), and

∣∣∣∣
∫
Rn

a(x)b(x)dx
∣∣∣∣ ≤ rn(1−1/p). (4.6′′)

Lemma 4.4. Let 0 < α ≤ 1 < p ≤ n/(n − α) and p < ∞. Assume that b is β-accretive and
b ∈ ∧α

loc(R
n). If a(x) is a small (hp, ϕ, b)-atom, then a ∈ hp,ϕ(Rn) and

‖a‖hp,ϕ ≤ C. (4.7)
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Proof. According to Lemma 4.2, we only need to show that a is a small (hp, ϕ)-atom:

∣∣∣∣∣
∫
B(x0,r)

a(x)dx

∣∣∣∣∣ ≤
∣∣∣∣∣

1
b(x0)

∫
B(x0,r)

a(x)(b(x) − b(x0))dx

∣∣∣∣∣

+

∣∣∣∣∣
1

b(x0)

∫
B(x0,r)

a(x)b(x)dx

∣∣∣∣∣

≤ C
rα

β

(∫
B(x0,r)

|a(x)|pdx
)1/p

|B(x0, r)|1/p
′
+
1
β
rn(1−1/p)

≤ C
1
β

(
rα+n(1/p−1)ϕ(rn)−1 + 1

)
rn(1−1/p)

≤ C
(
ϕ(1)−1 + 1

)
rn(1−1/p).

(4.8)

Note that we have used the fact that p ≤ n/(n− α), p < ∞ and r < 1 in the last inequality.

Definition 4.5. Let 1 < p < ∞ and 0 < γ . A function M(x) is called a large (hp, ϕ, γ)-molecule
centered at x0 if there exists r ≥ 1 such that the following conditions are satisfied:

(∫
|x−x0|≤2r

|M(x)|pdx
)1/p

≤ rn(1/p−1)ϕ(rn)−1, (4.9)

(∫
|x−x0|≥2r

|M(x)|p|x − x0|γdx
)1/p

≤ rn(1/p−1)+γ/pϕ(rn)−1. (4.10)

Definition 4.6. Let 1 < p < ∞, 0 < γ, and b be β-accretive. A function M(x) is called a small
(hp, ϕ, γ, b)-molecule centered at x0 if there exists r < 1 which satisfies (4.9), (4.10), and the
following condition:

∣∣∣∣
∫
Rn

M(x)b(x)dx
∣∣∣∣ ≤ rn(1−1/p). (4.11)

Lemma 4.7. Let 1 < p < ∞ and n(p − 1) < γ . If a functionM(x) is a large (hp, ϕ, γ)-molecule, then
M ∈ hp,ϕ(Rn) and

‖M‖hp,ϕ ≤ C. (4.12)
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Lemma 4.8. Let 0 < α ≤ 1 < p < ∞ and n(p−1) < γ . Suppose that b is β-accretive and b ∈ ∧α
loc(R

n).
If a functionM(x) is a small (hp, ϕ, γ, b)-molecule, thenM ∈ hp,ϕ(Rn) and

‖M‖hp,ϕ ≤ C. (4.13)

Lemmas 4.7 and 4.8 are the key lemmas to prove our theorems. The proofs of two
lemmas are similar in nature. So we will only prove Lemma 4.8. The idea of our proof comes
from Komori in [6, 12, 20].

Proof of Lemma 4.8. Let E0 = {x : |x − x0| < 2r} and Ei = {x : 2ir ≤ |x − x0| < 2i+1r}, i =
1, 2, 3, . . . , b(Ei) =

∫
Ei
b(x)dx. Since b(Ei)/= 0, we denote that χi = χEi(x), χ̃i = χi/b(Ei) and

mi = (1/b(Ei))
∫
Ei
b(x)M(x)dx, m̃i =

∫
Ei
b(x)M(x)dx.

We write

M(x) =
∞∑
i=0

(M(x) −mi)χi(x) +
∞∑
i=0

miχi(x) =
∞∑
i=0

Mi(x) +
∞∑
i=0

m̃iχ̃i(x), (4.14)

where Mi(x) = (M(x) −mi)χi(x). Letting Nj =
∑∞

i=j m̃i, we have

M(x) =
∞∑
i=0

Mi(x) +
∞∑
i=1

Ni

(
χ̃i(x) − χ̃i−1(x)

)
+N0χ̃0(x)

= I + II + III.

(4.15)

Next we will calculate the above three terms.
(a) It is clear that supp(Mi) ⊂ B(x0, 2i+1r) and

∫
Mi(x)b(x)dx = 0. So

(∫
|M0(x)|pdx

)1/p

≤
(∫

E0

|M(x)|pdx
)1/p

+ |m0||B(x0, 2r)|1/p

≤ rn(1/p−1)ϕ(rn)−1 + C|m0|rn/p.
(4.16)

By the definition of m0 and condition (4.9), we have

|m0| = 1
|b(E0)|

∣∣∣∣∣
∫
E0

M
(
y
)
b
(
y
)
dy

∣∣∣∣∣

≤ C
‖b‖L∞

β|E0|

(∫
E0

∣∣M(y)
∣∣pdy

)1/p

|E0|1/p
′

≤ Crn(1/p−1)ϕ(rn)−1r−n/p.

(4.17)

Therefore we get

(∫
|M0(x)|pdx

)1/p

≤ Crn(1/p−1)ϕ(rn)−1. (4.18)
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SoM0(x) is a multiple constant of large (hp, ϕ)-atom or small (hp, ϕ, b)-atom and

‖M0‖hp,ϕ ≤ C. (4.19)

When i ≥ 1, we have

(∫
|Mi(x)|pdx

)1/p

≤
(∫

Ei

|M(x)|pdx
)1/p

+ |mi | Ei|1/p

= Ĩ + ĨI.

(4.20)

By condition (4.10), we have

Ĩ ≤
(∫

2ir≤|x−x0|<2i+1r

|M(x)|p|x − x0|γ
(2ir)γ

dx

)1/p

≤
(
2ir

)−γ/p
(∫

|x−x0|≥2ir
|M(x)|p|x − x0|γdx

)1/p

≤
(
2ir

)−γ/p
rn(1/p−1)+γ/pϕ(rn)−1

≤ C
(
2i+1r

)n(1/p−1)
ϕ
((

2i+1r
)n)−1

2−i(n(1/p−1)+γ/p).

(4.21)

The last inequality was obtained for ϕ being non-increasing.
Using the estimate of Ĩ, we have

ĨI ≤ |Ei|1/p
‖b‖L∞

β|Ei|
∫
Ei

∣∣M(
y
)∣∣dy

≤ C

(∫
Ei

∣∣M(y)
∣∣pdy

)1/p

≤ C
(
2i+1r

)n(1/p−1)
ϕ
((

2i+1r
)n)−1

2−i(n(1/p−1)+γ/p).

(4.22)

Hence Mi(x) is a multiple constant of large (hp, ϕ)-atom or small (hp, ϕ, b)-atom and

‖Mi‖hp,ϕ ≤ C2−i(n(1/p−1)+γ/p). (4.23)
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Since p < (n + γ)/n, we finally concluded

∞∑
i=0

‖Mi‖php,ϕ ≤ C,

‖I‖hp,ϕ ≤ C.

(4.24)

(b) Let Ai = Ni(χ̃i(x) − χ̃i−1(x)). It is easy to see that supp(Ai) ⊂ B(x0, 2i+1r) and∫
Rn Ai(x)b(x)dx = 0, i = 1, 2, 3, . . . .

Using the estimate of Ĩ again, we have

(∫
|Ai(x)|pdx

)1/p

≤
(

|Ei|1/p
|b(Ei)| +

|Ei−1|1/p
|b(Ei−1)|

)
|Ni|

≤ C
|Ei|1/p
β|Ei| ‖b‖L∞

∞∑
k=i

∫
Ek

∣∣M(
y
)∣∣dy

≤ C|Ei|1/p−1
∞∑
k=i

(∫
Ek

∣∣M(y)
∣∣pdy

)1/p

|Ek|1/p
′

≤ C
(
2ir

)n(1/p−1) ∞∑
k=i

(
2kr

)−γ/p
rn(1/p−1)+γ/pϕ(rn)−1

(
2kr

)n/p′

≤ C2−i(γ/p)rn(1/p−1)ϕ(rn)−1

≤ C2−i(n(1/p−1)+γ/p)
(
2i+1r

)n(1/p−1)
ϕ
((

2i+1r
)n)−1

.

(4.25)

So Ai(x) is a multiple constant of large (hp, ϕ)-atom or small (hp, ϕ, b)-atom and

‖Ai‖hp,ϕ ≤ C2−i(n(1/p−1)γ/p). (4.26)

Using condition p < (n + γ)/n again, we get

∞∑
i=0

‖Ai‖php,ϕ ≤ C,

‖II‖hp,ϕ ≤ C.

(4.27)
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(c) Condition (4.9) and estimate of Ĩ together with the fact supp(N0χ̃0(x)) ⊂ B(x0, 2r)
imply

(∫ ∣∣N0χ̃0(x)
∣∣pdx

)1/p

≤ |E0|1/p
β|E0|

∣∣∣∣
∫
Rn

M(x)b(x)dx
∣∣∣∣

≤ C|E0|1/p−1
(∫

|x−x0|≤2r
|M(x)|dx +

∫
|x−x0|≥2r

|M(x)|dx
)

≤ Crn(1/p−1)
(∫

|x−x0|≤2r
|M(x)|pdx

)1/p

rn/p
′

+ Crn(1/p−1)
∞∑
i=1

(∫
2ir≤|x−x0|<2i+1r

|M(x)|pdx
)1/p(

2i+1r
)n/p′

≤ Crn(1/p−1)ϕ(rn)−1

+ Crn(1/p−1)
∞∑
i=1

(
2ir

)n(1−1/p)(
2ir

)−γ/p
rn(1/p−1)+γ/pϕ(rn)−1

≤ Crn(1/p−1)ϕ(rn)−1
(
1 +

∞∑
i=1

2−i(γ/p−n(1−1/p))
)

≤ Crn(1/p−1)ϕ(rn)−1.

(4.28)

By condition (4.11), we have

∣∣∣∣
∫
Rn

N0χ̃0(x)b(x)dx
∣∣∣∣ = 1

|b(E0)|

∣∣∣∣∣
∫
E0

b(x)dx

∣∣∣∣∣
∣∣∣∣
∫
Rn

M(x)b(x)dx
∣∣∣∣ ≤ rn(1−1/p). (4.29)

By Lemma 4.4, we have

∥∥N0χ̃0
∥∥
hp,ϕ ≤ C. (4.30)

Finally by (a), (b), (c)we end the proof of Lemma 4.8.

5. Proof of the Theorems

First, we consider Theorem 3.7.

Proof of Theorem 3.7. To prove the theorem it suffices to show that there is a constant C > 0
such that ‖Ta‖hp,ϕ ≤ C for every (Hp, ϕ)-atom a(x).

Assuming (Hp, ϕ)-atom a(x) supported in B(x0, r), we show that Ta(x) is a constant
multiple of a large (hp, ϕ, γ)-molecule with r ≥ 1 or a constant multiple of a small (hp, ϕ, γ, b)-
molecule with r < 1.
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Since T is bounded on Lp(Rn) (see [4]), we have

(∫
|x−x0|≤2r

|Ta(x)|pdx
)1/p

≤ C‖a‖Lp ≤ Crn(1/p−1)ϕ(rn)−1. (5.1)

If |x − x0| ≥ 2r, then

|Ta(x)| =
∣∣∣∣∣
∫
B(x0,r)

[
K
(
x, y

) −K(x, x0)
]
a
(
y
)
dy

∣∣∣∣∣

≤ C
rδ

|x − x0|n+δ
(∫

B(x0,r)

∣∣a(y)∣∣pdy
)1/p

|B(x0, r)|1/p
′

≤ C
rδϕ(rn)−1

|x − x0|n+δ
.

(5.2)

Since (n + δ)p − n > n(p − 1), we can choose some γ satisfying n(p − 1) < γ < (n + δ)p − n.
Therefore we obtain

(∫
|x−x0|≥2r

|Ta(x)|p|x − x0|γdx
)1/p

≤ Crδϕ(rn)−1
(∫

|x−x0|≥2r

|x − x0|γ
|x − x0|(n+δ)p

)1/p

≤ Cϕ(rn)−1rn(1/p−1)+γ/p.

(5.3)

If r ≥ 1, by Lemma 4.7, we have

‖Ta‖hp,ϕ ≤ C. (5.4)

If r < 1, by (2.2), we get

∣∣∣∣
∫
Rn

Ta(x)b(x)dx
∣∣∣∣ =

∣∣∣〈a, t̃Tb
〉∣∣∣

=

∣∣∣∣∣
∫
B(x0,r)

a(x)
[

t̃Tb(x) − t̃Tb(x0)
]
dx

∣∣∣∣∣

≤ C
∥∥∥ t̃Tb

∥∥∥
Λα

loc

rα
∫
B(x0,r)

|a(x)|dx

≤ Crn(1−1/p)rα+n(1/p−1)ϕ(rn)−1

≤ Cϕ(1)−1rn(1−1/p),

(5.5)

which is obtained for p ≤ n/(n − α) and ϕ being non-increasing.
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By Lemma 4.8 and the above argument, we obtain the desired result:

‖Ta‖hp,ϕ ≤ C. (5.6)

Next we turn to Theorem 3.6.

Proof of Theorem 3.6. Note that CA is a 1-Calderón-Zygmund operator by Theorem 3.1. Let
b(x) = 1+ iA′(x). Then b is a 1-accretive and b ∈ ∧α

loc(R
1). By the calculus of complex analysis

(refer to calculation in [6] or [21, page 407]),

t̃CAb(x) = lim
ε→ 0

∫
|x−y|>ε

{
1 + iA′(y)

y − x + i
(
A
(
y
) −A(x)

) − 1 + iA′(y)
y + i

(
A
(
y
) −A(0)

)χ|y|≥1
(
y
)}

dy

= constant,

(5.7)

which implies t̃CAb(x) ∈
∧α

loc(R
1). Therefore the theorem is proved by Theorem 3.7.
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