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of gauge theory, we argue that these massive amplitudes belong to a theory in which the

gauge symmetry is spontaneously broken by an adjoint Higgs field. Consequently, we show

that tree-level n-point amplitudes containing massive vector and scalar bosons in this the-

ory can be obtained by simply replacing ka · kb with ka · kb − κaκb in the corresponding

massless amplitudes, where the masses of the particles are given by |κa|.
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In a series of papers over the last few years, Cachazo, He, and Yuan (CHY) have developed

a new representation for the tree-level amplitudes of massless particles in a variety of

theories, including Yang-Mills theory and Einstein gravity [1–3], as well as the nonlinear

σ model, the Dirac-Born-Infeld theory, and more exotic models [4]. In this approach, the

ingredients for an n-point amplitude are the positions σa of n punctures on a sphere, as

well as Lorentz invariants of the momenta kµa and polarizations ǫµa of the particles. (The

graviton polarization is expressed as ǫµνa = ǫµa ǫ̃νa.) The CHY representation involves an

integral over the moduli space of the punctured sphere, which can be evaluated [2, 4–6] to

yield a rational expression of ka · kb, ǫa · kb, and ǫa · ǫb for the n-point tree-level amplitude.

A notable feature of this formulation is its independence of the number of spacetime

dimensions. One can therefore dimensionally reduce CHY representations of gravity or

Yang-Mills amplitudes in (d + M) dimensions to obtain mixed amplitudes in d dimen-

sions containing gravitons, gauge bosons, and massless scalars by choosing the (d + M)-

dimensional polarizations Ea to lie in either the d- or M -dimensional subspace [3, 4].

Dimensional reduction can also be used to endow particles with mass, and therefore to

obtain CHY representations for massive particles in d dimensions [7]. (Previous extensions

of the CHY approach to massive particles were considered in refs. [8–10].) The momentum

of a particle in (d+M) dimensions can be written

Ka = (ka|κa) (1)

where ka and κa are the components of momentum in d- and M -dimensional subspaces

respectively; we will refer to κa as the internal momentum of a particle, and regard it as a

fixed quantity. A massless particle in (d+M) dimensions with momentum Ka corresponds

to a particle in d dimensions with mass ma = |κa|. This approach is similar to that used

in refs. [11–13], where a fifth dimension was introduced as a massive infrared regulator for

planar loop-level N = 4 amplitudes. See also, for example, refs. [14–18], in which massive

particles are represented as higher-dimensional massless particles.

The amplitude for massless gauge bosons in (d +M) dimensions, which is a rational

function of Ka ·Kb, Ea ·Kb, and Ea ·Eb, can be used to obtain an expression for the amplitude

for massive gauge bosons in d dimensions by choosing Ea = (ǫa|0), so that1

Ka ·Kb = ka · kb − κa · κb, Ea ·Kb = ǫa · kb, Ea · Eb = ǫa · ǫb . (2)

In other words, we simply replace ka · kb with ka · kb−κa ·κb in the d-dimensional massless

gauge boson amplitude. The question remains: to what theory do these massive ampli-

tudes belong?

Not all d-dimensional amplitudes of massive particles can be obtained from dimensional

reduction of (d+M)-dimensional massless amplitudes, due to the constraints arising from

internal momentum conservation. Overall momentum conservation demands
∑n

a=1
κa =

0, placing a restriction on the masses of a dimensionally-reduced n-particle amplitude.

Furthermore, internal momentum conservation must be satisfied at each vertex of the

1The relative minus sign in Ka ·Kb arises because we use a mostly-minus metric for Ka and ka, but an

all-plus metric for the internal components κa.
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tree diagrams that contribute to the amplitude, constraining the mass of any particle

propagating in intermediate channels. For example, if particles a and b couple into an

intermediate channel, the mass of the particle in that channel must be given by |κa + κb|.

In ref. [7], it was shown that this constraint is automatically satisfied in an amplitude

with no more than three massive particles, in which the remaining massless particles are

flavor-preserving, and therefore such amplitudes can be given a CHY representation. But

for more general massive amplitudes (e.g. in the standard model), the internal momentum

constraints cannot be satisfied.

It is the purpose of this note to observe that the internal momentum constraints

can be satisfied in a gauge theory in which the U(N) symmetry is spontaneously broken

by an adjoint Higgs field H. If the Higgs field has vacuum expectation value 〈H〉 =

diag(v1, v2, · · · , vN ), the U(N) symmetry is broken to U(1)N , and the off-diagonal gauge

bosons W j
i obtain masses g|vi−vj | from the Tr(DµH)2 term in the Lagrangian. If some of

the vi are degenerate, then a larger symmetry will be left unbroken. (This is essentially the

theory considered in refs. [11, 15, 18–23], where it is embedded in an N = 4 supersymmetric

theory on the Coulomb branch. In the string theory picture, the vi correspond to the

positions of D3 branes in the fifth dimension, and massive gauge bosons correspond to

strings extending between separated D3 branes. See also refs. [24, 25] for tree-level massive

amplitudes on the Coulomb branch of this theory.)

At a triple-gauge-boson vertex, W j
i and W k

j couple to W k
i . If we identify the internal

momentum2 κij of W j
i with g(vi − vj), then internal momentum conservation κij + κjk =

κik automatically holds at each vertex (and similarly at four-gauge-boson vertices). This

suggests that dimensionally-reduced amplitudes with internal momenta κ are equivalent to

amplitudes of massive gauge bosons in this spontaneously-broken theory. Moreover, this

implies that massive amplitudes in this theory can be obtained from the corresponding

massless amplitudes of the unbroken theory, expressed in terms of ka ·kb, ǫa ·kb, and ǫa · ǫb,

by simply replacing ka ·kb with ka ·kb−κaκb. To illustrate this in a simple case, we evaluate

the amplitude of four massive gauge bosons in the spontaneously-broken theory

〈W i2
i1

(k1, ǫ1)W
i3

i2
(k2, ǫ2)W

i4
i3

(k3, ǫ3)W
i1

i4
(k4, ǫ4)〉

= g2
[

Ns

(k1 + k2)2 −m2
s

+
Nt

(k1 + k4)2 −m2
t

+ (contact term)

]

(3)

which have contributions from s- and t-channel exchange as well as a four-gauge-boson

contact term. For brevity, we include below only those terms in the numerators that

depend on ka · kb; the omitted terms are the same as those in the unbroken theory:

Ns =
(ǫ1 · ǫ2) (ǫ3 · ǫ4)

2

[

(k2 − k1) · (k4 − k3) +
(m2

2
−m2

1
)(m2

4
−m2

3
)

m2
s

]

+ · · · ,

Nt =
(ǫ1 · ǫ4) (ǫ2 · ǫ3)

2

[

(k2 − k3) · (k4 − k1) +
(m2

1
−m2

4
)(m2

3
−m2

2
)

m2
t

]

+ · · · . (4)

2now restricted to one dimension
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Here ma = |κa| with κa ≡ g(via − via+1
), where i5 ≡ i1 so that

∑

4

a=1
κa = 0. Up to

this point, we have not made any assumptions about the masses of the s and t-channel

intermediate particles. Since the particles propagating in those channels are W i3
i1

, and

W i4
i2

respectively, we have

m2

s = g2(vi1 − vi3)
2 = (κ1 + κ2)

2, m2

t = g2(vi2 − vi4)
2 = (κ2 + κ3)

2 (5)

and the numerators above simplify to

Ns =
1

2
(ǫ1 · ǫ2) (ǫ3 · ǫ4)

[

(k2 − k1) · (k4 − k3)− (κ2 − κ1)(κ4 − κ3)
]

+ · · · ,

Nt =
1

2
(ǫ1 · ǫ4) (ǫ2 · ǫ3)

[

(k2 − k3) · (k4 − k1)− (κ2 − κ3)(κ4 − κ1)
]

+ · · · . (6)

We assemble all the pieces and use

(k1 + k2)
2 −m2

s = 2(k1 · k2 − κ1κ2) = 2(k3 · k4 − κ3κ4) ,

(k1 + k4)
2 −m2

t = 2(k1 · k4 − κ1κ4) = 2(k2 · k3 − κ2κ3) (7)

to obtain

〈W i2
i1

(k1, ǫ1)W
i3

i2
(k2, ǫ2)W

i4
i3

(k3, ǫ3)W
i1

i4
(k4, ǫ4)〉 = −g2

K

(k2 · k3 − κ2κ3)(k3 · k4 − κ3κ4)
(8)

with

K = −
{

(k1 · k3 − κ1κ3)(k2 · k3 − κ2κ3) ǫ1 · ǫ2 ǫ3 · ǫ4

+(k2 · k3 − κ2κ3)(k3 · k4 − κ3κ4) ǫ1 · ǫ3 ǫ2 · ǫ4

+(k1 · k3 − κ1κ3)(k3 · k4 − κ3κ4) ǫ1 · ǫ4 ǫ2 · ǫ3

+
[

(k1 · k3 − κ1κ3) ǫ1 · k4 ǫ2 · k3 + (k2 · k3 − κ2κ3) ǫ1 · k3 ǫ2 · k4
]

ǫ3 · ǫ4

+
[

(k2 · k3 − κ2κ3) ǫ1 · k2 ǫ3 · k4 + (k3 · k4 − κ3κ4) ǫ1 · k4 ǫ3 · k2
]

ǫ2 · ǫ4

+
[

(k1 · k3 − κ1κ3) ǫ1 · k2 ǫ4 · k3 + (k3 · k4 − κ3κ4) ǫ1 · k3 ǫ4 · k2
]

ǫ2 · ǫ3

+
[

(k1 · k3 − κ1κ3) ǫ2 · k1 ǫ3 · k4 + (k3 · k4 − κ3κ4) ǫ2 · k4 ǫ3 · k1
]

ǫ1 · ǫ4

+
[

(k2 · k3 − κ2κ3) ǫ2 · k1 ǫ4 · k3 + (k3 · k4 − κ3κ4) ǫ2 · k3 ǫ4 · k1
]

ǫ1 · ǫ3

+
[

(k1 · k3 − κ1κ3) ǫ3 · k2 ǫ4 · k1 + (k2 · k3 − κ2κ3) ǫ3 · k1 ǫ4 · k2
]

ǫ1 · ǫ2
}

. (9)

As expected, this is simply the four-gluon amplitude with ka · kb replaced by ka · kb−κaκb.

Mixed amplitudes containing both massive vector and adjoint scalar bosons in d di-

mensions can also be obtained via dimensional reduction of massless gauge amplitudes in

d+M dimensions [4, 7]. Massive adjoint scalar bosons arise from particles whose (d+M)-

dimensional polarization and momentum vectors are given by3

Ea = (0|0, ea), Ka = (ka|κa, 0). (10)

3We choose the internal polarization of the would-be scalars to be orthogonal to the internal momenta

of all the particles.
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Thus, invariants involving the adjoint scalars are given by

Ka ·Kb = ka · kb − κa · κb, Ea ·Kb = 0, Ea · Eb = ea · eb . (11)

Again this implies that the amplitudes for massive vectors and scalars can be obtained

from the corresponding massless amplitudes by simply replacing ka ·kb with ka ·kb−κa ·κb.

The field theory corresponding to these dimensionally-reduced amplitudes contains

adjoint scalar fields Φ j
i , whose masses g|vi − vj | arise from the g2Tr

(

[Φ, H]2
)

term in

the Lagrangian [11]. As described above, the couplings in the theory are consistent with

internal momentum conservation at each vertex. We have computed various mixed gauge-

field and scalar four- and five-point amplitudes in the spontaneously-broken theory, and

verified in all cases that the massive amplitudes are equivalent to the corresponding massless

amplitudes with the replacement ka · kb → ka · kb−κaκb, where κa = g(via − via+1
). This is

not initially obvious from the Feynman diagram calculation in the spontaneously-broken

theory, in which several different diagrams conspire to give the appropriate expressions, but

is manifest from the dimensional reduction of the CHY representation of the amplitudes.

What if the internal momenta κa of the particles span more than one dimension of

the M -dimensional internal space? In this case, the dimensionally-reduced amplitudes

appear to correspond to massive amplitudes in a spontaneously-broken gauge theory in

which several adjoint Higgs fields HI , I = 1, · · · , h have nonzero vacuum expectation

values 〈HI〉 = diag(vI
1
, vI

2
, · · · , vIN ) that are mutually commuting. In this theory, the

off-diagonal gauge bosons W j
i obtain masses g

[
∑h

I=1

(

vIi − vIj
)2]1/2

. We identify the

internal momentum κIij of W j
i with g(vIi − vIj ), automatically satisfying the triple vertex

constraint κIij + κIjk = κIik. Although momentum conservation still requires
∑n

a=1
κIa = 0,

the constraint on the masses of the external particles is considerably weakened compared

to the case in which only one Higgs field gets a vev.

Finally, we recall that momentum conservation can be used to express all kine-

matic invariants ka · kb of an n-point amplitude in terms of an independent set of

n(n− 3)/2 invariants

k1 · kc, k2 · kc, kc · kd, c, d ∈ {3, · · · , n− 1}. (12)

If we consider n-point amplitudes with at most three massive particles (a = 1, 2, and n),

then κc = 0 for c ∈ {3, · · · , n − 1} and all of the invariants in eq. (12) are unchanged

under ka · kb → ka · kb − κa · κb. Consequently, the expressions for amplitudes with at most

three massive particles, when expressed in terms of ǫa · kb, ǫa · ǫb, and the invariants (12),

are identical to the corresponding massless amplitudes, as found in ref. [7]. For example,

eqs. (8) and (9) reduce to the massless amplitude when m3, and therefore κ3, vanishes.

In this note, we have argued that dimensionally-reduced tree-level gauge-theory am-

plitudes of massless particles possessing internal momentum κ are equivalent to tree-level

amplitudes of massive particles in a lower-dimensional gauge theory in which the gauge

symmetry is spontaneously broken by an adjoint Higgs field. The same procedure can

be applied to obtain amplitudes of massive particles in other theories with a CHY repre-

sentation, including gravity, Dirac-Born-Infeld theory, and the nonlinear σ model. It will

be intriguing to determine the lower-dimensional theories to which these massive ampli-

tudes belong.

– 4 –
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