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A nonlinear parabolic problem from combustion
theory: attractors and stability
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Abstract

A parabolic (convection-diffusion) problem in a half-line, arising when modeling the tem-
perature profile of an adiabatic solid in radiation-driven combustion, is considered. Both the
coefficient in the “convective” term (the velocity of the burning front) and the Neumann datum
(the prescribed heat influx into the burning body) are nonlinearly related to the proper value of
the solution at the boundary. In addition, the velocity is allowed to vanish below some thresh-
old value. Under the main assumptions of “intensely irradiated boundary” and initial data that
behave suitably asx → −∞, it is proven that there exists a global attractor for the evolution
semigroup associated with the problem. Furthermore, the stabilization of all solutions towards
the equilibrium solution (a uniformly propagating front) is derived for a class of Neumann data,
which are of some interest for applications.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the nonlinear initial-boundary value problem in one space dimension

ut = uxx − R (u (0, t)) ux, x < 0, t > 0, (1a)
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ux (−∞, t) = 0, t > 0, (1b)

ux (0, t) = Q(u (0, t)) , t > 0, (1c)

u (x,0) = u0 (x) , x�0, (1d)

whereR (u) andQ(u) are regular nonnegative functions throughout the real axis and
u0 (x) is a continuous function tending to zero asx −→ −∞. A number of practically
relevant problems are suitable cases for treatment via (1). As a typical situation of
interest, we might refer to solid-propellant rocket propulsion theory, when modeling
combustion of homogeneous materials under the influence of external irradiation of the
“interface” between condensed and gas phases (see the discussion in[9] and references
quoted therein). In this context, within the framework of quasiplanarity of all spatial
variations and concentrated surface kinetics, the burning solid is assumed to occupy
the half-linex < 0 and the originx = 0 is attached to the propagating (“flame”) front,
moving at a rate−R in the lab reference frame. Then, by scaling to nondimensional
units, the heat transfer yields the governing equation (1a) for the temperature profile
u (x, t) at time t. The rateR depends on the front temperature: a common example
is the Arrhenius functionR (u) ∝ exp

{−� (u− u∗)−1}, where�, u∗ are constants. A
worthwhile feature of the model is that the burning rateR, supported at the interface, is
allowed to vanish at (and below) the “ignition temperature”u = u∗, hence the model
possibly includes nonmoving fronts. Regarding initial and boundary conditions, the
prescribed limiting value ofu0 is the ambient temperature, which is taken to be zero
without loss of generality; (1b) means no heat exchange with the surrounding medium
and, finally, (1c) is the overall heat flux balance at the front. The Neumann datumQ
includes: (i) radiant flux, impinging on the burning surface from an external source
of thermal nature (a laser) and constant intensity; (ii) chemical heat release, simply
proportional toR and coming from exothermic chemical reactions; (iii) gas phase heat
release, due to heat feedback from the gas. The latter (say,Qg) is typically a nonlinear
function of R, vanishing asR → ∞ (flame blow-off) and asR → 0 (no burning), and
positive for R > 0 (gas phase heats up condensed phase during burning).Qg comes
from suitable gas-phase transient submodels: for an illustration, consider the so-called
KTSS heat feedbackQg (R) ∝ R−1

(
1 − exp

{−�R2
})

, where� is a constant.
Similar problems, arising as models of a variety of physical processes, have been

investigated in the literature. In particular, we would like to mention a series of papers
by Ball and Peletier[1,2] and by Frankel and Roytburd[6–8], where problems closely
related to (1) are considered. For example, according to the above nomenclature,[8]
deals with the gasless case (no heat feedback) in pressure-driven combustion (absence
of external radiation) and the energy conservation equation (1a) includes a damping
term −�u (volumetric heat loss). On the contrary, in solid-propellant combustion mod-
eling, the heat feedback term is essential. This is because the surface temperature
adjustments due to solid–gas coupling are expected to have a large influence on the
burning phenomenon[5]. Moreover, in model (1) it is assumed� = 0 since the propel-
lant condensed phase is commonly considered adiabatic, possibly suffering heat losses
from the burning surface only[4]. As a consequence, the solution procedure of[8]
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now fails because it relies crucially on the presence of the damping term for proving
that the contribution of the solution from initial data decays with time and, ultimately,
for establishing the existence of a compact attractor.

Concerning well-posedeness, it is shown in[9] that for exponentially decaying, con-
tinuous datau0 problem (1) has a unique global-in-time classical solutionu (x, t); in
addition, the same exponential behavior holds foru and its spatial derivative for all
positive t. Our aim in this paper is to address some questions of long-time asymptotics.
This study is motivated on the basis of experimental as well as numerical evidences
[4]. For instance, it is observed that under suitable operating conditions the thermal
profile approaches a traveling wave, i.e., a solution which appear to be travelling with
constant shape and velocity in the laboratory frame and is time-invariant in the refer-
ence frame anchored to the propagating front. In[11] the asymptotic linearized stability
of travelling waves and related questions, such as the existence of Hopf bifurcations,
are investigated.

The paper is organized as follows. In Section 2, the evolution semigroup associated
with the problem is properly defined and some preliminary properties needed in the
subsequent asymptotic analysis are established. In Section 3, uniform boundedness of
the solution at large time and existence of absorbing sets are proved under the supple-
mentary assumption of “strong irradiation” (namely, a condition on the lower bound of
Q); we anticipate that the techniques we use are based on comparison principles. Then
the main results are derived. Section 4 is devoted to the existence of a global attractor,
i.e., a compact set which attracts all bounded set, and in Section 5 we exhibit a con-
dition on Neumann data yielding existence of a Lyapunov function for the semigroup
and approach to equilibrium of the dynamics. The paper concludes with a section of
final remarks (Section 6) and a technical section (Appendix A), which includes the
proofs of continuity properties of the semigroup.

2. The semigroup

For the mathematical setting of the problem we assume that

H1. R (u) andQ(u) are twice differentiable nonnegative functions such that
R,
∣∣R′∣∣ , ∣∣R′′∣∣ ,Q, ∣∣Q′∣∣ , ∣∣Q′′∣∣ �M for some constantM

and for later use we set

Rmax = supR (u) , Qmin = inf Q(u) , Qmax = supQ(u) .

Let � > 0 be given. We denote byX0
� the Banach space of real functionsz (x) ∈

C0 (−∞,0] such that‖z‖0,� ≡ supx<0 e
−�x |z (x)| < ∞ and byX1

� the Banach space

of real functionsz (x) ∈ C1 (−∞,0] such that‖z‖1,� ≡ ‖z‖0,� + ∥∥z′∥∥0,� < ∞. Fur-
thermore, let� be the quarter-planex < 0, t > 0 and � be the half-linex = 0,
t > 0. Then a functionu = u (x, t) is a (classical global) solution of problem (1) if

u ∈ C0
(
�
)

∩ C1 (�) , uxx ∈ C0 (�) , ux ∈ C0 (� ∪ �) and (1) hold.

Existence and uniqueness was established in[9]:
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Theorem 2.1.We assume that the hypothesisH1 is satisfied. Then, for u0 given inX0
�,

there exists a unique solution u to(1). In addition, u (·, t) belongs toX1
� for all t > 0.

It is also helpful to state the following further regularity result, which is important
for Section5. We give the details of the proof in Appendix A.1.

Proposition 2.1. Let Theorem2.1hold. Thenut ∈ C0 (� ∪ �) and, furthermore, ut (·, t)
belongs toX0

� for all t > 0.

Theorem2.1 allows us to define the operators

S (t) : u0 �−→ u (·, t) , t�0

from X0
� into itself. These operators enjoy the semigroup propertiesS (0) = I (identity),

S (t + �) = S (t) S (�) for t, ��0 (as usual, we writeS (t) S (�) instead ofS (t)◦S (�)).
Furthermore, the following continuity property holds.

Lemma 2.1. For t > 0, S (t) is a continuous mapping fromX0
� into X1

�.

Proof. We only sketch the proof. First note that it suffices to show the assertion for
small t. By application of the local existence result[9, Section 3], there existε > 0
and � > 0 such that for 0� t�� and for u0 given in X0

� the solutionu to (1) can be
written as a sum

u(x, t) =
∫ 0

−∞
E(x + s(t)− y, t) u0(y) dy + 2

∫ t

0
E(x + s (t)− s (�) , t − �)

×
[
Q(� (�))− ε

	 (�)√
�

]
d�

= h1 (x, t)+ h2 (x, t) , (2)

where E (z, t) = (4
t)−1/2 exp
(−z2/4t

)
is the one-dimensional heat kernel,s(t) =

− ∫ t0 R(�(�)) d� and the densities�,	 belong toC0
[
0, �

]
. Let u0n be a sequence in

X0
� converging inX0

� to an elementu0 and setun (x, t) = (S (t) u0n) (x) = h1n (x, t)+
h2n (x, t) with densities�n,	n and sn(t) = − ∫ t0 R(�n(�)) d�. We show in Appendix
A.2 that �n → � and 	n → 	 uniformly on 0� t��. Next we definegn and g by

gn (x, t) =
∫ 0

−∞
e�y |E(x + sn(t)− y, t)− E(x + s(t)− y, t)| dy,

g (x, t) =
∫ 0

−∞
e�y |E(x + s(t)− y, t)| dy.
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Then we have

‖h1n (·, t)− h1 (·, t)‖0,� � ‖u0n‖0,� ‖gn (·, t)‖0,� + ‖g (·, t)‖0,� ‖u0n − u0‖0,�

and after straightforward calculations we obtain (C denotes different numerical con-
stants, possibly depending ont)

‖gn (·, t)‖0,� �C |sn(t)− s (t)| �C sup
0� t��

|�n(t)− �(t)| , ‖g (·, t)‖0,� �C

so that‖h1n (·, t)− h1 (·, t)‖0,� → 0. Similarly, on replacingE by Ez in the definitions

of gn andg, we see that

∥∥∥∥�h1n

�x
(·, t)− �h1

�x
(·, t)

∥∥∥∥
0,�

→ 0. Finally, using the appropriate

modifications, the estimation of‖h2n (·, t)− h2 (·, t)‖1,� yields

‖h2n (·, t)− h2 (·, t)‖1,� �C
(

sup
0� t��

|�n(t)− �(t)| + sup
0� t��

∣∣	n(t)− 	(t)
∣∣) .

Then we obtain the result.�

Now we establish a lower bound on the solutions of (1) that is essential in the next
section. First, sinceQ�0, if u�0 at t = 0, then by the maximum principleu�0 for
x�0, t > 0, i.e., S (t) is positivity preserving. Actually, this result can be improved.
For this purpose we define the function

� (x, t; �) = 1

2
erfc

( |x|√
4t

+ �

2

√
t

)
+ 1

2
e�xerfc

( |x|√
4t

− �

2

√
t

)

= e�x + 1



e�x/2−�2t/4

∫ ∞

0

sin
(
x
√

�
)

� + �2/4
e−�t d�, (3)

where � > 0 is fixed, and we observe that� is the solution of the initial-boundary
value problem

�t = �xx − � �x, x < 0, t > 0,

� (−∞, t) = 0, t > 0,

� (0, t) = 1, t > 0,

� (x,0) = 0, x�0.
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Lemma 2.2. Let u0 be given inX0
�, u0�0. Then,

S (t) u0�u

for t�0, where

u (x, t) = Qmin

∫ x

−∞
� (y, t;Rmax) dy (4)

Proof. Let u = S (t) u0. Since��0, the parabolic operator

L = �2
/�x2 − R (u (0, t)) �/�x − �/�t (5)

satisfiesL
(
u− u

) = (R (u (0, t))− Rmax) ��0 for x < 0 and t > 0. As u (x,0) −
u (x,0) = u0 (x) �0, u (−∞, t)−u (−∞, t) = 0 andux (0, t)−ux (0, t) = Q(u (0, t))−
Qmin�0, the maximum principle yieldsu (x, t) �u (x, t) through the regionx�0,
t�0. �

3. Absorbing sets

We consider as a basic metric space the closed cone of nonnegative elements inX0
�,

denoted by

Z� =
{
u0 ∈ X0

� : u0�0
}

and we show the existence of absorbing sets inZ� for the semigroupS (t). The
necessary estimates are obtained under stronger assumptions on the functionsR and
Q that provide uniform bounds on the solutions of (1). Specifically, from now on the
following supplementary conditions are assumed.

H2. R (u) = 0 for u�u∗, R (u) increasing foru > u∗ for some valueu∗ > 0;
H3. Qmin > u∗Rmax.

By direct computations it follows from (4) and (3)

u (0, t) = Qmin

Rmax
− Qmin



e−tR2

max/4
∫ ∞

0

√
�(

� + R2
max/4

)2 e−�t d�

so thatu (0, t) is increasing and tends toQmin/Rmax as t → ∞. Using H3, we can
choose� such that

0< � <
1

2
R

(
Qmin

Rmax

)
. (6)
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Then, by monotonicity there existst1 > 0 such that

u (0, t1) = R−1 (2�) (7)

and we deduce from Lemma2.2 that

u (0, t) �R−1 (2�) > u∗ (8)

for all t� t1, where t1 is independent of the initial data inZ�. Hence (8) provides a
uniform lower bound foru (0, t) when t is large.

Remark 3.1. In practical applications condition H2 is always fulfilled. Concerning
the physical meaning of H3 and the above discussion, in combustion theory the heat
feedback functionQ is required to satisfy additionallyQ(u) = Qmin for u�u∗, Q(u) >
Qmin for u > u∗ andQmin is the (normalized) external radiant intensity. Thus we have
proved that the solid/gas interface of an intensely irradiated materialis always moving
after some characteristic time, and this is of course what we expect physically.

Remark 3.2. The smaller� is chosen the larger the class of admissible initial data
becomes, so condition (6) is not really restrictive and, hereafter, it will be tacitly
assumed.

Interestingly, the lower bound (8) is useful in constructing a convenient pointwise
upper bound for the solution. Define the function

 (x, t) = e�(x−�t)erf

( |x|√
4t

)
, (9)

which is the solution of the problem

t = xx − 2� x, x < 0, t > 0,

 (−∞, t) = 0, t > 0,

 (0, t) = 0, t > 0,

 (x,0) = e�x, x�0.

Lemma 3.1. Let u0 be given inZ�, and let C be a fixed constant satisfyingC�
‖S (t1) u0‖0,�. Then,

S (t) u0�u
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for t� t1, where

u (x, t) = �C
∫ x

−∞
 (y, t − t1) dy +Qmax

∫ x

−∞
� (y, t − t1; 2�) dy.

Proof. Let u = S (t) u0. Since �,�0, the parabolic operator (5) satisfies
L (u− u) = (R (u (0, t))− 2�)

(
C +Qmax�

)
�0 for x < 0 and t > t1. As u (x, t1)−

u (x, t1) = u (x, t1)− Ce�x�0, u (−∞, t)− u (−∞, t) = 0 andux (0, t)− ux (0, t) =
Q(u (0, t)) − Qmax�0, the maximum principle yieldsu (x, t) �u (x, t) through the
region x�0, t� t1. �

Lemma 3.2. In Lemma3.1 choose furtherε > 0 and let t2 be such that

(
2�C +

(
1 + 2




)
Qmax

)
e−�2t2 �εQmax.

Then

‖S (t) u0‖0,� �Qmax

2�
(1 + ε)

for t� t1 + t2.

Proof. Let u = S (t) u0. By (9) we see that

0�
∫ x

−∞
 (y, t) dy� 1

�
e−�2t e�x. (10)

From (3), it follows that

0 �
∫ x

−∞
� (y, t; 2�) dy� 1

2�
e2�x + 1



e−�2t

∫ ∞

0

e−�t

� + �2 d�
∫ x

−∞
e�y sin

(
y
√

�
)
dy

= 1

2�
e2�x + 1



e−�2t e�x

∫ ∞

0

� sin
(
x
√

�
)

− √
� cos

(
x
√

�
)

(
� + �2

)2 e−�t d�

� 1

2�
e2�x + 1

�

e−�2t e�x

∫ ∞

0

1 + √
�

(� + 1)2
d�

= 1

2�
e2�x + 1

2�

(
1 + 2




)
e−�2t e�x.
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Then

0 � e−�xu (x, t) �e−�xu (x, t) �C e−�2(t−t1) + Qmax

2�

(
e�x +

(
1 + 2




)
e−�2(t−t1)

)

� Qmax

2�
+ εQmax

2�

and the result follows. �

We now infer easily that any ball ofZ� centered at 0 of radius� > �0 is absorbing
in Z� for S (t), where

�0 = Qmax

2�

and if u0 belongs to the ballB� of Z� centered at 0 of radius�, thenS (t) u0 enters
the absorbing set at a timet� t0 and remains in it fort� t0, t0 = t0 (�, �). Indeed,
considering the estimates in more detail, we obtain as a consequence of Lemma 4.1 in
[9] that there exists a constantK = K (t) > 0 depending ont but independent ofu0
such that

‖S (t) u0‖0,� �K (t)
(
1 + ‖u0‖0,�

)
.

For an arbitrary fixed� > 0, let u0 in Z� be such that‖u0‖0,� �� and choose the
constantC of Lemma 3.1 as C = (1 + �)K (t1). Then Lemma3.2 applies and the
claim follows with t0 = t1 + t2.

4. Attractors

To address the existence of the attractors when the existence of the absorbing sets
is known, further properties on the evolution operator are needed. A general condition
(see, for instance, Temam[10, Chapter 1]) is to prove a decomposition of the evolution
in the form

S (t) = S1 (t)+ S2 (t)

that is,S (t) is the perturbation of an operatorS1 (t), which is uniformly compact fort
large, by an operatorS2 (t), which converges to 0 ast → ∞. We start by introducing
S2 (t). For this purpose consider the linear problem

Ut = Uxx − R (u (0, t)) Ux, x < 0, t > 0,
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Ux (−∞, t) = 0, t > 0,

Ux (0, t) = 0, t > 0,

U (x,0) = u0 (x) , x�0,

whereu = S (t) u0.

Lemma 4.1. For u0 given in Z�, there exists a unique classical solution U to the
above problem and the mappingu0 �−→ U (·, t) is continuous fromX0

� into X1
� for

t > 0. Furthermore, U (·, t) �0, and there is a positive constant K such that

‖U (·, t)‖0,� �K ‖u0‖0,� e
−�2t (11)

for t� t1, t1 given by(7).

Proof. The techniques of Theorem2.1 and Lemma2.1 apply directly, to yield a unique
classical solutionU (·, t) ∈ X1

� and its continuous dependence upon initial data. Next,
the bounds

0�U (x, t) ��C
∫ x

−∞
 (y, t − t1) dy,

where C� ‖U (·, t1)‖0,�, t� t1, are derived in exactly the same way as was
Lemma 3.1, so that the estimate (11) follows from (10) and ‖U (·, t)‖0,� �
K (t) ‖u0‖0,�. �

Then the operators

S2 (t) : u0 �−→ U (·, t) , t�0

(U (·, t) being given by Lemma4.1) are continuous fromZ� into itself and for every
ball B�

sup
u0∈B�

‖S2 (t) u0‖0,� → 0 as t → ∞

i.e., we obtain the following proposition.

Proposition 4.1. The operatorsS2 (t) are uniformly contracting inZ�.

Next for t > 0 we defineS1 (t) ∈ C0
(
X0

�, X
1
�

)
by

S1 (t) = S (t)− S2 (t) .
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Lemma 4.2. Let u0 ∈ Z�, and let V = S1 (t) u0. Then, for all t > 0, we have
V (·, t) �0. In addition, there exists a constantC > 0 and independent ofu0 such that

0�Vx (x, t) �Ce2�x (12)

for all x�0 and t� t1.

Proof. Let u = S (t) u0, U = S2 (t) u0, and L be given by (5). Then V =
S1 (t) u0 = u − U satisfiesL (V ) = 0, V (x,0) = 0, V (−∞, t) = 0, Vx (0, t) =
Q(u (0, t)) �Qmin > 0, henceV (x, t) �0 through the regionx�0, t�0. To establish
estimates (12) we write w = Vx and by differentiation we see that

Lw = −wt + wxx − R (u (0, t)) wx = 0, x < 0, t > 0,

w (−∞, t) = 0, t > 0,

w (0, t) = Q(u (0, t)) , t > 0,

w (x,0) = 0, x�0. (13)

Thenw�0 by the maximum principle. The remaining bound in (12) follows from the
claim w (x, t1) �C∗e2�x and a comparison argument. Indeed, letC = max{C∗,Qmax}:
then we deduce thatL

(
w − Ce2�x) = 2C (R (u (0, t))− 2�) e2�x�0 for x < 0 and

t > t1, w (x, t1)− Ce2�x� (C∗ − C) e2�x�0, w (0, t)− C = Q(u (0, t))− C�0, and
so w (x, t) �Ce2�x for all x�0, t� t1. Finally, we check the claim. The solution of
(13) has the representation

w (x, t) =
∫ t

0
Ez (x + s (t)− s (�) , t − �) f (�) d�, (14)

where the densityf solves the integral equation

Q(u (0, t)) = 1

2
f (t)+

∫ t

0
Ez (s (t)− s (�) , t − �) f (�) d�.

We have

|Ez (s (t)− s (�) , t − �)| = 1

2

∣∣∣∣ s (t)− s (�)

t − �

∣∣∣∣ E (s (t)− s (�) , t − �) � Rmax

2
√

4
 (t − �)
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hence

|f (t)| �2Qmax +
(

sup
0��� t

|f (�)|
)
Rmax√




√
t

so that

sup
0��� t∗

|f (�)| �4Qmax,

whereRmax
√
t∗/
�1/2 andmt∗ = t1 for some positive integerm. By induction we

obtain

sup
0���mt∗

|f (�)| �4mQmax = K.

Therefore, for 0� t� t1, it follows from (14)

w (x, t) �K
2

∫ t

0

∣∣∣∣x + s (t)− s (�)

t − �

∣∣∣∣E (x + s (t)− s (�) , t − �) d��I1 (x, t)+ I2 (x, t)

and

I1 (x, t) = K

2
|x|
∫ t

0

E (x + s (t)− s (�) , t − �)

t − �
d��K

2
e4�2t e2�x,

I2 (x, t) = K

2
Rmax

∫ t

0
E (x + s (t)− s (�) , t − �) d��KRmax

√
t

2
√



e4�2t e2�x

hence the desired resultw (x, t1) �C∗e2�x . �

The above Lemma shows that the set
⋃
t� t1 S1 (t)B� is uniformly bounded inX1

2�∩
{u�0}. But X1

2� is embedded compactly inX0
�, then for every ballB� there exists

t0 such that
⋃
t� t0 S1 (t)B� is relatively compact inZ�. We summarize this in the

following statement.

Proposition 4.2. The operatorsS1 (t) are uniformly compact inZ� for t large.

Now we are in a position to state the main result of this section.
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Theorem 4.1. The semigroup{S (t) : t�0} possesses a compact attractorA in Z�
which is global(i.e., it attracts the bounded sets inZ�); in addition, A is the maximal
bounded attractor inZ�.

Proof. We know thatB� = {
u0 ∈ Z� : ‖u0‖0,� ��

}
, � > Qmax/2�, is absorbing in

Z� for S (t) = S1 (t) + S2 (t) and Propositions4.1 and 4.2 hold. We can then apply
Theorem I.1.1 in[10] to the evolution semigroupS (t) in Z� because of the invariance
of the coneZ� under the action of bothS1 (t) and S2 (t). The theorem is proved,A
being the�-limit set of B�. �

5. Approach to equilibrium

The maximal attractorA of Theorem 4.1 contains, in particular, the “permanent
regimes”, i.e., the�-limit sets � (u0) corresponding to all initial datau0. Then the
question of approach to equilibrium arises; precisely, given anyu0, we ask whether the
set � (u0) consists of a single stationary solutionv and the trajectory starting fromu0
converges tov as t → ∞. We investigate the behavior at infinity of positive solutions of
(1) in a case of special interest for the applications, namely when the set of equilibrium
points of the associated semigroup is reduced to one point.

Observe first that the equilibrium solutions of (1) are simply the exponential profiles

v (x) = u exp
(
xR
)
, (15)

whereu > u∗ is a root of the trascendental equation

Q(u) = uR (u)

and R = R (u). A root u exists sinceQ(u)− uR (u)|u=u∗ �Qmin > 0 and Q(u)
−uR (u)|u=∞ = −∞. A simple condition for uniqueness is thatQ(u) /R (u) is a
monotone decreasing function, as indeed is verified in practical examples[11]. Note
also thatv ∈ ZR ⊂ Z�, since

R = R

(
Q(u)

R (u)

)
> R

(
Qmin

Rmax

)
> 2�.

Now define the map

� (u) = 1

2

∫ 0

−∞

(
R

2
u (x)2 + u′ (x)2

)
dx −

∫ u(0)

0
Q(u) du (16)

for u ∈ X1
�. This map is continuous and plays the role of Lyapunov function for the

semigroup{S (t) : t�0}.
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Lemma 5.1. Let u0 be given inZ�, and let 0< s < t . Then

� (S (t) u0)− � (S (s) u0) = −
∫ t

s

d�
∫ 0

−∞
(
uxx − Rux

)2
dx − 1

2

∫ t

s

� (u (0, �)) d�,

whereu = S (t) u0, � (u) being defined by

� (u) = {
Q(u)− Ru

} {(
R − R (u)

)
Q(u)+ R (Q (u)− uR (u))

}
(17)

for u ∈ R.

Proof. We consider the auxiliary function

�a,b (t) = 1

2

∫ b

a

(
R

2
u (x, t)2 + ux (x, t)

2
)
dx,

wherea < b < 0. For t > 0, u = S (t) u0 is a C∞ function of x < 0 and all spatial
derivatives areO

(
e�x
)

as x → −∞. By (1a) the same property holds true foruxt .
Therefore we can differentiate�a,b (t) for t > 0, then integrate by parts, to obtain

�̇a,b (t) = −
∫ b

a

(
uxx − R

2
ux

)
ut dx + uxut |x=bx=a .

Using (1a) we see that

(
uxx − R

2
ux

)
ut = (

uxx − Rux
)2 + 1

2

{
(ux − Ru)

((
R − R

)
ux + R (ux − Ru)

)}
x
,

whereR = R (u (0, t)) andQ = Q(u (0, t)), hence for 0< s < t

�a,b (t)− �a,b (s) = −
∫ t

s

d�
∫ b

a

(
uxx − Rux

)2
dx

− 1

2

∫ t

s

(ux − Ru)
((
R − R

)
ux + R (ux − Ru)

)∣∣x=b
x=a d�

+
∫ t

s

uxut |x=bx=a d�.
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Taking into account thatut is continuous up tox = 0 (Proposition2.1), it follows

�a,b (t)− �a,b (s) → −
∫ t

s

d�
∫ 0

−∞
(
uxx − Rux

)2
dx − 1

2

∫ t

s

� (u (0, �)) d�

+
∫ t

s

Q (u (0, �)) ut (0, �) d�

as a → −∞, b → 0. Since

∫ t

s

Q (u (0, �)) ut (0, �) d� =
∫ u(0,t)

u(0,s)
Q (u) du

and

�a,b (t) → � (S (t) u0)+
∫ u(0,t)

0
Q(u) du

the lemma is proved. �

Now suppose thatQ fulfills the following condition

Q(u)




�Ru if u < u,

= Ru if u = u,

�Ru if u > u,

(18)

where v (x) = uexp
(
xR
)

is an equilibrium solution. A few straightforward conse-
quences of (18) are in order for deducing the main result of this section, Theorem5.1.
First, by monotonicity ofR, we see thatQ(u) �Ru > Ru for u > u andQ(u) �Ru <
Ru for u < u, so that the equilibrium solution is unique. Furthermore, from (17), we
get

� (u) �0 for all real u and � (u) = 0 only if u = u. (19)

Finally, by Lemma 5.1 and (19), condition � (S (t) u0) = const for all t > 0
yields uxx = Rux , u (0, t) = u for all t�0, where u = S (t) u0. Thereforeu =
uexp

(
xR
) = v.

Theorem 5.1. Let Q satisfy condition(18) and letu0 be given inZ�. ThenS (t) u0 → v

in X1
� as t → ∞, wherev is the unique stationary solution(15).

Proof. Let  ∈ Z� denote any point of the�-limit set � (u0) of u0 (i.e., there exists
tn → ∞ such thatS (tn) u0 →  in X0

�). Then, by Lemma2.1, we haveS (t + tn) u0 =
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S (t) S (tn) u0 → S (t) in X1
� for all t > 0. On the other hand, the functiont �−→

� (S (t) u0) is nonincreasing by Lemma5.1 and (19), and bounded from below at
infinity by (8), hence limt→∞ � (S (t) u0) = l (say) exists. Consequently, by continuity
of �, we have� (S (t)) = l for all t > 0. Thus� (u0) = {v} and S (t) u0 → v in
X1

�. �

Remark 5.1. In combustion applications, where specific parametric submodels for ki-
netics and transient flame are considered to assess quantitative trends, condition (18)
expresses a constraint among relevant physical parameters such as activation energy,
latent heat, characteristic times, etc.

6. Concluding remarks

After a brief presentation of a physical model drawn from combustion theory and
the governing equations, we have treated the following questions about problem (1):
nonlinear stability (the solutions remain bounded ast → ∞), dissipativity (existence
of absorbing sets) and description of the long-term dynamics (existence of a global
attractor, approach to equilibrium). All results are proved under the key assumption
H3, which amounts to saying that the burning surface is strongly irradiated by an
external source. Therefore, a mathematical support is given to the general idea that
irradiation favors stability, as expected on the basis of experimental observations. The
physical explanation is that large radiant flux increases the energy storage of the burning
material, thus yielding the gradual conversion of the radiation-sustained combustion
wave into an ablation wave which makes burning more and more stable.

However, despite the existence of global solutions, our treatment of stability based
on comparison arguments is not immediately applicable if condition H3 is not satisfied.
Indeed, in this case it could happen that lim inft→∞ R (u (0, t)) = 0 and the solution
could exhibit some dramatic behaviors, such as deflagration, due to oscillations of
increasing amplitude of the boundary valueu (0, t), or extinction, in the limiting case
Qmin = 0 and Neumann data vanishing below the threshold valueu∗. Therefore, to
fully describe the asymptotic dynamics, we need now a deeper insight into the more
involved interplay between burning rateR and heat fluxQ, as suggested by the results of
the linearized problem[11]. Another (related) question is the extension of the stability
analysis to time-dependent Neumann dataQ(u, t), assumed to “stabilize” ast → ∞
[2]. We conjecture that the long-term dynamics is described in some sense by the
asymptotically dynamical system corresponding toQ(u) ≡ Q(u,∞). Work in these
directions is in progress.

Appendix A

A.1. Proof of Proposition2.1

Consider the following representation of the solutionu to the problem (1)
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u (x, t) =
∫ 0

−∞
E (x + s (t)− z, t) u0 (z) dz

+
∫ t

0
E (x + s (t)− s (�) , t − �) [Q(v (�))− v (�) R (v (�))] d�

+
∫ t

0
Ez (x + s (t)− s (�) , t − �) v (�) d�, (A.1)

wheres (t) = − ∫ t0 R (v (�)) d�. Then the boundary valuev (t) = u (0, t) is the solution
of the integral equation

v (t) = 2
∫ 0

−∞
E (s (t)− y, t) u0 (y) dy

+ 2
∫ t

0
E (s (t)− s (�) , t − �) [Q(v (�))− v (�) R (v (�))] d�

+ 2
∫ t

0
Ez (s (t)− s (�) , t − �) v (�) d�

= w (t)+ (J1v) (t)+ (J2v) (t) . (A.2)

We proceed in four steps.
Step1: By time translation and relabeling of variables, from now on we may suppose

u0 ∈ X1
�. From the definition ofw, the identity

w′ (t) = −2Ez(s(t), t)u0(0)+ 2
∫ 0

−∞
Ez(s(t)− y, t)

[
u′

0(y)− R(v(t))u0(y)
]
dy

and the estimates

∫ 0

−∞
e�yE(s(t)− y, t) dy�1;

∫ 0

−∞
e�y |Ez(s(t)− y, t)| dy� 1√


t
(A.3)

it follows easily

|w (t)| �2‖u0‖0,� ; ∣∣w′ (t)
∣∣ � C√

t
‖u0‖1,�

for t > 0.
Step2: Since v (t) is continuous att = 0, we have(J1v) (t) ∼ (1 + |v (0)|) t1/2,

(J2v) (t) ∼ |v (0)| t1/2 as t → 0. Now assumev′ (t) ∼ t−� as t → 0, where
0 < � < 1. By boundedness ofR, Q and their derivatives, by use of the integral
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∫ t
0 (t − �)−1/2 �−� d� = Ct1/2−� (0�� < 1) and by the identities

(J1v)
′ (t) = 2E (s(t), t) [Q(v(0))− v(0)R (v(0))]

+ 2
∫ t

0
E(s(t)− s(�), t − �)

d

d�
[Q(v(�))− v(�)R (v(�))] d�

− 2
∫ t

0
Ez(s(t)− s(�), t − �) [R(v(t))− R(v(�))]

×[Q(v(�))− v(�)R (v(�))] d�

and

(J2v)
′ (t) = −E (s(t), t) s (t)

t
v(0)

−
∫ t

0
E (s(t)− s(�), t − �)�s(t, �)v′(�) d�

+
∫ t

0
Ez (s(t)− s(�), t − �) [R(v(t))− R(v(�))] �s(t, �) v(�) d�

−
∫ t

0
E (s(t)− s(�), t − �)

[
�
�t

�s(t, �)+ �
��

�s(t, �)

]
v(�) d�,

where�s(t, �) = s(t)−s(�)
t−� , we find

(J1v)
′ (t) ∼ (1 + |v (0)|)

(
t−1/2 + t1/2−� + t1/2

)
,

(J2v)
′ (t) ∼ |v (0)|

(
t1/2 + t−1/2

)
+ (1 + |v (0)|) t1/2−�

as t → 0. Such asymptotic behaviors suggest (see[1, Section I]) for the functional
setting of eq. (A.2) the Banach spaceY�,� consisting of those functionsv ∈ C0

[
0, �

]∩
C1 (0, �

]
such that the norm

‖v‖�,� = sup
0<t<�

|v(t)| + sup
0<t<�

∣∣t�v′(t)
∣∣ < ∞

for some� > 0 and 1/2 < � < 1. Indeed, the above heuristic estimates can be made
rigorous and we find

‖(J1 + J2) v‖�,� �C
(
1 + ‖v‖�,�

)
��−1/2
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for all v ∈ Y�,�. Similarly, we show that

‖(J1 + J2) v1 − (J1 + J2) v2‖�,� �C ‖v1 − v2‖�,� ��−1/2

for all v1, v2 in a given closed ball centered at 0 inY�,�. Sincew may be considered
as a known term, andw ∈ Y�,� by Step 1, we conclude that there exists a sufficiently
small � such that the operatorJ defined by

Jv = w + (J1 + J2) v

is a contraction which maps the closed ball centered atw in Y�,� into itself. Hence,
the time derivativev′ (t) = ut (0, t) is C1 for 0 < t��, and, by standard continuation
arguments, for allt > 0.

Step 3: Continuity of ut (0, t) implies continuity of ut (x, t) up to the boundary
x = 0. Without entering into more details, we only observe that differentiation with
respect to time of (A.1) yields a three-termed expression

ut (x, t) = I0 (x, t)+ I1 (x, t)+ I2 (x, t) ,

where

I0 (x, t) = −Ez(x + s (t) , t)�0(0)

+
∫ 0

−∞
Ez(x + s (t)− y, t)

[
u′

0(y)− R (v (t)) u0(y)
]
dy,

I1 (x, t) = E (x + s (t) , t) F (v (0))

−
∫ t

0
Ez(x + s (t)− s(�), t − �) [R(v(t))− R(v(�))] F (v (�)) d�

+
∫ t

0
E(x + s (t)− s(�), t − �)

d

d�
F (v (�)) d�,

I2 (x, t) = −E(x + s (t) , t)
x + s (t)

2t
v (0)

+ 1

2

∫ t

0
Ez(x + s (t)− s(�), t − �)

×[R(v(t))− R(v(�))]

[
x

t − �
+ �s(t, �)

]
v (�) d�

− 1

2

∫ t

0
E(x + s (t)− s(�), t − �)

[
�
�t

�s(t, �)+ �
��

�s(t, �)

]
v (�) d�
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+
∫ t

0
Ez(x + s (t)− s(�), t − �)v′ (�) d�.

Then it is easy to check the following limits asx → 0:

I0 (x, t) → d

dt

∫ 0

−∞
E (s (t)− y, t) u0 (y) dy,

I1 (x, t) → 1

2
(J1v)

′(t),

I2 (x, t) → 1

2
(J2v)

′(t)+ 1

2
v′ (t) .

It follows from (A.2) that ut (x, t) → v′ (t) for t > 0. Finally, the continuity of
v′ (t) and the uniform convergence ofut (x, t) on compact time intervals give the
two-dimensional continuity ofut at x = 0 for t > 0.

Step4: ut (·, t) belongs toX0
� for all t > 0. This property follows from the repre-

sentation (A.1) by inspection.

A.2. A technical lemma

The densities� (t) and 	 (t) in the representation (2) of u (x, t) are determined by
imposing the boundary conditions

lim
x→0

u (x, t) = � (t) , lim
x→0

ux (x, t) = Q(� (t))

hence, on the basis of the discontinuity property of the single-layer potential[3, Chapter
13] they satisfy the pair of integral equations

� (t) =
∫ 0

−∞
E(s(t)− y, t) u0(y) dy

+2
∫ t

0
E(s (t)− s (�) , t − �)

[
Q(� (�))− ε

	 (�)√
�

]
d�,

	 (t) =
√
t

ε

∫ 0

−∞
Ez(s(t)− y, t) u0(y) dy

+ 2
√
t

∫ t

0
Ez(s (t)− s (�) , t − �)

[
1

ε
Q (� (�))− 	 (�)√

�

]
d�.

A local solution of this system may be constructed by a fixed point technique. We
write these equations more compactly as a vector equation

v = K (v, u0),
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where v = (�,	) and the components of the vector valued operatorK (v, u0) =
(K1(v, u0),K2(v, u0)) are the right sides of the above equations, respectively. It has
been established in[9] that, for datau0 in X0

�, there existε > 0 and � > 0 such

that K possesses a unique fixed point in the spaceY = C0
[
0, �

]⊕C0
[
0, �

]
, equipped

with the supremum norm. In addition, ifu0 belongs to a given bounded set ofX0
�, �

is bounded away from zero andK (v, u0) is a contraction mapping with respect tov,
uniformly with respect tou0.

Now, let u0n, �0n, 	0n and sn be defined as in the proof of Lemma2.1. Then
vn = (

�n,	n
) ∈ Y satisfiesvn = K (vn, u0n), hence

‖vn − v‖Y � ‖K (vn, u0n)− K (v, u0n)‖Y + ‖K (v, u0n)− K (v, u0)‖Y .

We have

‖K (vn, u0n)− K (v, u0n)‖Y �� ‖vn − v‖Y ,

where 0< � < 1, and by the first estimate in (A.3)

|K1(v, u0n)−K1(v, u0)| =
∣∣∣∣
∫ 0

−∞
E(s(t)− y, t) (u0(y)− u0n(y)) dy

∣∣∣∣
� ‖u0n − u0‖0,�

∫ 0

−∞
e�yE(s(t)− y, t) dy

� ‖u0n − u0‖0,� .

Likewise, by the second estimate in (A.3), we have

|K2(v, u0n)−K2(v, u0)| =
√
t

ε

∣∣∣∣
∫ 0

−∞
Ez(s(t)− y, t) (u0(y)− u0n(y)) dy

∣∣∣∣
�

√
t

ε
‖u0n − u0‖0,�

∫ 0

−∞
e�y |Ez(s(t)− y, t)| dy

� 1

ε
√



‖u0n − u0‖0,� .

Combining all of these estimates, we conclude that

‖vn − v‖Y �
(

1 + 1

ε
√




)
(1 − �)−1 ‖u0n − u0‖0,� → 0 asn → ∞

i.e., �n → � and 	n → 	 uniformly on 0� t��.
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