
Cancer Cell

Review
The HECT Family of E3 Ubiquitin Ligases:
Multiple Players in Cancer Development

Francesca Bernassola,1,5 Michael Karin,2 Aaron Ciechanover,3 and Gerry Melino1,4,*
1Biochemistry IDI-IRCCS Laboratory, Department of Experimental Medicine and Biochemical Sciences,
University of Rome ‘‘Tor Vergata,’’ Via Montpellier 1, 00133 Rome, Italy
2Laboratory of Gene Regulation and Signal Transduction, School of Medicine, University of California, San Diego, La Jolla,
CA 92093-0723, USA
3Cancer and Vascular Biology Center, The Rappaport Faculty of Medicine and Research Institute,
Technion-Israel Institute of Technology, Efron Street, Bat Galim, Haifa 31096, Israel
4Medical Research Council Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, Leicester LE1 9HN, UK
5Present address: IEO, c/o IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy
*Correspondence: gm89@le.ac.uk
DOI 10.1016/j.ccr.2008.06.001

The involvement of the homologous to E6-AP carboxyl terminus (HECT)-type E3s in crucial signaling path-
ways implicated in tumorigenesis is presently an area of intense research and extensive scientific interest.
This review highlights recent discoveries on the ubiquitin-mediated degradation of crucial tumor suppressor
molecules catalyzed by the HECT-type E3s. By providing a portrait of their protein targets, we intend to link
the substrate specificity of HECT-type E3s with their contribution to tumorigenesis. Moreover, we discuss the
relevance of targeting the HECT E3s, through the development of small-molecule inhibitors, as an anticancer
therapeutic strategy.
Introduction
Protein ubiquitylation is a highly ordered multistep enzymatic

process accomplished by the formation of an isopeptide bond

between the C-terminal Gly76 carboxyl group of ubiquitin and

the 3-amino group of an internal Lys residue of the substrate

(Hershko and Ciechanover, 1998; Ciechanover, 1994, 2005;

Hershko, 2005).

After initial ATP-dependent activation by an E1 ubiquitin-acti-

vating enzyme (E1), the C-terminal carboxyl group of ubiquitin

forms a high-energy thioester bond with an active Cys group of

the E1 enzyme. Activated ubiquitin is then transferred to a spe-

cific Cys residue of one of a family of E2 ubiquitin-conjugating

enzymes (E2s) via a similar thioester linkage. The E3 ubiquitin li-

gases (E3s) play a critical role in the ubiquitin conjugation cas-

cade by recruiting ubiquitin-loaded E2s, recognizing specific

substrates, and facilitating or directly catalyzing ubiquitin trans-

fer to either the Lys residues (in most cases) or the N terminus

of their molecular targets. E3s modify protein substrates by

either monoubiquitylation or sequential attachment of ubiquitin

molecules to form polyubiquitin chains. In contrast to this canon-

ical pathway, monoubiquitylation of ubiquitin-binding domain

(UBD)-containing proteins can occur independently of E3s,

through direct recruitment of ubiquitin-loaded E2 enzymes by

UBDs (Hoeller et al., 2007).

The fate of ubiquitylated proteins is determined by the nature

of ubiquitin attachment and the type of isopeptide linkage form-

ing the polyubiquitin chain. When ubiquitin tagging to intracellu-

lar substrates occurs through Lys48-linked polyubiquitin chains,

proteins are generally labeled for 26S proteasome-mediated

recognition and proteolysis. Monoubiquitylation (Mukhopad-

hyay and Riezman, 2007) and the formation of multiubiquitin

chains by isopeptide bonds other than Lys48, such as Lys6

(Nishikawa et al., 2004), Lys29/33 (Chastagner et al., 2006;
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Al-Hakim et al., 2008), and Lys63 (Deng et al., 2000; Wang et al.,

2001; Geetha et al., 2005; Adhikary et al., 2005; Herman-Bachin-

sky et al., 2007), regulate protein degradation as well as a wide

array of cellular activities in a proteolysis-independent manner.

In addition, nonproteolytic Lys6 and Lys11 polyubiquitin linkages

have been identified in vivo, and their accumulation correlates

with the pathogenesis of neurodegenerative disorders (Cripps

et al., 2006; Bennett et al., 2007). With few exceptions, single

or multiple monoubiquitylation of cell surface receptors triggers

receptor internalization and trafficking to the endosomal-lyso-

somal degradation pathway (Levkowitz et al., 1999; Haglund

et al., 2003; Di Fiore et al., 2003).

Based on the sequence homology of their E2-binding do-

mains, E3s can be generally classified into three subfamilies:

the homologous to E6-AP carboxyl terminus (HECT) domain-

containing E3s, the really interesting new gene (RING) finger do-

main-containing E3s, and the U box E3s.

The relevance of the E3s in several biological processes is em-

phasized in vivo by the observation that their genetic alteration,

abnormal expression, or dysfunction is often accompanied by

the occurrence of pathological disorders, including cancer. Sev-

eral enzymes belonging to the RING-finger subfamily of E3s have

been classified as either tumor suppressors or oncoproteins. It is

only recently that various HECT E3s have emerged as crucial

regulators of cancer development and therapy. Indeed, in view

of their substrate specificity, the E3s represent potentially attrac-

tive targets for anticancer treatment. This review will mainly em-

phasize the oncogenic activity of a few members of the HECT

subfamily of E3s.

General Overview of the HECT-Type E3s
The key signature of this E3 subfamily is the HECT domain,

a large C-terminal module of approximately 350 amino acids
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that was originally characterized in the E6-associated protein

(E6-AP). The HECT domain associates with the E2 and provides

the catalytic E3 activity (Huibregtse et al., 1995).

The HECT E3s are unique among the E3s in that they possess

intrinsic catalytic activity. Their reaction cycle consists of three

steps: binding to an E2, loading ubiquitin on themselves through

the formation of a ubiquitin-thioester intermediate with the cata-

lytic Cys located at the C terminus of the HECT domain, and

transfer of ubiquitin to the target protein. Thus, unlike the

RING-finger E3s, which, although able to promote the formation

of ubiquitin chains, lack a catalytic site, the HECT E3s directly

catalyze substrate ubiquitylation.

The HECT domain consists of a larger N-terminal lobe contain-

ing the E2-binding site and a smaller C-terminal lobe including

the active-site Cys residue. Structural studies have revealed

that these two lobes are connected by a flexible hinge region,

which is critical for juxtaposing the catalytic Cys residues of

the E2 and E3 (i.e., the HECT domain) during ubiquitin transfer.

A conformational change involving an alteration in the relative

orientation of the two lobes is thought to facilitate the transthio-

lation reaction (Verdecia et al., 2003; Huang et al., 1999; G.M.

and A. Tramontano, unpublished data).

The substrate specificity of the HECT-type E3s is dictated by

protein-protein interaction domains, which account for their

classification into three further subfamilies: HERC E3s contain-

ing RCC1-like domains (RLDs), C2-WW-HECT E3s possessing

tryptophan-tryptophan (WW) domains, and SI(ngle)-HECT E3s

lacking either RLDs or WW domains (Scheffner and Staub,

2007).

The C2-WW-HECT E3s likely represent the best characterized

subgroup of HECT ligases. They consists of monomeric proteins

with a common general modular architecture composed of an

N-terminal protein kinase C (PKC)-related C2 domain, two to four

WW protein-interacting domains, and a C-terminal HECT do-

main (Schwarz et al., 1998) (Figure 1).

The C2 domain binds Ca2+ and phospholipids and is involved

in targeting the HECT E3s to intracellular membranes (Dunn

et al., 2004). The C2-WW-HECT E3s are found in several subcel-

lular locations, including the plasma membrane, early and late

endosomal compartments, and lysosomes (Marchese et al.,

2003; Angers et al., 2004). Some family members can transiently

enter the nucleus to target nuclear substrates for protein ubiqui-

tylation (Hamilton et al., 2001; Neumann et al., 2003; Gwizdek

et al., 2005; Trotman et al., 2007). The WW domains mediate li-

gase-substrate associations through interactions with a variety

of proline-rich motifs and proline-containing phosphoserine/

phosphothreonine sequences of the protein substrate. WW do-

mains display preference for the PPXY (PY) consensus se-

quence, though atypical interactions with unrelated modular do-

mains in target (Qiu et al., 2000; Marchese et al., 2003; Wegierski

et al., 2006) or adaptor and regulatory proteins (Courbard et al.,

2002; Oberst et al., 2007) have also been reported.

In addition to the conformational change occurring within the

HECT domain, further mechanisms controlling the catalytic

properties of the C2-WW-HECT E3s are based on the establish-

ment of intramolecular interactions (Gallagher et al., 2006; Wies-

ner et al., 2007). As an example, the C2 domain and a region of

the HECT module in close proximity to the catalytic Cys of

Smurf2 as well as of other C2-WW-HECT E3s are engaged in
inhibitory associations. By interfering with ubiquitin thioester

formation, these interactions negatively regulate the E3 ubiquity-

lating activity and ultimately prevent its degradation (Wiesner

et al., 2007).

The C2-WW-HECT group is conserved from yeast to mam-

mals, and its evolution is schematically summarized in the phylo-

genetic tree shown in Figure 1. There is a single Nedd4 homolog

in S. cerevisiae, while three orthologs exist in S. pombe and flies.

In mammals, the family has further diverged by generating nine

homologs (Figure 1).

The C2-WW-HECT E3s typically regulate endocytosis and

trafficking of plasma membrane proteins through monoubiquity-

lation and the stability of both transmembrane receptors and

intracellular substrates via polyubiquitylation. Their subcellular

distribution, catalytic activity, and substrate specificity are sub-

jected to many levels of regulation, including posttranslational

modifications and interaction with adaptor and accessory pro-

teins (Shearwin-Whyatt et al., 2006). Adaptor proteins generally

possess PY motifs, which mediate direct interaction with WW

domains of the C2-WW-HECT E3s and facilitate their recruitment

to specific substrates (Shearwin-Whyatt et al., 2004; Oliver et al.,

2006). Alternatively, adaptor molecules can bridge between

C2-WW-HECT E3s and protein targets, which lack canonical

binding motifs (Qiu et al., 2000; Kavsak et al., 2000; Marchese

et al., 2003; Wegierski et al., 2006).

The oncogenic potential of the HECT-type E3s is highlighted

by the identification of a number of tumor suppressor molecules

among their protein substrates, as well as by the discovery of ge-

netic aberrations and altered expression patterns of some of the

family members in human cancers. Due to the crucial role ex-

erted by the HECT E3 adaptors and protein modifiers, it is pos-

sible that dysregulation of their regulators would also influence

cellular transformation. The main features of potentially onco-

genic HECT E3s and their regulators are summarized in Table 1.

SI(ngle)-HECT E3s
The best studied SI(ngle)-HECT E3s are E6-AP, Huwe1 (HECT,

UBA, and WWE domain containing 1), and E3 isolated by differ-

ential display (EDD), all of which have been associated with

tumor development.

E6-AP

The founding member of the HECT E3 family is E6-AP (also

called UBE3A), a 100 kDa polypeptide that interacts with the

E6 protein of the cervical cancer-related human papillomavirus

(HPV) (reviewed in Narisawa-Saito and Kiyono, 2007). E6-AP

forms a stable complex with the adaptor protein E6. The dimeric

complex binds to and targets p53 for ubiquitin-mediated prote-

olysis, thus eventually interfering with the negative growth-regu-

lating activities of this tumor suppressor protein (Scheffner et al.,

1990; Huibregtse et al., 1991, 1993a; Scheffner et al., 1994)

(Figure 2).

Though E6-independent substrates have been identified (Ku-

mar et al., 1999), E6-AP does not recognize p53 in the absence

of the viral oncoprotein E6 (Talis et al., 1998). The recognition of

E6 and p53 requires an approximately 200 amino acid region of

E6-AP, located at the N-terminal end of the HECT domain (Hui-

bregtse et al., 1993b). The E6:E6-AP complex binds to the DNA-

binding domain of p53, which becomes rapidly ubiquitylated and

is targeted to proteasomes (Huibregtse et al., 1991).
Cancer Cell 14, July 2008 ª2008 Elsevier Inc. 11
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Figure 1. Phylogenetic Relationship Tree of Different Members of the C2-WW-HECT Family of E3s
(A) Orthologs of Nedd4 have been identified in yeast (red), fly (blue), and mouse and human (black). Itch clusters with WWP1 and WWP2, while Nedd4-1 and 2, the
Smurfs, and NEDL1 and 2 form separate clusters.
(B) The C2-WW-HECT E3 modular structure consists of an N-terminal Ca2+/lipid-binding (C2) domain (yellow rectangles), a central region containing multiple
WW domains (red squares), and a ubiquitin-protein ligase HECT domain (teal rectangles). The HECT domain contains a conserved catalytic Cys residue involved
in the formation of a ubiquitin-thioester intermediate.
The ability to promote p53 degradation is an exclusive prereq-

uisite of E6 from the high-risk HPV types (type 16 and 18). On the

contrary, the E6 proteins from low-risk HPV types do not stably

interact with E6-AP (Huibregtse et al., 1991). This provides a rea-

sonable explanation for the relatively weak interaction of low-risk

E6s with p53 and their inability to induce degradation of p53.

Consistently, the majority of cervical cancer associated with

the high-risk HPV types harbors a wild-type p53 gene, and the

protein levels of p53 are extremely low. E6:E6-AP-induced inac-

tivation of p53 plays a role in the development of more than 90%

of human cervical carcinomas.

Although several other targets of E6-AP have been suggested

as potential mediators of its tumorigenic activity (Liu et al.,

2005a), the major contribution of E6-AP to tumor development

is thought to be achieved through the inactivation of p53.

Huwe1

Huwe1 (also named ARF-BP1, E3Histone, HectH9, LASU1,

Mule, and Ureb1) is a large protein (�500 kDa) whose function

remains controversial. The substrates reported for this E3 in-

clude Cdc6 (Hall et al., 2007), histones (Liu et al., 2005b), Mcl-1

(Zhong et al., 2005), c-Myc (Adhikary et al., 2005), and p53 (Chen

et al., 2005a). Probably the most puzzling aspect of the contro-

versy surrounding this E3 is apparent from two studies published

in the same issue of the journal Cell that reported entirely oppo-

site phenotypes (both observed in U2OS cells) following silenc-

ing of Huwe1 (Chen et al., 2005a; Zhong et al., 2005). The two

divergent effects (i.e., increased survival versus increased apo-

ptosis) were linked to the ubiquitin-mediated degradation of

either Mcl-1 (an antiapoptotic protein) or p53 (a proapoptotic

protein).

Although Huwe1 targets Mcl-1 for protein ubiquitylation, ac-

cess of the E3 to Mcl-1 is not evident until cells are exposed to

DNA-damaging agents (Zhong et al., 2005). As reported by
12 Cancer Cell 14, July 2008 ª2008 Elsevier Inc.
Chen and colleagues (2005a), under unstressed conditions,

Huwe1 directly binds to and ubiquitylates p53 (Figure 2). It was

suggested that the tumor suppressor ARF might bind to the

HECT domain of Huwe1 and inhibit its ligase activity, thus pre-

venting p53 protein ubiquitylation (Chen et al., 2005a). Experi-

ments conducted in a HDM2 null genetic background have con-

firmed that ARF-induced stabilization of p53 also involves

Huwe1. However, others have been unable to demonstrate the

inhibitory activity of ARF toward Huwe1 (Adhikary et al., 2005).

More recently, Huwe1 was shown to be incapable of control-

ling p53 abundance in response to DNA-damage stress, while

other substrates such as Mcl-1 and Cdc6 are ubiquitylated and

degraded (Hall et al., 2007). In addition, the steady-state protein

levels of p53 are not increased by depletion of Huwe1 in neuro-

blastoma cells (Zhao et al., 2008).

Despite this unresolved controversy in the field, it is interesting

to note that the Huwe1 gene is highly expressed in a significant

proportion of lung and breast carcinomas (Adhikary et al., 2005;

Chen et al., 2005a). Huwe1 overexpression has also been asso-

ciated with colorectal carcinomas, in which the expression of the

E3 directly and inversely correlates with tumor stage and p53

protein levels, respectively (Adhikary et al., 2005; Yoon et al.,

2005). The majority of colon cancer samples displaying reduced

or absent expression of p53 do not harbor p53 mutations.

Finally, it was also suggested that Huwe1 assembles Lys63-

linked polyubiquitin chains on c-Myc and that this modification

is required for gene activation by c-Myc, allowing the interaction

of c-Myc with the p300 coactivator (Adhikary et al., 2005). How-

ever, other data seem to contradict this hypothesis. First, post-

translational modifications of c-Myc do not appear to be required

for its interaction with p300, because this complex can be effi-

ciently reconstituted in vitro using bacterially expressed (and

therefore unmodified) proteins (Faiola et al., 2005; Vervoorts
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Table 1. The HECT Family of E3s and Their Involvement in Cancer

E3 Substrate(s)

Outcome of Substrate

Ubiquitylation Adaptors/Regulators Biological Function Alterations in Cancer

E6-AP p53 proteasomal degradation E6 apoptosis infection by high-risk HPV

in cervical carcinomas

Huwe1 p53 proteasomal degradation ARF apoptosis, growth arrest overexpression in breast,

lung, and colorectal

carcinomas

EDD TopBP1 proteasomal degradation unknown DNA damage amplification and

overexpression in breast

and ovarian cancers

Nedd4-1 PTEN, Hgs, Eps15 proteasomal degradation,

cytoplasmic/nuclear

shuffling

unknown apoptosis, genome

integrity, endocytosis

overexpression in bladder

and prostate carcinomas

Nedd4-2 Smad2, Smad4,

TbR-I/II

proteasomal degradation Smad6, Smad7 apoptosis, growth arrest unknown

Itch p73, p63, Notch1,

c-Jun

proteasomal degradation Numb apoptosis, differentiation unknown

WWP1 p53, Notch1,

KLF2, KLF5, Smad2,

Smad4, TbR-I/II

proteasomal degradation,

nuclear export

Smad2, Smad6,

Smad7

apoptosis, growth arrest amplification and

overexpression in prostate

and breast cancers

Smurf1 Smad1, Smad4,

Smad5, TbR-I/II,

BMP-RI/II

proteasomal/lysosomal

degradation

Smad6, Smad7 apoptosis, growth arrest amplification and

overexpression

in pancreatic cancers

Smurf2 Smad1, Smad2,

Smad4, Smad5,

TbR-I/II

proteasomal/lysosomal

degradation

Smad2, Smad7 apoptosis, growth arrest overexpression in

esophageal squamous cell

carcinomas

TopBP1, topoisomerase IIb binding protein; BMP-R, bone morphogenetic protein receptor.
et al., 2003, 2006). Second, Huwe1 has recently been found to

ubiquitylate N-Myc through Lys48-mediated linkages and target

it for destruction by the proteasome (Zhao et al., 2008).

As Huwe1 has only recently become a target of research, it is

clear that more time is required to resolve the various published

discrepancies.

C2-WW-HECT E3s
Nedd4

Nedd4 is the product of the neural precursor cell-expressed de-

velopmentally downregulated gene 4-1 (Nedd4-1). Nedd4-1 and

its closely related homolog Nedd4-2 were originally implicated in

regulation of fluid and electrolyte homeostasis by controlling the

surface abundance of epithelial cell sodium channel subunits

(Staub et al., 1997; Harvey et al., 1999). Recently, however, the

identification of the tumor suppressor PTEN as a substrate for

Nedd4-1 has extended its role to cancer development. The

PTEN gene, encoding a plasma membrane lipid phosphatase

that antagonizes phosphatidylinositol 3-kinase (PI3K)/AKT sur-

vival signaling, is frequently mutated or deleted in human can-

cers. Nedd4-1-mediated ubiquitylation of PTEN delivers a dual

signal for PTEN fate. Polyubiquitylation by Nedd4-1 is thought

to target PTEN for proteasomal degradation (Wang et al.,

2007), while covalent attachment of a single ubiquitin molecule

favors its nuclear translocation (Trotman et al., 2007) (Figure 3).

An alternative inactivation pathway of PTEN during tumorigene-

sis occurs as a result of Nedd4-1 overexpression in human blad-

der and prostate carcinomas, in which aberrant degradation of

PTEN would promote AKT signaling and ultimately provide cell
survival advantage (Wang et al., 2007). The oncogenic activity

of Nedd4-1 is further corroborated by its ability to cooperate

with K-Ras in inducing cellular transformation in a PTEN-depen-

dent fashion.

Similarly to the HDM2:p53 paradigm, Nedd4-1 can also pro-

mote PTEN nuclear import and cytoplasmic/nuclear shuffling by

targeting Lys289 and Lys13 for monoubiquitylation (Trotman

et al., 2007). Nuclear transport of PTEN would potentiate its newly

discovered nuclear function in controlling chromosomal integrity

and cell death (Trotman et al., 2007; Shen et al., 2007) (Figure 3).

The dual behavior of Nedd4-1 may be governed by several fac-

tors, including amount, subcellular localization, regulation by

posttranslational modifications, and availability of protein adap-

tors for the E3. The regulatory pathways governing Nedd4 activity

were elegantly reviewedby Shearwin-Whyatt et al. (2006). Of note,

the enzymatic activity of the HECT E3s can be modulated by their

interaction with adaptors. As an example, the ability of the S. cer-

evisiae ortholog of Nedd4, Rsp5 (Figure 1), to switch from mono-

to polyubiquitylation of its substrates is strictly dependent on

availability of the adaptors Bul1p and Bul2p (Helliwell et al.,

2001). No less relevant, modifications of PTEN would also deter-

mine its fate by modulating the levels of ubiquitin conjugation.

An additional controversy in the field has been brought to light

by a recent report showing that knockout of Nedd4-1 does not

influence degradation or subcellular localization of PTEN (Fou-

ladkou et al., 2008). It remains a challenge for future research

to further validate a role for Nedd4-1 as a master regulator of

PTEN and to identify the physiological signals that trigger PTEN

destruction versus nuclear translocation.
Cancer Cell 14, July 2008 ª2008 Elsevier Inc. 13
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Figure 2. Ubiquitin-Mediated Mechanisms of p53 Inactivation by HECT E3s
p53 inactivation plays a primary role in human tumorigenesis. Besides gene mutation or deletion, accelerated degradation (A and B) and cytoplasmic seques-
tration (C) of p53 may account for the loss of its tumor-suppressive transcriptional activity.
(A and B) Two SI(ngle)-HECT E3s have been implicated in aberrant ubiquitin-dependent p53 proteolysis in human cancers: E6-AP catalyzes p53 ubiquitylation by
acting in concert with the viral oncoprotein E6 as an auxiliary factor (A), and similarly to the ARF-HDM2/p53 axis, Huwe1-induced ubiquitin proteasomal degra-
dation of p53 is repressed by the tumor suppressor ARF (B). Huwe1 possesses a C-terminal HECT domain, which is responsible for its ubiquitin ligase activity.
(C) WWP1-mediated ubiquitylation of p53 is likely to generate multiubiquitin chains by isopeptide bonds other than Lys48. This modification targets p53 for nu-
clear export and increases its protein stability in the cytoplasmic compartment. Reduced levels of p53 in the nucleus would hence diminish the ability of p53 to
transactivate its target promoters.
In addition, it has been proposed that Nedd4 may play a role in

regulating the initial sorting events that promote ligand-depen-

dent endocytosis of receptor tyrosine kinases (RTKs). Nedd4-

mediated ubiquitylation of endocytic adaptors, involved in cou-

pling ubiquitylated membrane cargo to the endocytic machinery,

would promote the disassembly or inactivation of multiprotein

endocytic complexes and thus negatively regulate receptor en-

docytosis (Polo et al., 2002; Katz et al., 2002). These findings

provide grounds for speculating that overexpression of Nedd4-1

may contribute to tumorigenesis by inhibiting endocytosis of

activated RTKs, thereby enhancing receptor activation.

WWP1

A potential oncogenic role for WW domain-containing protein 1

(WWP1) has been suggested by genetic and functional analyses

in human cancers. Gene amplification has been detected in ap-

proximately 40% of prostate and breast primary tumors (Chen

et al., 2007a, 2007b). The expression of WWP1 has been found

to be frequently upregulated at the mRNA and protein level in

both tumor types. Knockdown of WWP1 induces growth arrest

and apoptosis in breast epithelial cancer cell lines, substantiat-

ing the concept that WWP1 promotes cell proliferation and sur-

vival of tumor cells (Chen et al., 2007b).

A recent report has revealed that p53 acts as a substrate for

WWP1 (Laine and Ronai, 2007). Binding of WWP1 to the p53

DNA-binding domain results in p53 ubiquitylation. The associa-

tion is not mediated through canonical WW-PY interactions,

though it is reinforced by the presence of the p53 PY motif. In

contrast to Huwe1, WWP1-mediated ubiquitylation of p53 pro-

motes its nuclear export and accumulation in the cytoplasm,

which results in diminished p53 transcriptional activity (Figure 2).

An interesting feedback loop has been proposed according to

which p53 represses WWP1 transcription (Laine and Ronai,

2007). Upon stress, inactivation of WWP1 would facilitate com-

plete p53 transcriptional induction. It is thus conceivable that

overexpression of WWP1 may contribute to breast and prostate

carcinogenesis by attenuating p53 transcriptional activation in
14 Cancer Cell 14, July 2008 ª2008 Elsevier Inc.
response to DNA-damaging insults. Though overexpression of

WWP1 has not been associated with known p53 status in breast

cancer cell lines, Chen and coworkers (2007b) have observed

that siRNA-induced downregulation of WWP1 does not signifi-

cantly reduce cell growth in breast cancer cell lines harboring

p53 mutations. These findings suggest that inhibition of WWP1

would sensitize only p53-proficient tumor cells to chemotherapy.

WWP1 has also been reported to target the Krüppel-like fac-

tors KLF2 and KLF5 for ubiquitin-mediated proteolysis (Chen

et al., 2005b). KLFs are transcription factors that are thought to

suppress cell growth in cancer cells, thereby playing a critical

role in the progression of several tumors, including breast can-

cer. Of note, KLF5 is frequently downregulated in breast cancer

cell lines (Chen et al., 2002).

Although the closely related WWP1 and WWP2 E3s possess

binding specificity for the same PY motif-containing peptides

and share at least some common substrates (Martin-Serrano

et al., 2005), to date WWP2 has not been similarly implicated

in the ubiquitin-dependent regulation of tumor suppressor

molecules.

Itch

Itch was initially identified through genetic studies examining the

agouti locus on mouse chromosome 2 (Perry et al., 1998). The

18H mutation, which is associated with a darker coat color, re-

sults from a radiation-induced chromosomal inversion that dis-

rupts the expression of agouti and Itch genes (Perry et al., 1998).

There are an emerging number of Itch protein targets that have

been implicated in tumorigenesis and chemosensitivity (Table 2).

Two substrates implicated in human malignancies are the p53

homologs p73 and p63. Beyond their crucial involvement in de-

velopment and differentiation, both p73 and p63 share functional

similarities with p53, being able to mediate cell-cycle arrest and

apoptosis in response to DNA damage (Bergamaschi et al.,

2003; Irwin et al., 2003; Gressner et al., 2005). Although p73

and p63 genes are rarely mutated or inactivated in human can-

cers (Melino et al., 2002, 2003), they cooperate with p53 in tumor
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Figure 3. A Model for PTEN Regulation by
Nedd4-1
Nedd4-1-mediated polyubiquitylation of PTEN
targets the phosphatase for proteasomal degra-
dation. Alternatively, monoubiquitylation of PTEN
leads to nuclear import and shuttling back to the
cytoplasm. Nuclear availability of ubiquitin-spe-
cific proteases would reverse the reaction and
allow nuclear accumulation of PTEN. The nuclear
PTEN pool can be then monoubiquitylated by
Nedd4-1 to be redirected to the cytoplasm. Be-
sides Nedd4-1 localization (cytoplasm versus
nucleus) and cellular levels (e.g., oncogenic over-
expression), the existence of a distinct set of
adaptors (indicated by ‘‘A’’ and ‘‘B’’) and/or post-
translational modifications (indicated by stars
and triangles) could select for the outcome of
PTEN modification by the E3. DUB, deubiquitylat-
ing enzymes.
suppression and chemosensitivity (Flores et al., 2005). Like p53,

p73 and p63 expression is maintained at low levels in mamma-

lian cells, and their cellular activation is mainly controlled at the

posttranslational level. Both are polyubiquitylated in vivo and de-

graded via the proteasome (Bernassola et al., 2004; Rossi et al.,

2005, 2006). They display a unique C-terminal PY motif, absent

in p53, which renders them susceptible to Itch-mediated ubiqui-

tylation and degradation (Rossi et al., 2005, 2006).

Similarly to p53, p73 and p63 accumulate in tumor cell lines in

response to g irradiation or treatment with various chemothera-

peutic drugs (Bergamaschi et al., 2003; Irwin et al., 2003; Gress-

ner et al., 2005). Induction of p73 and p63 is at least partially

accomplished through Itch downregulation in response to DNA-

damaging agents (Rossi et al., 2005) (Figure 4). The molecular

mechanisms underlying the decline of Itch protein levels follow-

ing exposure of tumor cells to chemotherapy await further inves-

tigation.

Interestingly, loss or reduced expression of p73 and p63, pos-

sibly as result of altered proteasomal proteolysis, has been re-

ported in a number of human tumors, in which it correlated

with poor clinical outcome (Puig et al., 2003; Fang et al., 1999;

Urist et al., 2002). Thus far, no study has examined the potential

association between Itch dysregulation and protein expression

levels of p53 family members in human cancers. It is therefore

crucial to evaluate whether aberrant upregulation of Itch in tumor

cells, or enhanced enzymatic activity, may correlate with low

protein expression levels of p73 and p63 and posttranslational

suppression of the p53 family members, in a manner similar to

the HDM2:p53 paradigm.

On a similar note, the nonagouti 18H or Itchy mouse pheno-

type remains unclear with respect to tumorigenesis. On the

C57BL/6J background, Itch deficiency causes an autoim-

mune-like disease that is lethal at 6–8 months of age (Perry

et al., 1998). Although no systematic studies have been under-

taken to correlate Itch ablation with increased resistance to can-

cer development, possibly due to stabilization of the p53 family

members, differences in spontaneous tumor occurrence be-

tween normal and mutant mice have not yet been reported. In
this respect, it must be remembered that the immune system

of the Itch mutant mice is seriously compromised and that their

life span is shortened by the severe inflammatory defects. Under

these circumstances, it might be difficult to reveal potentially

relevant differences in tumor latency as well as penetrance

between normal and mutant mice. It is likely that chemically in-

duced carcinogenesis or analysis of Itch deficiency on a different

background would clarify this important issue.

The Nedd4-binding partner-1 (N4BP1) protein, a molecular in-

teractor of Nedd4-1, is a negative regulator of Itch acting as

a competitor of its substrate recruitment ability (Oberst et al.,

2007). As a result, N4BP1 prevents Itch-mediated transfer of

ubiquitin to its protein targets, including p73 and p63, whose

transcriptional activity is enhanced by increased protein stabili-

zation (Figure 4). The competition mechanism implies that target

selection by Itch could be regulated either by changes in the re-

ciprocal affinity for the interactors (e.g., as a result of posttrans-

lational modifications) or by alterations of their cellular availabil-

ity. In this scenario, DNA-damage-induced accumulation of p73

or p63 could be achieved either through N4BP1 induction or via

chemical/conformational modifications of N4BP1, which in turn

would enhance its affinity for the E3 (Figure 4).

An intriguing Itch target crucially involved in controlling cell fate

specification and proliferation is the type I transmembrane re-

ceptor Notch1. Itch-mediated polyubiquitylation of the intracel-

lular domain (ICD) of membrane-tethered Notch1 results in the

degradation of the ICD following receptor activation, in turn an-

tagonizing Notch1 nuclear transcriptional activity (Qiu et al.,

2000; McGill and McGlade, 2003). In particular, Notch1 is unique

in the manner in which it associates with the HECT-type ligase.

The Notch1 ICD does not contain PY motifs but is presumed

to interact with Itch through its ankyrin repeats. A key role in

the negative regulation of Notch1-dependent signal transduction

is played by the adaptor protein Numb, which cooperatively en-

hances Itch-catalyzed ubiquitylation of the membrane-bound re-

ceptor. This effect is achieved through direct and simultaneous

binding of Numb to the Notch1 ICD and the WW1 and WW2 do-

mains of Itch (McGill and McGlade, 2003). By this means, Numb
Cancer Cell 14, July 2008 ª2008 Elsevier Inc. 15
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Table 2. Itch Substrates and Regulators

Substrate Biological Function Relationship with the Itchy Mouse Phenotype

c-Jun, JunB Th2 cell differentiation/anergy Th2-mediated allergy/autoimmune disease

JunB Th2 cell differentiation/anergy Th2-mediated allergic airway inflammation and

atopic dermatitis/autoimmune disease

PLC-g1/PKCq T cell anergy resistance to anergy induction/autoimmune

disease

Notch1 autoimmunity, cancer autoimmune disease/skin proliferation/

differentiation defects?

Smad2 TbR signaling, cancer autoimmune disease?

p73 apoptosis, neural development, cancer unknown

p63 apoptosis, epithelial development, cancer skin proliferation/differentiation defects?

c-FLIPL apoptosis unknown

ErbB4 epithelial kinase receptor, cancer unknown

CXCR4 agonist-dependent sorting of G protein-coupled

receptors

unknown

TRPV4, TRPC4 regulation of channel expression at the cell

membrane

unknown

Regulator Effect on Itch Catalytic Activity or Substrate

Recognition Ability

Mechanism of Regulation

JNK positive phosphorylation (Ser/Thr kinase)

Fyn negative phosphorylation (Tyr kinase)

USP9X/FAM positive deubiquitylation

Itch positive/negative? ubiquitylation

N4BP1 negative binding (adaptor)

Numb positive binding (adaptor)

Ndfip1 positive binding (adaptor)

PLC-g1, phospholipase C-g1; PKCq, protein kinase q; c-FLIPL, cellular FLICE-inhibitory protein; CXCR4, chemokine receptor 4; Ndfip1, Nedd4 family

interacting protein-1.
may act as an adaptor facilitating or stabilizing the WW domain/

ankyrin repeat-mediated interaction between Itch and its sub-

strates.

Notch1 exerts opposite functions in tumor development, be-

ing able to act as either an oncogene or a tumor suppressor de-

pending on signal strength, timing, and cell context (Maillard and

Pear, 2003). The Notch1 tumor suppressor function seems to be

restricted to tissues in which Notch1 signaling orchestrates the

spatiotemporal progression of terminal differentiation such as

epithelia, including the epidermis. In mouse keratinocytes,

Notch1 promotes exit from the cell cycle and entry into the differ-

entiation program by committing basal progenitors to a spinous

cell fate. Conditional ablation of Notch1 in murine epidermis re-

sults in skin carcinoma development and increased chemically

triggered skin carcinogenesis (Nicolas et al., 2003).

Although a direct correlation with cancer biology has not yet

been explored, biochemical and genetic studies have shown

that a crucial regulatory mechanism of Itch catalytic activation

is its Jun N-terminal kinase 1 (JNK1)-mediated Ser/Thr phos-

phorylation (Gao et al., 2004). In its unphosphorylated state,

Itch enzymatic activity is negatively regulated through intramo-

lecular interactions between the central region, including the

WW motifs, and the C-terminal HECT domain (‘‘closed’’ con-

formation). Following phosphorylation, Itch undergoes a con-

formational change (‘‘open’’ conformation) that destabilizes

the self-inhibitory intramolecular interactions, thus allowing
16 Cancer Cell 14, July 2008 ª2008 Elsevier Inc.
substrate recruitment and catalytic activation (Gallagher et al.,

2006).

Smurfs

Smad ubiquitylation regulatory factor 1 (Smurf1) and Smurf2 an-

tagonize the transforming growth factor-b (TGF-b) pathway

through ubiquitin-mediated degradation of crucial components

of its signaling transduction machinery. One of the molecular

mechanisms to prevent continuous TGF-b signaling in the ab-

sence of ligand stimulation is the Smurf-mediated elimination

of phosphorylated TGF-b receptor (TbR)-regulated Smad (R-

Smad) proteins by the proteasome (Zhang et al., 2001). The over-

all basal levels of R-Smads are also regulated by Smurfs (Zhu

et al., 1999). This is achieved in order to prevent spurious activa-

tion of the TGF-b cascade and to adjust the intensity of respon-

siveness of a particular cell to TGF-b signaling. With the excep-

tion of Smad4 and Smad8, all of the Smads possess a PY motif.

Smurf1 specifically targets Smad1 and Smad5, whereas Smurf2

displays a broader specificity toward the family members (see

Table 1).

A unique property of the Smads is their ability to function as

adaptor molecules for the Smurfs or other members of the

HECT family. This mode of action is exemplified by the inhibitory

Smad (I-Smad) Smad7, which, acting in concert with Smurf1 and

Smurf2, assists the HECT E3s in recruiting the PY-deficient TbR-I

(Kavsak et al., 2000). In addition, the auxiliary role of Smad7 is

accomplished by presenting the E2 to Smurf2 and enforcing their
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Figure 4. Itch-Mediated Regulation of p73-Induced Apoptosis
In unstressed cancer cells, the steady-state levels of p73 are kept low by the ubiquitylating activity of Itch. p73 upregulation in response to treatment of tumor cells
with DNA-damaging agents may arise from (1) Itch downregulation and/or (2) the inhibitory competitive action exerted by N4BP1 on Itch substrate recruitment
ability. p73 accumulation leads to increased transactivation of proapoptotic target genes.
interaction (Ogunjimi et al., 2005). This is mediated by the N-ter-

minal domain of Smad7, which binds to both the HECT domain

and, via a leucine-rich motif, UbcH7, resulting in enhanced

Smurf2 catalytic activity. In addition, Smurf1 recruits activin

and BMP receptors through its association with I-Smads.

Smad6 and Smad7 also act as a bridge to target non-Smurf

HECT E3s, such as Nedd4-2 and WWP1 (see Table 1), to the

TbR complexes. Smad7 serves as a protein adaptor for both

Smurfs to direct Smad4 for proteasomal destruction (Moren

et al., 2005). The Smurf/I-Smad-mediated proteasomal and lyso-

somal degradation of TGF-b-like receptors and co-Smad con-

tributes to the attenuation or termination of the family signaling

events.

A distinct role as an auxiliary molecule is played by Smad2,

which upon receptor stimulation and phosphorylation forms

a complex with Smurf2 through WW-PY domain-mediated inter-

actions. As a result, Smurf2 is recruited to the transcriptional co-

repressor SnoN, which in turn is targeted for ubiquitin-mediated

proteolysis (Bonni et al., 2001). These findings define temporally

distinct roles for Smurf2 in regulating the TGF-b pathway, being

the activation or attenuation of TGF-b signaling depending on the

association of Smurf with different Smad proteins.

Somatic and germline mutations in cancer cells are present at

different levels of the TGF-b signaling pathway, including genes

encoding TbR-I, TbR-II, Smad4, and Smad2 (Markowitz et al.,

1995; Maurice et al., 2001). Insensitivity to TGF-b results in un-

controlled cell proliferation and contributes to tumorigenesis.

As they are essential modulators of the TGF-b cascade, it is

not surprising that dysregulation or dysfunction of Smurfs ham-

pers TGF-b signaling. Aberrant downregulation of TGF-b signal-

ing allows tumor cells to escape TGF-b-induced growth inhibi-

tion and thus promotes cancer development. Genetic

amplification of Smurf1 and overexpression of Smurf2 are asso-

ciated with pancreatic and esophageal squamous cell carcino-

mas, respectively (Fukuchi et al., 2002). Increased Smurf2 pro-

tein expression correlates with higher invasiveness and

metastatic potential and poorer prognosis. Interestingly, several

Smad2 and Smad4 oncogenic inactivating mutations known to

interfere with their transcriptional function in cancer cells also
affect their protein stability through accelerated degradation

(Xu and Attisano, 2000; Maurice et al., 2001). In addition, abnor-

mal expression of the adaptor protein Smad7 has been observed

in a subset of human cancers, including follicular thyroid carci-

noma cell lines and endometrial cancers (Cerutti et al., 2003;

Dowdy et al., 2005). Smad7 overexpression may represent a fur-

ther mechanism for the abrogation of the TGF-b response in tu-

mor cells.

While the cytostatic actions of TGF-b are a barrier to tumor

emergence, during cancer progression tumor cells can acquire

the ability to overproduce TGF-b, which in turn starts to behave

as an autocrine tumor-promoting factor by enhancing invasion

and metastasis. In later stages of the disease, Smurf2 activity

is inhibited through interaction with the adaptor protein RNF11,

which is highly expressed in invasive breast cancers (Subrama-

niam et al., 2003). RNF11 is though to promote Smurf2 protein

ubiquitylation and proteasomal degradation, thereby enhancing

TGF-b signaling and its tumor-promoting activity.

HECT E3s as Potential Cancer Targets
The hierarchical nature of the ubiquitin-proteasome system pro-

vides a rich source of molecular targets for anticancer therapies.

The clinical relevance of targeting the ubiquitin-proteasome sys-

tem has been revealed by the use of bortezomib (Millennium

Pharmaceuticals, Inc.’s Velcade, also previously known as

PS-341), a highly selective and reversible inhibitor of the chymo-

trypsin-like activity of the proteasome. Bortezomib has been

evaluated in a number of preclinical and clinical trials for solid

and hematological malignancies (reviewed in Voorhees and

Orlowski, 2006). It is presently approved by the US Food and

Drug Administration for treatment of relapsed and refractory

multiple myeloma, for which manageable side effects have been

reported. Unfortunately, the clinical activity of bortezomib in

other forms of hematological malignancies as well as solid tu-

mors has so far been less promising, with partial or no response.

Given the lack of specificity of proteasome inhibitors, manipu-

lating less universal features of the ubiquitin-proteasome sys-

tem, such as the E2s or the neddylation system (which targets

certain RING-finger E3s), may in principle be a useful therapeutic
Cancer Cell 14, July 2008 ª2008 Elsevier Inc. 17
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strategy. Moreover, the enzymatic nature, abundance, and spe-

cific substrate recognition properties of E3s indicate ubiquitin li-

gases as even more specific and effective therapeutic targets.

Targeting individual E3s would selectively stabilize a particular

or limited number of protein substrates, thus possibly limiting un-

toward side effects. Hence, drugs targeting E3s promise a better

therapeutic ratio than proteasome inhibitors. Importantly, E3s

show a clear involvement in oncogenesis, as indicated in this

review. As one example, downregulation of Itch, with its cancer-

related substrates (Table 2), is able to sensitize cells to chemo-

therapy (Hansen et al., 2007).

However, the advantage of targeting E3s is partially reduced

by (1) the promiscuity of enzymes and substrates (each E3 usu-

ally degrades more than one substrate, and each substrate can

be degraded by several E3s), (2) the unknown nature of the ‘‘cru-

cial’’ oncogenic substrate or substrates for each individual E3,

and (3) the intrinsic technical difficulties inherent in high-through-

put screenings to identify small-molecule inhibitors of E3s.

Blocking E3 functions could be achieved by chemically inhibiting

E2 recruitment or, alternatively, by preventing specific substrate

recognition by E3s (either directly or allosterically).

In this regard, the HECT family, with its intrinsic catalytic activ-

ity, may be easier to inhibit than E3s belonging to the RING-finger

family. This is because, in contrast to the RING-finger E3s, HECT

E3s have intrinsic enzymatic ubiquitin transfer activity via a

mechanism somehow reminiscent of E2s. In fact, HECT E3s, fol-

lowing binding of a ubiquitin-charged E2, form a thioester bond

between their own active-site Cys and the ubiquitin C terminus.

Subsequently, the HECT domain catalyzes the formation of an

isopeptide bond between the 3-N side chain of a Lys residue

and the ubiquitin C-terminal carboxylate. Catalysis requires a

rotation of the N and C lobes of the HECT domain on a specific

polypeptide hinge linking region (Verdecia et al., 2003; Diao

et al., 2008).

So far, most high-throughput screenings have been performed

with both E3 and substrate, or using the ability of some E3s to

self-ubiquitylate. In this latter case, although the E3:substrate

recognition inhibitors are missing, there is a stronger chance to

inhibit the active catalytic site.

The identification of specific HDM2 inhibitors has been re-

ported with success by several groups (e.g., Yang et al., 2005),

showing that inhibitors of E3s are already a reality. Even though

this indicates a proof of principle of the feasibility of this difficult

road, this is not by any means the end of the story.

Concluding Remarks
Ubiquitin-dependent proteolytic and nonproteolytic pathways

play pivotal roles in cancer cell proliferation and apoptosis. The

data reviewed here illustrate how certain HECT-type E3s may

contribute to tumorigenesis by controlling the ubiquitylation of

tumor suppressors and oncoproteins. Inappropriate degrada-

tion of these substrates due to aberrant expression, dysfunction,

or altered regulation of the HECT E3s would be tightly linked to

malignant transformation and chemoresistance. In view of their

substrate specificity, the E3s represent attractive targets for can-

cer therapy. In this scenario, therapeutic strategies that inhibit

oncogenic HECT E3s should restore normal expression of tumor

suppressors and ultimately induce regression of malignant le-

sions. A better understanding of the oncogenic potential of the
18 Cancer Cell 14, July 2008 ª2008 Elsevier Inc.
HECT-type E3s will likely lead to the identification and develop-

ment of biomarkers and drug targets for cancer treatment.
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