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Abstract

The field of machine learning deals with a huge amount of various algorithms, which are able to transform the observed data

into many forms and dimensionality reduction (DR) is one of such transformations. There are many high quality papers which

compares some of the DR’s approaches and of course there other experiments which applies them with success. Not everyone is

focused on information lost, increase of relevance or decrease of uncertainty during the transformation, which is hard to estimate

and only few studies remark it briefly. This study aims to explain these inner features of four different DR’s algorithms. These

algorithms were not chosen randomly, but in purpose. It is chosen some representative from all of the major DR’s groups. The

comparison criteria are based on statistical dependencies, such as Correlation Coefficient, Euclidean Distance, Mutual Information

and Granger causality. The winning algorithm should reasonably transform the input dataset with keeping the most of the inner

dependencies.
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1. Introduction

The dimensionality reduction (DR) is a general title for mapping of larger dataset, which are compound of many

variables into the smaller subset of uncorrelated features representing the maximal amount of information from the

original data1,2. This methods can be categorized into two main groups. The first one is the linear DR whose basic idea

comes from statistic, linear algebra and information theory and the second group consists of the non-linear algorithms

which are mostly manifold-oriented or based on encoding driven by artificial neural network. It is obvious, that

approaches which are so different can not produce results of the same meaning or quality and it has to be considered,

which one is better for application on a given circumstances.

There are many high quality reviews, comparisons and a lot of applications where one kind of the DRs is sig-

nificantly more suitable than another. The comparative approaches in this field of study can be categorized into the
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empiricaly based comparisons3 which reveal advantages of one algorithm against another. They are focused on com-

putational complexity, memory requirement, number of adjustable parameters or possible application of out-of-sample

extension4.

The other very frequently applied comparative method is the evaluation of performance of compared DRs by

accuracy of applied classification algorithm5,6.

The quantitative comparison of reconstructed time series is not frequently discussed topic because most of the

non-linear and manifold based DRs are not able of strait-forward data reconstruction. On the other hand, the large

reconstructing error does not imply the low quality of reduction3.

These quantitative comparisons are the motivation of this paper. It attempts to measure the changes of the depen-

dencies between the reconstructed time series (from their dimensionaly reduced state) and their original versions. The

information criteria which serve as criteria to compare are Mutual Information, Granger causality, Correlation and

Euclidean distance (section 3).

The input dataset is a matrix of a stock market prices. It contains 1548 rows which represent the time series of

387 investment symbols (open, high, low and close prices for each of them) and 1500 columns representing daily

observations. The length of time series (1500 observations) represents 4 years and 40 days of daily prices and this

dimension was continuously reduced and reconstructed for purposes of this experiment. The dataset was obtained

from a public source (yahoo.finance).

In the next subsection, there are briefly described four applied approaches of dimensionality reduction. Section 3

covers some of the major notes about criteria that were controlled in this experiment. The sections 4 and 5 describe

the results and conclusions of this paper.

2. Brief overview of dimensionality reduction methods

To reduce dimension of the dataset means to obtain dataset of lower dimension, where each of the observations is

described by lower amount of un-correlated features (variables). These new extracted features are usually some linear

or non-linear combinations of previous variables1,2.

2.1. Principal Component Analysis

(PCA) is a linear DR technique7. PCA reduces the data by finding a few orthogonal linear combinations (principal

components - PC) of the original variables with largest variance. The number of PCs is equal to the number of original

variables, but only few of them holds the maximal variance. It is the reason why the rest of the principal components

can be disregarded with minimal loss of information8.

The mapping matrix M is found by equation cov(X)M = λM, where cov(X) is a covariance matrix of the input

data and the matrix λ contains eigenvalues (PCs) of the covariance matrix on diagonal. The columns of matrix M

are sorted according to the eigenvalues of the matrix λ. Reduced representation of the input data (matrix Y) is than

computed from the first d principal components by equation Y = XMd.

2.2. Non-Negative Matrix Factorization

(NMF) is a linear, non-negative matrix representation9. The idea of this method is to obtain two matrices W and

H as a decomposition of the given matrix V of N vectors. The matrix W is N ×M matrix of basis vectors and H is the

new low-dimensional representation of the given matrix V .

The Alternating Least Squares (ALS) algorithm is one of the simplest approaches for obtaining such W × H
representation for the given matrix10. The key point of this approach is the switching between two phases - once the

H is fixed and W is found by a non-negative least squares solver and than W is fixed and H is found analogously. This

methodology is based on the knowledge that NMF optimization function is not convex in both W and H properties,

but it is convex in either W or H.
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2.3. Autoencoder

The autoasociative neural network encoder (autoencoder) is the DR model based on Multi-layered perceptron

model11. Based on the adjusted activation function of the network, this model is linear (the solution is strongly related

to PCA) or non-linear (in case of commonly used sigmoid activation function)12.

The structure of the ANN consists of two identical input and output layers and a variable number of the hidden

layers with adjustable number of neurons. This similarity between input and output layer is required because the

observations of the given matrix serve at the same time as the input and desired output values. The middle part - the

bottleneck is made of smaller dimension and occurs in one hidden layer. The output values of this hidden layer are

the low-dimensional representation of the input values.

The autoencoder can be trained by the Backpropagation learning algorithm13, which is based on a gradient descent

method.

2.4. Neighborhood Preserving Embedding

(NPE) is the linear approximation to the Local Linear Embedding (LLE)14, which is the manifold oriented non-

linear DR method15. NPE shares some aspects with Locality Preserving Projection16 like both of them are focused

to discover the local structure of the manifold. On the other hand, the objective function of these approaches is very

different.

The algorithm comes through three steps. In the first step, it is a construction of the adjacency graph. There are

two conditions which decides about putting the edges between the nodes. It could be decided by KNN (if the point

i is the near neighbor of the point j) or by maximal distance adjusted by a threshold value (i and j are connected if

||x j − xi|| ≤ ε).
In the second step of the algorithm, it has to be computed the weights of the connections. Let W denote the weight

matrix where Wi j represents the weight of the edge between points i and j. The computation of the weights is achieved

by the following objective function:

min
∑

i

||xi −
∑

j

Wi jx j||2 (1)

where
∑

j
Wi j = 1, j = 1, 2, ...m.

The last step is the computing of the projection, which is performed by solving of the generalized eigenvector

problem.

XMXT a = λXXT a
where X = (x1, ...xm); M = (I −W)T (I −W); I = diag(1, ..., 1)

(2)

The column vectors a0, a1, ...ad−1 are the solution of equation (2), ordered according to their eigenvalues (λ0 ≤
λ1... ≤ λd−1) and it is compound into transformation matrix A = (a0, a1, ...ad−1) so the formula of the reduction can be

written as yi = AT xi.

The theoretical justification and examples are in the original paper14.

3. Information Criteria Measures

As it was mentioned before, this experiment is focused on comparison between the time series of reconstructed

dataset (after reduction) and the time series from the original dataset. The comparisons are described in the following

chapter. This section describes criteria that are applied in this paper.

The first simple comparison metric was the Euclidean distance, which simply computes the distance between two

given coordinates in their N-dimensional space.

The other widely known measurements compare these time series by their statistical dependencies. The correlation

coefficient as the covariance between X and Y divided by product of their standard deviation is very familiar linear

dependency evaluation. The significance of the dependency is considered by the distance of the resulted value from

3
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zero. The negative value of the correlation coefficient indicates the anti-correlation - the progress of time series

demonstrate opposite moves.

3.1. Mutual Information

(MI) is the non-linear evaluation of the dependency between two random variables17. In other words, it could be

said that MI reveals how the presence of X decrease the level of uncertainty of the Y. This estimation is frequently

applied for feature selection in the field of machine learning.

In case of discrete variables, the MI is defined by joint probability (p(x, y)) and marginal probabilities (p(x),p(y))

of X and Y.

I(X; Y) =
∑

x,y

p(x, y)log
p(x, y)

p(x)p(y)
(3)

In case of continuous variables, when the probability distribution function (PDF) is unknown, the MI’s estimation

is not an easy task and it can be performed by various ways18.

In this paper, it was used the Kernel Density estimation (KDE)19, which can return more precise results with lower

amount of adjustment.

3.2. Granger causality

(GC) is well known contribution proposed by Clive Granger20 for the evaluation of causal interaction between two

time series. This procedure quantifies how the variable Y helps to predict the variable X (FY−>X) by estimating their

vector-autoregressive (VAR) model and computing covariance matrices of their residuals.

In this paper there was employed the simplest unconditional, time-domain form. The calculation of G-causality

follows this simple steps provided by MVGC Matlab toolbox developed by Seth21. Let’s suppose we have two

stationary and trend-free variables X and Y and their VAR model is decomposed as

Xt =

p∑

k=1

Axx,k · Xt−k +

p∑

k=1

Axy,k · Yt−k + εxx,t (4)

The Acaice Information Criteria (AIC)22 performs the proper adjustment of the number of lagged values of X

and Y. To obtain stable VAR model23, it has to be tested for colinearity, stationarity, heteroscedasticity, etc. In this

equation, the dependency of X on Y is captured in the coefficient matrix Axy. If all of these coefficients are equal to

zero, we can say that X is independent from Y and the following regression of X possibly has the similar forecasting

performance

Xt =

p∑

k=1

A′xx,k · Xt−k + ε
′
xx,t (5)

By this regression (5), it is written that variable X depends only on its past values and the added white noise. The

unconditional, time-domain Granger Causality is than computed by following equation

FY−>X = ln
|Σ′xx|
|Σxx| (6)

where Σ′xx is the covariance of the residuals of the regression model (5) and Σxx is the covariance of the residuals

of the VAR model (4).

Finally it is computed the p-value that that could reject the null hypothesis of zero causality, which is the following:

H0 : Axy,1 = Axy,2 = ... = Axy,p = 0 (7)

In case of conditions of this paper (univariate causal target and smaller samples), the F-cumulative distribution

function was applied to obtain the p-value (details in21).
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4. Adjustments and results

This section describes the results of this experiment. There was applied one perspective of comparisons between

original and reconstructed data. The entire experiment was focused on measuring changes in dependencies between

the time series. It was achieved by computing dependency between the random time set xi from the original dataset

and its reconstructed version xr
i from the reduced dataset.

The DR’s methods implementation was provided by Matlab Toolbox for Dimensionality Reduction3, except the

implementation of NMF, which is already included in Matlab.

The PCA does not need any adjustable parameters, but every other methods needs to be properly adjusted.

The Autoencoder was applied with one input, one output and one hidden layer. The number of units inside of the

hidden layer reflect the dimension of mapped matrix. The activation function was the sigmoid and then number of

learning iterations was 5000.

The NPE method obtains the k value (number of nearest neighbors) equal to 6 and the NMF gets only increased

number of iterations into 300.

4.1. Reconstruction of the dataset

Reconstruction of the dataset’s matrix was provided differently for each of the DR’s method according to its char-

acter. The PCA’s reconstruction was performed in two steps. The first one was simply the computation of the product

of the mapping (matrix of eigenvalues) and mapped matrices and the second step was adding a matrix of the mean

values of the original dataset.

The NMF’s reconstruction was computed as a product of W and H matrices as it is defined in the method’s de-

scription.

The reconstruction of mapped data from Autoencoder is performed during each of the learning’s iteration, because

the neural network attempts to recreate the input sequence on the output layer. To perform the reconstruction, it is

necessary to apply the learned network weights and put the mapped data as input values into the hidden layer. The

output layer of the network will return the reconstructed data.

In case of NPE, the reconstruction was performed the same linear way as it was computed in case of PCA. The

product of eigenvalues and mapped matrix is summed with the vector of means of the original matrix. This results

into the lower quality of reconstruction, because the eigenvalues does not reflect the statistical behavior of the dataset,

but the neighbor connections (adjagency matrix).

4.2. Dependencies between xi and its reconstructed version

There was taken 100 random time series of the original dataset compared to their reconstructed versions and the

results are the medians of the measured values. The measurement of the correlation (Fig. 1) reveals that in case of

PCA and NMF the reduction of dimension does not significantly affect the level of correlation until the reduction

reaches the level of 95%. These DR’s methods were dealing with this feature reasonably well, but on the other hand

the reconstructed time series from Autoencoder and NPE were absolutely uncorrelated with their original versions.

From the compared methods, the PCA also seems to be the ideal choice in times of keeping the maximal amount of

Granger causality (see in Fig. 1). The focus on the variance through the eigenvalues was able to capture the behavior

of the time series mostly until the reduction reaches the border near to 4% of original data set. The area between 50-25

was the most frequent place where the p-value drops under the level of significance - so there was no more presence

of causality between compared time series.

In cases of other DR algorithms, the return values of GC were obtained very low and p-values were mostly con-

firming the null hypothesis of zero causality during all of the iterations.

The Fig. 2 describes the amount of MI between original and reconstructed time series. The DR methods like PCA

and NMF were more successful than the rest of the methods in this criteria. The success of the Autoencoder strictly

depends on its learning ability by its adjusted structure. This is the reason why most of its results are so inconsistent.

The values of Euclidean distance (Fig. 2) reveal that the maximal similarity (lowest values) was obtained again

only by PCA and NMF algorithms. These methods obtain the smallest reconstruction error during the most of the

reduction levels. The Autoencoder was not able to learn the given dataset for correct reduction, even if the number

5
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Figure 1. Correlation coef. (left) and Granger causality (right) between original time set and its reconstructed version
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Figure 2. Mutual information (left) and Euclidean distances (right) between original time set and its reconstructed version
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of its iterations was 5000. The NPE method deals with very high reconstruction errors, but as it was mentioned

previously, it does not indicate the low quality of reduction, only different aim.

5. Conclusions

This experiment compares four ideologically different methods of DR. The comparison was made by measurement

of the statistical dependencies between time series of the original and reconstructed dataset.

The described results reveal that algorithm based on manifold learning is not able to reflect inner basic statistical

dependencies on its reconstructed data. This problem can be on the side of the reduction, which probably does

not encode enough necessary features. On the other hand, it can also be the problem of the reconstruction, which

recomputes the dataset in inappropriate way. This questions are the aim of the future work.

The only one applied non-linear algorithm, the Autoencoder, which is basically DR by ANN, seems harder to be

maintained and properly adjusted due to higher number of parameters like number of layers, units per layer, type of

learning algorithm, etc.. Its quality of the reduction is very sensitive to the quality of the ANN’s learning ability.

The statistical dependencies were kept in reasonable quality by Principal Component analysis, due to its aim

on statistical properties of the input dataset. The reasonably well results were obtained by Non-negative matrix

factorization too, this method was able to keep correlation between compared time series. On the other hand the

values of causality and mutual information were lower than in case of PCA.

The future work will be interested in Autoencoder based on multiple Restricted Boltzman Machines24, in adding

DR methods focused on statistical properties and on different manifold oriented algorithms.
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