New oscillation criteria for second order linear difference equations with positive and negative coefficients

Hassan A. El-Morshedy
Department of Mathematics, Damietta Faculty of Science, New Damietta 34517, Egypt

A R T I CLE IN F O

Article history:

Received 26 June 2008
Received in revised form 29 July 2009
Accepted 30 July 2009

Keywords:

Neutral difference equations
Positive and negative coefficients Oscillation

A B S T R A C T
 The oscillation of second order neutral difference equations with positive and negative coefficients of the form
 $$
\Delta^{2}\left(x_{n}+\lambda a_{n} x_{n-\tau}\right)+p_{n} x_{n-\delta}-q_{n} x_{n-\sigma}=0, \quad \lambda= \pm 1
$$

is investigated. We obtain many new results using the comparison between both first order and second order difference equations. An example is given to show the strength of the obtained results.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The oscillatory properties of difference equations of many types have been the subject of extensive investigations reflecting the importance of this topic in applications (see [1-3]). Among the equations which did not undergo the deserved investigation are the equations with positive and negative coefficients. This, probably, is due to the difficulty associated with the presence of negative and positive coefficients in one equation. Some authors studied the oscillation and/or nonoscillation of first order difference equations of the form

$$
\begin{equation*}
\Delta\left(x_{n}-a_{n} x_{n-\tau}\right)+p_{n} x_{n-\delta}-q_{n} x_{n-\sigma}=0 \tag{1}
\end{equation*}
$$

see [1,3-6] and the references cited therein. For second order difference equations of this type, namely,

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+\lambda a_{n} x_{n-\tau}\right)+p_{n} x_{n-\delta}-q_{n} x_{n-\sigma}=0, \quad \lambda= \pm 1 \tag{2}
\end{equation*}
$$

it seems that the nonoscillation theory is more developed than the oscillation theory (e.g., [7-9]). At least we know from [8] that (2) is nonoscillatory provided that

$$
\begin{equation*}
\sum_{i=n_{0}}^{\infty} n\left|p_{n}\right|<\infty \quad \text { and } \quad \sum_{i=n_{0}}^{\infty} n\left|q_{n}\right|<\infty \tag{3}
\end{equation*}
$$

when either $0 \leq a_{n} \leq a<1$ or $-1<a<a_{n} \leq 0$ for $n \geq n_{0}$.
In fact, as far as this author knows, the only known work on the oscillation of (2) is [10].
Our main objective here is to obtain new oscillation criteria for (2) when δ, σ and τ are nonnegative integers. We use the comparison with both first order delay and second order ordinary difference equations. In particular, we benefit from the theory developed in [11] for the oscillation and nonoscillation of second order functional difference equations and the advances of the oscillation theory of the second order ordinary difference equation

$$
\Delta^{2} u_{n}+h_{n} u_{n+1}=0
$$

[^0]Our results improve some results of [10] (when restricted to Eq. (2)) and provide a new technique for investigating equations with positive and negative coefficients.

By a solution of (2), we mean a sequence $\left\{x_{n}\right\}$ of real numbers that satisfies (2). Each solution of (2) is generated recursively given its initial values x_{-i} for all $i=0,1, \ldots, M$ where $M=\max \{\tau+2, \delta+2, \sigma+2\}$. A solution of (2) is said to be oscillatory if it is neither eventually positive nor eventually negative. Eq. (2) is called oscillatory if all its solutions are oscillatory. If each solution of (2) is either oscillatory or has a limit zero at infinity, then Eq. (2) is called almost oscillatory. This type of oscillation naturally exists in functional equations with higher delays. One can test this easily for equations with constant coefficients specially when the corresponding characteristic polynomial is of odd order.

2. Main results

Throughout this section, we assume that the series,

$$
\begin{equation*}
\sum^{\infty} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} \tag{4}
\end{equation*}
$$

converges. Also, we assume that $\delta \geq 1+\sigma, a_{n}, p_{n}, q_{n} \geq 0$ and $Q_{n}=p_{n}-q_{n-\delta+\sigma} \geq 0$ for $n \geq n_{0}$ where $Q_{n} \not \equiv 0$ on $\{s, s+1, s+2, \ldots\}$ for any positive integer s.

Lemma 1. Assume that $\left\{x_{n}\right\}$ is a solution of (2) such that $x_{n}>0$ for $n \geq n_{1} \geq n_{0}$. If $\lambda=1$ or

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} a_{n}+\sum_{r=n_{2}}^{n-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} \leq 1, \quad \text { for } \lambda=-1 \tag{5}
\end{equation*}
$$

then the sequence $\left\{y_{n}\right\}$ defined by

$$
\begin{equation*}
y_{n}=x_{n}+\lambda a_{n} x_{n-\tau}-\sum_{r=n_{2}}^{n-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} x_{l-\sigma}, \quad n \geq n_{2}>n_{1}+v, v=\max \{\tau, 1+\delta\} \tag{6}
\end{equation*}
$$

satisfies $\Delta y_{n}>0$ eventually.
Proof. Notice that,

$$
\Delta y_{n}=\Delta\left(x_{n}+\lambda a_{n} x_{n-\tau}\right)-\sum_{l=n-\delta+\sigma}^{n-1} q_{l} x_{l-\sigma}
$$

and

$$
\begin{align*}
\Delta^{2} y_{n} & =-\left(p_{n}-q_{n-\delta+\sigma}\right) x_{n-\delta} \\
& =-Q_{n} x_{n-\delta} \leq 0, \quad n \geq n_{2}+1 \tag{7}
\end{align*}
$$

Thus Δy_{n} is either eventually positive or eventually negative. If $n_{3} \geq n_{2}+1$ such that $\Delta y_{n_{3}}<0$, then (7) implies that $\Delta y_{n}<\Delta y_{n_{3}}$ for $n \geq n_{3}$. Summing from n_{3} to ∞, it follows that $\lim _{n \rightarrow \infty} y_{n}=-\infty$ which is possible only if $\lim \sup _{n \rightarrow \infty} x_{n}=\infty$. Using the same reasoning as in [11, p.118], a positive integer sequence $\left\{\bar{n}_{k}\right\}, \bar{n}_{k} \rightarrow \infty$ as $k \rightarrow \infty$ exists such that

$$
x_{\bar{n}_{k}}=\max \left\{x_{n}: n_{2}+\delta \leq n \leq \bar{n}_{k}\right\}
$$

hence

$$
\begin{aligned}
y_{\bar{n}_{k}} & =x_{\bar{n}_{k}}+\lambda a_{\bar{n}_{k}} x_{\bar{n}_{k}-\tau}-\sum_{r=n_{2}}^{\bar{n}_{k}-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} x_{l-\sigma} \\
& \geq x_{\bar{n}_{k}}+\lambda a_{\bar{n}_{k}} x_{\bar{n}_{k}-\tau}-x_{\bar{n}_{k}} \sum_{r=n_{2}}^{\bar{n}_{k}-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} \\
& > \begin{cases}\left(1-a_{\bar{n}_{k}}-\sum_{r=n_{2}}^{\bar{n}_{k}-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l}\right) x_{\bar{n}_{k}}, & \text { if } \lambda=-1 \\
\left(1-\sum_{r=n_{2}}^{\bar{n}_{k}-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l}\right) x_{\bar{n}_{k}}+a_{\bar{n}_{k}} x_{\bar{n}_{k}-\tau}, & \text { if } \lambda=1 .\end{cases}
\end{aligned}
$$

So, if we choose the integer n_{2} such that $\sum_{r=n_{2}}^{\infty} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} \leq 1$ for $\lambda=1$ and $a_{\bar{n}_{k}}+\sum_{r=n_{2}}^{\bar{n}_{k}-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l}<1$ for $\lambda=-1$, it follows that

$$
\begin{equation*}
y_{\bar{n}_{k}} \geq 0, \quad \text { for all } k, \tag{8}
\end{equation*}
$$

which is a contradiction. Thus Δy_{n} must be eventually positive.

Remark 1. Let $x_{n}>0$ for $n \geq n_{1} \geq n_{0}$ and $\bar{n} \geq n_{1}+\delta$. Define z_{n} and u_{n} by

$$
z_{n}=x_{n}+\lambda a_{n} x_{n-\tau}, \quad u_{n}=z_{n}-\sum_{r=\bar{n}}^{n-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} x_{l-\sigma} .
$$

Then

$$
\Delta u_{n}=\Delta z_{n}-\sum_{l=n-\delta+\sigma}^{n-1} q_{l} x_{l-\sigma}=\Delta y_{n}, \quad \text { for large } n .
$$

Thus $\Delta u_{n}>0$ as long as $\Delta y_{n}>0$. Also, $\Delta z_{n} \geq \Delta y_{n}$ which implies that $\Delta z_{n}>0$ provided that $\Delta y_{n}>0$. Therefore, n_{2} can be chosen as large as needed without violating the positivity of Δy_{n}. So, without further mentioning, we always choose n_{2} sufficiently large to suit some eventually satisfied properties of x_{n} which may be assumed in the proofs of the next results.

Lemma 2. Assume that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are as in Lemma 1. If $\lambda=1$ or $\lim \sup _{n \rightarrow \infty} x_{n}>0$,

$$
\begin{equation*}
\lambda=-1, \quad \text { and } \quad \limsup _{n \rightarrow \infty} a_{n}+\sum_{r=n_{2}}^{n-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l}<1 . \tag{9}
\end{equation*}
$$

Then $y_{n}>0$ eventually.
Proof. If $\lambda=1$, we choose n_{2} so large that $\Delta z_{n}>0$ for all $n \geq n_{2}-\delta$ and $\sum_{r=n_{2}}^{n-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} \leq 1$. Therefore,

$$
\begin{aligned}
y_{n} & \geq z_{n}-\sum_{r=n_{2}}^{n-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} z_{l-\sigma} \\
& \geq z_{n}\left(1-\sum_{r=n_{2}}^{n-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l}\right) \\
& \geq 0, \quad \text { for } n \geq n_{2} .
\end{aligned}
$$

If (9) holds and $\lim \sup _{n \rightarrow \infty} x_{n}=\infty$, then using similar arguments as those employed in the proof of Lemma 1 we can easily prove the eventual positivity of y_{n}. When $\lim \sup _{n \rightarrow \infty} x_{n}=S$, then we choose n_{2} so large that for any $\epsilon>0$, we have

$$
x_{n}<S+\epsilon, \quad n \geq n_{2}-\delta
$$

and

$$
a_{n}+\sum_{r=n_{2}}^{n-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} \leq \beta<1, \quad \text { for all } n>n_{2}
$$

Hence,

$$
\begin{aligned}
y_{n} & >x_{n}-(S+\epsilon)\left(a_{n}+\sum_{r=n_{2}}^{n-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l}\right) \\
& \geq x_{n}-(S+\epsilon) \beta, \quad n>n_{2} .
\end{aligned}
$$

Let $\left\{n_{k}\right\}$ be such that $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$ and $\lim _{k \rightarrow \infty} x_{n_{k}}=S$. Then

$$
y_{n_{k}}>x_{n_{k}}-(S+\epsilon) \beta \quad \text { and } \quad \lim _{k \rightarrow \infty} y_{n_{k}} \geq S-(S+\epsilon) \beta
$$

which implies that $\lim _{k \rightarrow \infty} y_{n_{k}} \geq(1-\beta) S>0$. Combining this with the increasing nature of y_{n}, we easily conclude that $y_{n}>0$ eventually. This completes the proof.

Lemma 3. Assume that $\left\{x_{n}\right\}$ is a solution of (2) such that $x_{n}>0$ for all $n \geq n_{1} \geq n_{0}$ and either $a_{n}=0$ for infinitely many values of n or $a_{n}>0$ for $n \geq n_{1} \geq n_{0}, \tau<\delta, \sum_{n-\delta+\tau}^{n-1} \frac{Q_{j}}{a_{j+\tau-\delta}}>0$ for $n \geq n_{1}$, (5) holds and the difference equation

$$
\begin{equation*}
\Delta v_{n}+\frac{Q_{n}}{a_{n+\tau-\delta}} v_{n+\tau-\delta}=0 \tag{10}
\end{equation*}
$$

is oscillatory. Then $x_{n}>a_{n} x_{n-\tau}$ eventually.
Proof. Since Lemma 1 holds for $\lambda=-1$, then Remark 1 implies that $\Delta z_{n}>0$ eventually and hence z_{n} is either eventually negative or eventually positive. If $a_{n}=0$ for infinitely many values of n, then $z_{n}=x_{n}$ for those values and hence z_{n} is eventually positive. When $a_{n}>0$ for $n \geq n_{1} \geq n_{0}$ we assume for the sake of contradiction that $z_{n}<0$ eventually. It follows that

$$
\Delta y_{n}<\Delta z_{n}<-z_{n}<a_{n} x_{n-\tau}
$$

for sufficiently large n. Substituting into (7), we obtain that Δy_{n} is an eventually positive solution of the inequality

$$
\begin{equation*}
\Delta\left(\Delta y_{n}\right)+\frac{Q_{n}}{a_{n+\tau-\delta}} \Delta y_{n+\tau-\delta} \leq 0 \tag{11}
\end{equation*}
$$

Thus (10) is nonoscillatory according to [3, Corollary 7.6.1], which is an apparent contradiction. Then z_{n} is also eventually positive in this case.

The following result can be proved using similar reasoning as above.
Lemma 4. Assume that (5) holds, $\sum_{n-\delta}^{n-1} Q_{j}>0$ eventually, and the difference equation

$$
\begin{equation*}
\Delta v_{n}+Q_{n} v_{n-\delta}=0 \tag{12}
\end{equation*}
$$

is oscillatory. Then $x_{n}<a_{n} x_{n-\tau}$ eventually.
Next, we define $\left\{h_{n}^{i}(q)\right\}_{n \geq n_{0}}$ for $i=1,2, \ldots$ as follows

$$
h_{n}^{1}(q)=1+a_{n}+\sum_{l=n-1-\delta+\sigma}^{n-2} q_{l}
$$

and

$$
h_{n}^{i+1}(q)=1+a_{n} h_{n-\tau}^{i}(q)+\sum_{l=n-1-\delta+\sigma}^{n-2} h_{l-\delta}^{i}(q) q_{l}, \quad \text { for } i=1,2, \ldots
$$

Theorem 1. Assume that (9) holds and there exists a positive integer i such that the second order ordinary difference equation

$$
\begin{equation*}
\Delta^{2} x_{n}+Q_{n} h_{n-\delta}^{i}(q) x_{n+1}=0 \tag{13}
\end{equation*}
$$

is oscillatory. Then Eq. (2) is almost oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be a solution of (2) which is not almost oscillatory. Due to the linearity of (2), without loss of generality, we assume that $x_{n}>0$ for $n \geq n_{1} \geq n_{0}$. Then Lemmas 1 and 2 imply the existence of an integer $n_{3} \geq n_{2}$ such that

$$
\begin{equation*}
y_{n}>0 \text { for all } n \geq n_{3} \tag{14}
\end{equation*}
$$

Since

$$
\begin{aligned}
x_{n} & =y_{n}+a_{n} x_{n-\tau}+\sum_{r=n_{2}}^{n-1} \sum_{l=r-\delta+\sigma}^{r-1} q_{l} x_{l-\sigma} \\
& >y_{n}+a_{n} x_{n-\tau}+\sum_{l=n-1-\delta+\sigma}^{n-2} q_{l} x_{l-\sigma}, \quad n \geq n_{2}+1 .
\end{aligned}
$$

Then

$$
\begin{aligned}
x_{n} & >y_{n}+a_{n} y_{n-\tau}+\sum_{l=n-1-\delta+\sigma}^{n-2} q_{l} y_{l-\sigma} \\
& >y_{n}+a_{n} y_{n-\tau}+y_{n-1-\delta} \sum_{l=n-1-\delta+\sigma}^{n-2} q_{l} \\
& \geq h_{n}^{1}(q) y_{n-v}, \quad n \geq n_{3}+v,
\end{aligned}
$$

where $v=\max \{\tau, 1+\delta\}$. Using induction, it is easy to see that

$$
x_{n}>h_{n}^{i}(q) y_{n-i v}, \quad \text { for all } n>n_{3}+i v, i=1,2, \ldots
$$

Since $\Delta^{2} y_{n}+Q_{n} x_{n-\delta}=0$, then

$$
\Delta^{2} y_{n}+Q_{n} h_{n-\delta}^{i}(q) y_{n-\delta-i v} \leq 0, \quad n \geq n_{3}+\delta+i v
$$

This implies that (see [11, Lemma 2])

$$
\Delta^{2} v_{n}+Q_{n} h_{n-\delta}^{i}(q) v_{n-\delta-i v}=0
$$

is nonoscillatory. According to [11, Corollary 8], we obtain that (13) is nonoscillatory which contradicts the assumptions. Then (2) is almost oscillatory as desired.

We think that more restrictions on the coefficients may help obtaining results on the oscillation rather than almost oscillation. The first one of these results can be obtained by combining Lemmas 3 and 4 . This depends on the fact that, when $a_{n}>0$ for $n \geq n_{1}$, the oscillation of (12) implies the oscillation of (10) since $\frac{Q_{n}}{a_{n+\tau-\delta}} \geq Q_{n}, n \geq n_{1}$.

Theorem 2. Assume that (5) holds and either $a_{n}=0$ for infinitely many values of n or $\tau<\delta, a_{n}>0$ and $\sum_{n-\delta}^{n-1} Q_{i}>0$ for $n \geq n_{1} \geq n_{0}$. If Eq. (12) is oscillatory, then Eq. (2) is oscillatory.

Next, the above oscillation criterion is improved when $\tau<\delta, \lambda=-1$.
Theorem 3. Assume that all assumptions of Lemma 3 are satisfied. If there exists a positive integer i such that

$$
\begin{equation*}
\Delta^{2} x_{n}+Q_{n} h_{n-\delta}^{i}(0) x_{n+1}=0, \quad\left(h_{n}^{i}(0)=\left.h_{n}^{i}(q)\right|_{q_{n} \equiv 0}\right) \tag{15}
\end{equation*}
$$

is oscillatory, then Eq. (2) is oscillatory.
Proof. Let $\left\{x_{n}\right\}$ be a nonoscillatory solution of Eq. (2). From Lemma 3, we know that $z_{n}=x_{n}-a_{n} x_{n-\tau}>0$ for all $n \geq \tilde{n}$ (for some $\tilde{n} \geq n_{1}$). Since $x_{n}=z_{n}+a_{n} x_{n-\tau}$ for $n \geq \tilde{n}$, then

$$
x_{n}>z_{n}+a_{n} z_{n-\tau}>\left(1+a_{n}\right) z_{n-\tau}=h_{n}^{1}(0) z_{n-\tau}, \quad n \geq \tilde{n}+\tau .
$$

Reusing this inequality, we get

$$
x_{n}>z_{n}+a_{n} h_{n-\tau}^{1}(0) z_{n-2 \tau}>h_{n}^{2}(0) z_{n-2 \tau}, \quad n \geq \tilde{n}+2 \tau
$$

So an induction yields

$$
x_{n}>h_{n}^{i}(0) z_{n-i \tau}, \quad n \geq \tilde{n}+i \tau
$$

Substituting into (7), we get

$$
\Delta^{2} y_{n}+Q_{n} h_{n-\delta}^{i}(0) z_{n-\delta-i \tau} \leq 0, \quad n \geq \tilde{n}+i \tau=N_{i}
$$

Summing from $k \geq N_{i}$ to $n-1$, then

$$
\Delta y_{n}-\Delta y_{k}+\sum_{j=k}^{n-1} Q_{j} h_{j-\delta}^{i}(0) z_{j-\delta-i \tau} \leq 0, \quad n \geq N_{i}
$$

Since $\Delta y_{n}>0$ for $n \geq N_{i}$, then as $n \rightarrow \infty$, we obtain

$$
-\Delta y_{n}+\sum_{j=n}^{\infty} Q_{j} h_{j-\delta}^{i}(0) z_{j-\delta-i \tau} \leq 0, \quad n \geq N_{i}
$$

But $\Delta y_{n} \leq \Delta z_{n}$ for all $n \geq N_{i}$,

$$
-\Delta z_{n}+\sum_{j=n}^{\infty} Q_{j} h_{j-\delta}^{i}(0) z_{j-\delta-i \tau} \leq 0, \quad n \geq N_{i}
$$

Summing from N_{i} to $n-1$, it follows that

$$
z_{N_{i}}+\sum_{l=N_{i}}^{n-1} \sum_{j=l}^{\infty} Q_{j} h_{j-\delta}^{i}(0) z_{j-\delta-i \tau} \leq z_{n}, \quad n \geq N_{i}
$$

Now [11, Theorem 3] implies that Eq. (15) is nonoscillatory. This contradiction completes the proof.

Remark 2. Corollary 1 in [12] relates the oscillation of the special case of Eq. (2); namely,

$$
\Delta^{2}\left(x_{n}-a x_{n-\tau}\right)+p_{n} y_{n-\sigma}=0
$$

to the oscillation of the second order ordinary difference equation

$$
\begin{equation*}
\Delta^{2} x_{n}+\mu p_{n}\left(\frac{n-\delta}{n+1}\right) x_{n+1}=0 \tag{16}
\end{equation*}
$$

where $\mu \in(0,1)$. Although this result and Theorem 3 are not generally compared, it is easy to see that Eq. (15) is more efficient in application than (16) since $\mu p_{n}\left(\frac{n-\delta}{n+1}\right)<h_{n-\delta}^{i}(0)$ (according to the celebrated Sturm comparison theorem [11, Theorem 4]).

Theorem 4. Assume that $\lambda=1$ and $a_{n} \in[0,1]$ for all $n \geq n_{0}$. If the equation

$$
\begin{equation*}
\Delta^{2} x_{n}+\left(1-a_{n-\delta}\right) Q_{n} x_{n+1}=0, \quad n \geq n_{0} \tag{17}
\end{equation*}
$$

is oscillatory, then Eq. (2) is oscillatory.
Proof. As usual we assume that $\left\{x_{n}\right\}$ is a solution of Eq. (2) such that $x_{n}>0$ for $n \geq n_{1} \geq n_{0}$. If $\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ are defined as before, it follows from Lemmas 1 and 2 that

$$
\begin{aligned}
\Delta^{2} y_{n} & =-Q_{n} x_{n-\delta}=-Q_{n}\left(z_{n-\delta}-a_{n-\delta} x_{n-\tau-\delta}\right) \\
& \leq-Q_{n} z_{n-\delta}+Q_{n} a_{n-\delta} z_{n-\tau-\delta} \\
& \leq-Q_{n} z_{n-\delta}+Q_{n} a_{n-\delta} z_{n-\delta} \\
& =-Q_{n}\left(1-a_{n-\delta}\right) z_{n-\delta}, \quad n \geq n_{2}+\delta+1
\end{aligned}
$$

Since $y_{n} \leq z_{n}$ for all $n \geq \overline{\bar{n}}$ (for some $\overline{\bar{n}} \geq n_{2}+\delta+1$), the above inequality yields

$$
\Delta^{2} y_{n}+\left(1-a_{n-\delta}\right) Q_{n} y_{n-\delta} \leq 0, \quad n \geq \overline{\bar{n}}
$$

As in the previous proofs, the above inequality implies that (17) is not oscillatory. This completes the proof.
Theorem 5. Assume that $\lambda=1$ and either,

$$
\begin{equation*}
Q_{n} \geq a_{n-\delta+\tau} \tag{18}
\end{equation*}
$$

or

$$
\begin{equation*}
Q_{n} \geq q_{n-\delta+\sigma}, \quad \text { and } \quad p_{n} \geq a_{n-\delta+\tau} \tag{19}
\end{equation*}
$$

for all $n \geq n_{0}$. If there exists $\epsilon_{0}>0$ such that the second order equation

$$
\begin{equation*}
\Delta^{2} x_{n}+\frac{Q_{n}}{1+\epsilon_{0}} x_{n+1}=0 \tag{20}
\end{equation*}
$$

is oscillatory, then Eq. (2) is oscillatory.
Proof. Assume that $\left\{x_{n}\right\}$ is a solution of (2) such that $x_{n}>0$ for all $n \geq n_{1} \geq n_{0}$. From Eq. (7) and Lemma 1, we see that

$$
\sum_{n_{1}+\delta}^{\infty} Q_{i} x_{i-\delta}<\infty
$$

If (18) is satisfied, we obtain

$$
\sum_{n_{1}+\delta}^{\infty} a_{i-\delta+\tau} x_{i-\delta}<\infty
$$

This implies that $\lim _{n \rightarrow \infty} a_{n} x_{n-\tau}=0$. Consequently, $\lim _{n \rightarrow \infty} z_{n}-x_{n}=0$ which implies that $\lim _{\inf }^{n \rightarrow \infty}$ $x_{n}>0$ and hence,

$$
\lim _{n \rightarrow \infty} \frac{z_{n}}{x_{n}}=1
$$

So, for any $\epsilon \in\left(0, \epsilon_{0}\right)$, there exists an integer $n_{\epsilon} \geq n_{1}+\delta$ such that

$$
x_{n}>\frac{z_{n}}{1+\epsilon} \geq \frac{y_{n}}{1+\epsilon} \quad n \geq n_{\epsilon}
$$

where, according to Lemma $2, n_{\epsilon}$ can be chosen so large that $y_{n}>0$ for all $n \geq n_{\epsilon}$. Thus Eq. (7) and the above inequality yield

$$
\Delta^{2} y_{n}+\frac{Q_{n}}{1+\epsilon} y_{n-\delta}<0, \quad n \geq n_{\epsilon}+\delta
$$

Since $\epsilon<\epsilon_{0}$, it follows that y_{n} satisfies the inequality

$$
\Delta^{2} y_{n}+\frac{Q_{n}}{1+\epsilon_{0}} y_{n-\delta}<0, \quad n \geq n_{\epsilon}+\delta
$$

which as in the previous proofs implies that (20) is nonoscillatory. This contradiction proves the theorem when (18) holds. If (19) is satisfied, the proof can be completed similarly.

3. Applications

Several known first order and second order oscillation results can be used to extract interesting oscillation criteria from our theorems of Section 2. Of course, it is impossible to apply all known results here. So we select the following results from the literature on the equations

$$
\begin{equation*}
\Delta x_{n}+p_{n} x_{n-k}=0 \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{2} x_{n}+c_{n} x_{n+1}=0 \tag{22}
\end{equation*}
$$

where $\left\{p_{n}\right\}$ and $\left\{c_{n}\right\}$ are nonnegative real sequences and k is a positive integer.
Eq. (21) is oscillatory if

$$
\alpha:=\liminf _{n \rightarrow \infty}\left(\frac{1}{k} \sum_{i=n-k}^{n-1} p_{i}\right)>\frac{k^{k}}{(k+1)^{k+1}}
$$

[3, Theorem 7.5.1]
or

$$
\begin{equation*}
\alpha \leq \frac{k^{k}}{(k+1)^{k+1}} \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left(\frac{1}{k} \sum_{i=n-k}^{n-1} p_{i}\right)>1-\frac{\alpha^{2}}{2(2-\alpha)} \tag{13}
\end{equation*}
$$

Eq. (22) is oscillatory if

$$
\begin{equation*}
\sum_{i=n_{0}}^{\infty} c_{i}=\infty \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{i=n_{0}}^{\infty} c_{i}<\infty \quad \text { and } \quad \liminf _{n \rightarrow \infty} n \sum_{i=n+1}^{\infty} c_{i}>\frac{1}{4} \tag{15,16}
\end{equation*}
$$

More oscillation criteria for (21) can be found in [17,18] while for Eq. (22) the reader is referred to [1,2,15,16,19-22].
The following result deals with almost oscillation.

Theorem 6. Assume that (9) holds. Then Eq. (2) is almost oscillatory if there exists a positive integer i such that either one of the following conditions is satisfied:

$$
\begin{equation*}
\sum_{j=n_{0}}^{\infty} Q_{j} h_{j-\delta}^{i}(q)=\infty \tag{23}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{j=n_{0}}^{\infty} Q_{j} h_{j-\delta}^{i}(q)<\infty \quad \text { and } \quad \liminf _{n \rightarrow \infty} n \sum_{j=n+1}^{\infty} Q_{j} h_{j-\delta}^{i}(q)>\frac{1}{4} \tag{24}
\end{equation*}
$$

Theorem 2 implies the following result.

Theorem 7. Assume that Eq. (5) holds and either $a_{n}=0$ for infinitely many values of n or $\tau<\delta, a_{n}>0$ for $n \geq n_{1} \geq n_{0}$. If either

$$
\alpha:=\liminf _{n \rightarrow \infty}\left(\frac{1}{\delta} \sum_{i=n-\delta}^{n-1} Q_{i}\right)>\frac{\delta^{\delta}}{(\delta+1)^{\delta+1}}
$$

or

$$
\alpha \leq \frac{\delta^{\delta}}{(\delta+1)^{\delta+1}} \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left(\frac{1}{\delta} \sum_{i=n-\delta}^{n-1} Q_{i}\right)>1-\frac{\alpha^{2}}{2(2-\alpha)}
$$

are satisfied, then Eq. (2) is oscillatory.
As an improvement to the above criteria, we obtain the following result which is an application of Theorem 3.
Theorem 8. Assume that (5) holds and either $a_{n}=0$ for infinitely many values of n or $\tau<\delta, a_{n}>0$ for $n \geq n_{1} \geq n_{0}$ and either

$$
\alpha:=\liminf _{n \rightarrow \infty}\left(\frac{1}{\delta-\tau} \sum_{j=n-\delta+\tau}^{n-1} \frac{Q_{j}}{a_{j+\tau-\delta}}\right)>\frac{(\delta-\tau)^{\delta-\tau}}{(\delta-\tau+1)^{\delta-\tau+1}}
$$

or

$$
\alpha \leq \frac{(\delta-\tau)^{\delta-\tau}}{(\delta-\tau+1)^{\delta-\tau+1}} \quad \text { and } \quad \limsup \left(\frac{1}{n \rightarrow \infty} \sum_{j=n-\delta+\tau}^{n-1} \frac{Q_{j}}{a_{j+\tau-\delta}}\right)>1-\frac{\alpha^{2}}{2(2-\alpha)}
$$

are satisfied. Assume, further, that either (23) or (24) holds when $q=0$. Then Eq. (2) is oscillatory.
An application of Theorem 4 leads to the following result.
Theorem 9. Assume that $\lambda=1$ and $a_{n} \in[0,1]$ for all $n \geq n_{0}$. If either

$$
\begin{equation*}
\sum_{i=n_{0}}^{\infty}\left(1-a_{j-\delta}\right) Q_{j}=\infty \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{i=n_{0}}^{\infty}\left(1-a_{j-\delta}\right) Q_{j}<\infty \quad \text { and } \quad \liminf _{n \rightarrow \infty} n \sum_{i=n+1}^{\infty}\left(1-a_{j-\delta}\right) Q_{j}>\frac{1}{4} \tag{26}
\end{equation*}
$$

then Eq. (2) is oscillatory.
The following result is an application to Theorem 5.
Theorem 10. Assume that $\lambda=1$ and either (18) or (19) holds. If either

$$
\begin{equation*}
\sum_{i=n_{0}}^{\infty} Q_{j}=\infty \tag{27}
\end{equation*}
$$

or

$$
\begin{equation*}
\sum_{i=n_{0}}^{\infty} Q_{j}<\infty \quad \text { and } \quad \liminf _{n \rightarrow \infty} n \sum_{i=n+1}^{\infty} Q_{j}>\frac{1}{4}, \tag{28}
\end{equation*}
$$

then Eq. (2) is oscillatory.
We refer the reader here to the fact that the second part of (28) implies the existence of a sufficiently small $\epsilon_{0}>0$ such that $\lim \inf _{n \rightarrow \infty} n \sum_{n+1}^{\infty} Q_{j}>\frac{1}{4}\left(1+\epsilon_{0}\right)$.

As an illustrative example, we consider the difference equation

$$
\begin{equation*}
\Delta^{2}\left(x_{n}+\frac{\lambda}{n^{2}} x_{n-\tau}\right)+\frac{2}{n^{\beta}} x_{n-\delta}-\frac{1}{n^{5}} x_{n-\sigma}=0 \tag{29}
\end{equation*}
$$

where $\beta \in R, \tau, \delta, \sigma$ are positive integers satisfying that $\delta \geq \sigma+1, \delta>\tau$. Since

$$
\frac{Q_{j}}{a_{j+\tau-\delta}}=(j+\tau-\delta)^{2}\left[\frac{2}{j^{\beta}}-\frac{1}{(j-\delta+\sigma)^{5}}\right]
$$

Then

$$
\lim _{n \rightarrow \infty} \frac{Q_{n}}{a_{n+\tau-\delta}} \geq 2
$$

for $\beta \leq 2$. Therefore, the constant α of Theorem 8 satisfies that

$$
\alpha=2>\frac{(\delta-\tau)^{\delta-\tau}}{(\delta-\tau+1)^{\delta-\tau+1}}
$$

Also; since $h_{n}^{i}(q)>1$ then

$$
\sum^{\infty} Q_{j} h_{j-\delta}^{i}(q)=\infty, \quad \text { if } \beta \leq 1
$$

For $\beta \in(1,2]$,

$$
\liminf _{n \rightarrow \infty} n \sum_{j=n+1}^{\infty} Q_{j} h_{j-\delta}^{i}(q)>\liminf _{n \rightarrow \infty} n \sum_{j=n+1}^{\infty} Q_{j} .
$$

But $\lim _{n \rightarrow \infty} n^{2} Q_{n} \geq 2$. Then for all $\epsilon \in(0,1]$ there exists $n_{\epsilon}>0$ such that $Q_{n} \geq \frac{2-\epsilon}{n^{2}}$ for $n \geq n_{\epsilon}$, and hence

$$
\sum_{j=n+1}^{\infty} Q_{j}>\frac{2-\epsilon}{n+1}
$$

Thus

$$
\liminf _{n \rightarrow \infty} n \sum_{j=n+1}^{\infty} Q_{j} h_{j-\delta}^{i}(q)>\liminf _{n \rightarrow \infty} \frac{n(2-\epsilon)}{n+1}=2-\epsilon>\frac{1}{4}
$$

Then all solutions of Eq. (29) oscillate when $\lambda=-1$ and $\beta \leq 2$ according Theorem 8 .
For $\lambda=1$, we drop the condition $\delta>\tau$. If $n_{0}>2+\delta$, then $\left(1-a_{n-\delta}\right) Q_{n}>\frac{3}{4} Q_{n}$ for $n \geq n_{0}$. Thus (25) holds as long as $\beta \leq 1$. For $\beta \in(1,2]$, we have

$$
\sum_{j=n_{0}}^{\infty}\left(1-a_{j-\delta}\right) Q_{j}<\sum_{j=n_{0}}^{\infty} Q_{j}<\sum_{j=n_{0}}^{\infty} \frac{2}{j^{\beta}}<\infty
$$

Let $n_{\epsilon}>n_{0}$, then similar arguments as before yield,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} n \sum_{j=n+1}^{\infty}\left(1-a_{j-\delta}\right) Q_{j} & >\liminf _{n \rightarrow \infty} n \sum_{j=n+1}^{\infty} \frac{3(2-\epsilon)}{4 j^{2}} \\
& =\frac{3}{4}(2-\epsilon)>\frac{1}{4}
\end{aligned}
$$

Thus all solutions of Eq. (29) oscillates according to Theorem 9 when $\beta \leq 2$.
It is important to refer to the fact that Eq. (29) is nonoscillatory when $\beta>2$ according to [8] since

$$
\sum_{n=n_{0}}^{\infty} n\left|p_{n}\right|=\sum_{n=n_{0}}^{\infty} \frac{2}{n^{\beta-1}}<\infty, \quad \text { and } \quad \sum_{n=n_{0}}^{\infty} n\left|q_{n}\right|=\sum_{n=n_{0}}^{\infty} \frac{2}{n^{4}}<\infty
$$

in this case and $0<a_{n}=\frac{1}{n^{2}}<\frac{1}{(2+\delta)^{2}}<1$ for $n \geq n_{0}$. Thus Eq. (29) oscillates if and only if $\beta \leq 2$.
This example suggests some kind of sharpness of our results when (4) holds. This author believes that there exists $P_{n} \geq 0$ (related to p_{n} and q_{n}) such that (2) is nonoscillatory provided that the second order ordinary difference equation

$$
\Delta^{2} x_{n}+P_{n} x_{n+1}=0
$$

is nonoscillatory. We also believe that Theorem 4 is true if (17) is replaced by the equation

$$
\Delta^{2} x_{n}+\frac{Q_{n}}{1+a_{n}} x_{n+1}=0
$$

Finally, it will be very interesting if one could prove Theorem 5 for $\epsilon_{0}=0$.

Acknowledgments

The author would like to thank the referees for their valuable comments and suggestions.

References

[1] R.P. Agarwal, Difference Equations and Inequalities, Second ed., Marcel Dekker, New York, 1992.
[2] R.P. Agarwal, M. Bohner, S.R. Grace, D. O’Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, 2005.
[3] V.L. Kocić, Ladas, Global Asymptotic Behavior of Nonlinear Difference Equations of Higher Order with Applications, Kluwer Academic, Dordrecht, 1993.
[4] B. Liu, S.S. Cheng, A stability criterion for a neutral difference equation with two delays, in: Proc. Natl. Sci. Counc. ROC(A), vol. 25, 2001, pp. 40-44.
[5] W. Shan, W. Ge, Oscillation of neutral difference equations with positive and negative coefficients, Comput. Math. Appl. 47 (2004) $1647-1657$.
[6] Y. Zhou, Oscillations of neutral difference equations, Kyungbook Math. J. 39 (1999) 283-291.
[7] C. Jinfa, Existence of a nonoscillatory solution of a second-order linear neutral difference equation, Appl. Math. Lett. 20 (2007) 892-899.
[8] Y. Zhou, Y.Q. Huang, Existence for nonoscillatory solutions of higher-order nonlinear neutral difference equations, J. Math. Anal. Appl. 280 (2003) 63-76.
[9] Y. Zhou, B.G. Zhang, Existence of nonoscillatory solutions of higher-order neutral delay difference equations with variable coefficients, Comput. Math. Appl. 45 (2003) 991-1000.
[10] B. Karpuz, Ö. Öcalan, M.K. Yildiz, Oscillation of a class of difference equations of second order, Math. Comput. Modelling 49 (2009) $912-917$.
[11] H.A. El-Morshedy, S.R. Grace, Comparison theorems for second order nonlinear difference equations, J. Math. Anal. Appl. 306 (2005) 106-121.
[12] E. Thandapani, Z. Liu, R. Arul, P. Raja, Oscillation and asymptotic behavior of second order difference equations with nonlinear neutral term, Appl. Math. E-Notes 4 (2004) 59-67.
[13] G.E. Chatzarakis, I.P. Stavroulakis, Oscillations of first order linear delay difference equations, Aust. J. Math. Anal. Appl. 3 (2006) 11. (Art. 14).
[14] P.J. McCarthy, Note on the oscillation of solutions of second order linear difference equations, Portugalian Math. 18 (1959) $203-205$.
[15] S.S. Cheng, T.C. Yan, H.J. Li, Oscillation criteria for second order difference equations, Funcialaj Ekvac. 34 (1991) 223-239.
[16] L.H. Erbe, B.G. Zhang, Oscillation of second order linear difference equation, Chinese J. Math. 16 (1988) 239-252.
[17] G.E. Chatzarakis, R. Koplatadze, I.P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal. 68 (2008) 994-1005.
[18] J. Jiang, X. Li, X. Tang, New oscillation criteria for first-order delay difference equations, Comput. Math. Appl. 47 (2004) $1875-1884$.
[19] S. Chen, L.H. Erbe, Riccati techniques and discrete oscillations, J. Math. Anal. Appl. 142 (1989) 468-487.
[20] S.R. Grace, A.A. Abadeer, H.A. El-Morshedy, Summation averaging technique for the oscillation of second order linear difference equations, Publ. Math. Debrecen 55 (1999) 333-347.
[21] W. Patula, Growth and oscillation properties of second order linear difference equations, SIAM J. Math. Anal. 10 (1979) 55-61.
[22] B.G. Zhang, Y. Zhou, Oscillation and nonoscillation solutions for second-order linear difference equations, Comput. Math. Appl. 39 (2000) 1-7.

[^0]: E-mail addresses: elmorshedy@yahoo.com, elmorshedy@hotmail.com.

