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a b s t r a c t

The oscillation of second order neutral difference equations with positive and negative
coefficients of the form

∆2(xn + λanxn−τ )+ pnxn−δ − qnxn−σ = 0, λ = ±1

is investigated.We obtainmany new results using the comparison between both first order
and second order difference equations. An example is given to show the strength of the
obtained results.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The oscillatory properties of difference equations of many types have been the subject of extensive investigations
reflecting the importance of this topic in applications (see [1–3]). Among the equations which did not undergo the deserved
investigation are the equationswith positive and negative coefficients. This, probably, is due to the difficulty associatedwith
the presence of negative and positive coefficients in one equation. Some authors studied the oscillation and/or nonoscillation
of first order difference equations of the form

∆(xn − anxn−τ )+ pnxn−δ − qnxn−σ = 0; (1)

see [1,3–6] and the references cited therein. For second order difference equations of this type, namely,

∆2(xn + λanxn−τ )+ pnxn−δ − qnxn−σ = 0, λ = ±1 (2)

it seems that the nonoscillation theory is more developed than the oscillation theory (e.g., [7–9]). At least we know from [8]
that (2) is nonoscillatory provided that

∞∑
i=n0

n|pn| <∞ and
∞∑
i=n0

n|qn| <∞, (3)

when either 0 ≤ an ≤ a < 1 or−1 < a < an ≤ 0 for n ≥ n0.
In fact, as far as this author knows, the only known work on the oscillation of (2) is [10].
Our main objective here is to obtain new oscillation criteria for (2) when δ, σ and τ are nonnegative integers. We use

the comparison with both first order delay and second order ordinary difference equations. In particular, we benefit from
the theory developed in [11] for the oscillation and nonoscillation of second order functional difference equations and the
advances of the oscillation theory of the second order ordinary difference equation

∆2un + hnun+1 = 0.
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Our results improve some results of [10] (when restricted to Eq. (2)) and provide a new technique for investigating equations
with positive and negative coefficients.
By a solution of (2),wemean a sequence {xn} of real numbers that satisfies (2). Each solution of (2) is generated recursively

given its initial values x−i for all i = 0, 1, . . . ,M whereM = max{τ+2, δ+2, σ+2}. A solution of (2) is said to be oscillatory
if it is neither eventually positive nor eventually negative. Eq. (2) is called oscillatory if all its solutions are oscillatory. If each
solution of (2) is either oscillatory or has a limit zero at infinity, then Eq. (2) is called almost oscillatory. This type of oscillation
naturally exists in functional equations with higher delays. One can test this easily for equations with constant coefficients
specially when the corresponding characteristic polynomial is of odd order.

2. Main results

Throughout this section, we assume that the series,

∞∑ r−1∑
l=r−δ+σ

ql (4)

converges. Also, we assume that δ ≥ 1 + σ , an, pn, qn ≥ 0 and Qn = pn − qn−δ+σ ≥ 0 for n ≥ n0 where Qn 6≡ 0 on
{s, s+ 1, s+ 2, . . .} for any positive integer s.

Lemma 1. Assume that {xn} is a solution of (2) such that xn > 0 for n ≥ n1 ≥ n0. If λ = 1 or

lim sup
n→∞

an +
n−1∑
r=n2

r−1∑
l=r−δ+σ

ql ≤ 1, for λ = −1, (5)

then the sequence {yn} defined by

yn = xn + λanxn−τ −
n−1∑
r=n2

r−1∑
l=r−δ+σ

qlxl−σ , n ≥ n2 > n1 + ν, ν = max{τ , 1+ δ} (6)

satisfies∆yn > 0 eventually.

Proof. Notice that,

∆yn = ∆(xn + λanxn−τ )−
n−1∑

l=n−δ+σ

qlxl−σ

and

∆2yn = −(pn − qn−δ+σ )xn−δ
= −Qnxn−δ ≤ 0, n ≥ n2 + 1. (7)

Thus ∆yn is either eventually positive or eventually negative. If n3 ≥ n2 + 1 such that ∆yn3 < 0, then (7) implies
that ∆yn < ∆yn3 for n ≥ n3. Summing from n3 to ∞, it follows that limn→∞ yn = −∞ which is possible only if
lim supn→∞ xn = ∞. Using the same reasoning as in [11, p.118], a positive integer sequence {n̄k}, n̄k → ∞ as k → ∞
exists such that

xn̄k = max{xn : n2 + δ ≤ n ≤ n̄k},

hence

yn̄k = xn̄k + λan̄kxn̄k−τ −
n̄k−1∑
r=n2

r−1∑
l=r−δ+σ

qlxl−σ

≥ xn̄k + λan̄kxn̄k−τ − xn̄k

n̄k−1∑
r=n2

r−1∑
l=r−δ+σ

ql

>



(
1− an̄k −

n̄k−1∑
r=n2

r−1∑
l=r−δ+σ

ql

)
xn̄k , if λ = −1(

1−
n̄k−1∑
r=n2

r−1∑
l=r−δ+σ

ql

)
xn̄k + an̄kxn̄k−τ , if λ = 1.
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So, if we choose the integer n2 such that
∑
∞

r=n2

∑r−1
l=r−δ+σ ql ≤ 1 for λ = 1 and an̄k +

∑n̄k−1
r=n2

∑r−1
l=r−δ+σ ql < 1 for λ = −1,

it follows that

yn̄k ≥ 0, for all k, (8)

which is a contradiction. Thus∆yn must be eventually positive. �

Remark 1. Let xn > 0 for n ≥ n1 ≥ n0 and n̄ ≥ n1 + δ. Define zn and un by

zn = xn + λanxn−τ , un = zn −
n−1∑
r=n̄

r−1∑
l=r−δ+σ

qlxl−σ .

Then

∆un = ∆zn −
n−1∑

l=n−δ+σ

qlxl−σ = ∆yn, for large n.

Thus ∆un > 0 as long as ∆yn > 0. Also, ∆zn ≥ ∆yn which implies that ∆zn > 0 provided that ∆yn > 0. Therefore, n2 can
be chosen as large as needed without violating the positivity of ∆yn. So, without further mentioning, we always choose n2
sufficiently large to suit some eventually satisfied properties of xn which may be assumed in the proofs of the next results.

Lemma 2. Assume that {xn} and {yn} are as in Lemma 1. If λ = 1 or lim supn→∞ xn > 0,

λ = −1, and lim sup
n→∞

an +
n−1∑
r=n2

r−1∑
l=r−δ+σ

ql < 1. (9)

Then yn > 0 eventually.

Proof. If λ = 1, we choose n2 so large that∆zn > 0 for all n ≥ n2 − δ and
∑n−1
r=n2

∑r−1
l=r−δ+σ ql ≤ 1. Therefore,

yn ≥ zn −
n−1∑
r=n2

r−1∑
l=r−δ+σ

qlzl−σ

≥ zn

(
1−

n−1∑
r=n2

r−1∑
l=r−δ+σ

ql

)
≥ 0, for n ≥ n2.

If (9) holds and lim supn→∞ xn = ∞, then using similar arguments as those employed in the proof of Lemma 1 we can
easily prove the eventual positivity of yn. When lim supn→∞ xn = S, then we choose n2 so large that for any ε > 0, we have

xn < S + ε, n ≥ n2 − δ

and

an +
n−1∑
r=n2

r−1∑
l=r−δ+σ

ql ≤ β < 1, for all n > n2.

Hence,

yn > xn − (S + ε)

(
an +

n−1∑
r=n2

r−1∑
l=r−δ+σ

ql

)
≥ xn − (S + ε)β, n > n2.

Let {nk} be such that nk →∞ as k→∞ and limk→∞ xnk = S. Then

ynk > xnk − (S + ε)β and lim
k→∞

ynk ≥ S − (S + ε)β,

which implies that limk→∞ ynk ≥ (1 − β)S > 0. Combining this with the increasing nature of yn, we easily conclude that
yn > 0 eventually. This completes the proof. �
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Lemma 3. Assume that {xn} is a solution of (2) such that xn > 0 for all n ≥ n1 ≥ n0 and either an = 0 for infinitely many
values of n or an > 0 for n ≥ n1 ≥ n0, τ < δ,

∑n−1
n−δ+τ

Qj
aj+τ−δ

> 0 for n ≥ n1, (5) holds and the difference equation

∆vn +
Qn
an+τ−δ

vn+τ−δ = 0 (10)

is oscillatory. Then xn > anxn−τ eventually.
Proof. Since Lemma 1 holds for λ = −1, then Remark 1 implies that∆zn > 0 eventually and hence zn is either eventually
negative or eventually positive. If an = 0 for infinitely many values of n, then zn = xn for those values and hence zn is
eventually positive. When an > 0 for n ≥ n1 ≥ n0 we assume for the sake of contradiction that zn < 0 eventually. It follows
that

∆yn < ∆zn < −zn < anxn−τ ,

for sufficiently large n. Substituting into (7), we obtain that∆yn is an eventually positive solution of the inequality

∆(∆yn)+
Qn
an+τ−δ

∆yn+τ−δ ≤ 0. (11)

Thus (10) is nonoscillatory according to [3, Corollary 7.6.1], which is an apparent contradiction. Then zn is also eventually
positive in this case.
The following result can be proved using similar reasoning as above.

Lemma 4. Assume that (5) holds,
∑n−1
n−δ Qj > 0 eventually, and the difference equation

∆vn + Qnvn−δ = 0, (12)

is oscillatory. Then xn < anxn−τ eventually.
Next, we define {hin(q)}n≥n0 for i = 1, 2, . . . as follows

h1n(q) = 1+ an +
n−2∑

l=n−1−δ+σ

ql,

and

hi+1n (q) = 1+ anhin−τ (q)+
n−2∑

l=n−1−δ+σ

hil−δ(q)ql, for i = 1, 2, . . . . �

Theorem 1. Assume that (9) holds and there exists a positive integer i such that the second order ordinary difference equation

∆2xn + Qnhin−δ(q)xn+1 = 0, (13)

is oscillatory. Then Eq. (2) is almost oscillatory.
Proof. Let {xn} be a solution of (2) which is not almost oscillatory. Due to the linearity of (2), without loss of generality, we
assume that xn > 0 for n ≥ n1 ≥ n0. Then Lemmas 1 and 2 imply the existence of an integer n3 ≥ n2 such that

yn > 0 for all n ≥ n3. (14)

Since

xn = yn + anxn−τ +
n−1∑
r=n2

r−1∑
l=r−δ+σ

qlxl−σ

> yn + anxn−τ +
n−2∑

l=n−1−δ+σ

qlxl−σ , n ≥ n2 + 1.

Then

xn > yn + anyn−τ +
n−2∑

l=n−1−δ+σ

qlyl−σ

> yn + anyn−τ + yn−1−δ
n−2∑

l=n−1−δ+σ

ql

≥ h1n(q)yn−ν, n ≥ n3 + ν,
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where ν = max{τ , 1+ δ}. Using induction, it is easy to see that

xn > hin(q)yn−iν, for all n > n3 + iν, i = 1, 2, . . . .

Since∆2yn + Qnxn−δ = 0, then

∆2yn + Qnhin−δ(q)yn−δ−iν ≤ 0, n ≥ n3 + δ + iν.

This implies that (see [11, Lemma 2])

∆2vn + Qnhin−δ(q)vn−δ−iν = 0,

is nonoscillatory. According to [11, Corollary 8], we obtain that (13) is nonoscillatory which contradicts the assumptions.
Then (2) is almost oscillatory as desired. �

We think that more restrictions on the coefficients may help obtaining results on the oscillation rather than almost
oscillation. The first one of these results can be obtained by combining Lemmas 3 and 4. This depends on the fact that, when
an > 0 for n ≥ n1, the oscillation of (12) implies the oscillation of (10) since Qn

an+τ−δ
≥ Qn, n ≥ n1.

Theorem 2. Assume that (5) holds and either an = 0 for infinitely many values of n or τ < δ, an > 0 and
∑n−1
n−δ Qi > 0 for

n ≥ n1 ≥ n0. If Eq. (12) is oscillatory, then Eq. (2) is oscillatory.

Next, the above oscillation criterion is improved when τ < δ, λ = −1.

Theorem 3. Assume that all assumptions of Lemma 3 are satisfied. If there exists a positive integer i such that

∆2xn + Qnhin−δ(0)xn+1 = 0, (hin(0) = h
i
n(q)|qn≡0) (15)

is oscillatory, then Eq. (2) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of Eq. (2). From Lemma 3, we know that zn = xn − anxn−τ > 0 for all n ≥ ñ (for
some ñ ≥ n1). Since xn = zn + anxn−τ for n ≥ ñ, then

xn > zn + anzn−τ > (1+ an)zn−τ = h1n(0)zn−τ , n ≥ ñ+ τ .

Reusing this inequality, we get

xn > zn + anh1n−τ (0)zn−2τ > h
2
n(0)zn−2τ , n ≥ ñ+ 2τ .

So an induction yields

xn > hin(0)zn−iτ , n ≥ ñ+ iτ .

Substituting into (7), we get

∆2yn + Qnhin−δ(0)zn−δ−iτ ≤ 0, n ≥ ñ+ iτ = Ni.

Summing from k ≥ Ni to n− 1, then

∆yn −∆yk +
n−1∑
j=k

Qjhij−δ(0)zj−δ−iτ ≤ 0, n ≥ Ni.

Since∆yn > 0 for n ≥ Ni, then as n→∞, we obtain

−∆yn +
∞∑
j=n

Qjhij−δ(0)zj−δ−iτ ≤ 0, n ≥ Ni.

But∆yn ≤ ∆zn for all n ≥ Ni,

−∆zn +
∞∑
j=n

Qjhij−δ(0)zj−δ−iτ ≤ 0, n ≥ Ni.

Summing from Ni to n− 1, it follows that

zNi +
n−1∑
l=Ni

∞∑
j=l

Qjhij−δ(0)zj−δ−iτ ≤ zn, n ≥ Ni.

Now [11, Theorem 3] implies that Eq. (15) is nonoscillatory. This contradiction completes the proof. �
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Remark 2. Corollary 1 in [12] relates the oscillation of the special case of Eq. (2); namely,

∆2(xn − axn−τ )+ pnyn−σ = 0,

to the oscillation of the second order ordinary difference equation

∆2xn + µpn

(
n− δ
n+ 1

)
xn+1 = 0, (16)

where µ ∈ (0, 1). Although this result and Theorem 3 are not generally compared, it is easy to see that Eq. (15) is more
efficient in application than (16) since µpn( n−δn+1 ) < h

i
n−δ(0) (according to the celebrated Sturm comparison theorem [11,

Theorem 4]).

Theorem 4. Assume that λ = 1 and an ∈ [0, 1] for all n ≥ n0. If the equation

∆2xn + (1− an−δ)Qnxn+1 = 0, n ≥ n0 (17)

is oscillatory, then Eq. (2) is oscillatory.

Proof. As usual we assume that {xn} is a solution of Eq. (2) such that xn > 0 for n ≥ n1 ≥ n0. If {yn} and {zn} are defined as
before, it follows from Lemmas 1 and 2 that

∆2yn = −Qnxn−δ = −Qn(zn−δ − an−δxn−τ−δ)
≤ −Qnzn−δ + Qnan−δzn−τ−δ
≤ −Qnzn−δ + Qnan−δzn−δ
= −Qn(1− an−δ)zn−δ, n ≥ n2 + δ + 1.

Since yn ≤ zn for all n ≥ ¯̄n (for some ¯̄n ≥ n2 + δ + 1), the above inequality yields

∆2yn + (1− an−δ)Qnyn−δ ≤ 0, n ≥ ¯̄n.

As in the previous proofs, the above inequality implies that (17) is not oscillatory. This completes the proof. �

Theorem 5. Assume that λ = 1 and either,

Qn ≥ an−δ+τ , (18)

or

Qn ≥ qn−δ+σ , and pn ≥ an−δ+τ . (19)

for all n ≥ n0. If there exists ε0 > 0 such that the second order equation

∆2xn +
Qn
1+ ε0

xn+1 = 0, (20)

is oscillatory, then Eq. (2) is oscillatory.

Proof. Assume that {xn} is a solution of (2) such that xn > 0 for all n ≥ n1 ≥ n0. From Eq. (7) and Lemma 1, we see that
∞∑
n1+δ

Qixi−δ <∞.

If (18) is satisfied, we obtain
∞∑
n1+δ

ai−δ+τ xi−δ <∞.

This implies that limn→∞ anxn−τ = 0. Consequently, limn→∞ zn−xn = 0which implies that lim infn→∞ xn > 0 and hence,

lim
n→∞

zn
xn
= 1.

So, for any ε ∈ (0, ε0), there exists an integer nε ≥ n1 + δ such that

xn >
zn
1+ ε

≥
yn
1+ ε

n ≥ nε,
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where, according to Lemma 2, nε can be chosen so large that yn > 0 for all n ≥ nε . Thus Eq. (7) and the above inequality
yield

∆2yn +
Qn
1+ ε

yn−δ < 0, n ≥ nε + δ.

Since ε < ε0, it follows that yn satisfies the inequality

∆2yn +
Qn
1+ ε0

yn−δ < 0, n ≥ nε + δ

which as in the previous proofs implies that (20) is nonoscillatory. This contradiction proves the theorem when (18) holds.
If (19) is satisfied, the proof can be completed similarly. �

3. Applications

Several known first order and second order oscillation results can be used to extract interesting oscillation criteria from
our theorems of Section 2. Of course, it is impossible to apply all known results here. So we select the following results from
the literature on the equations

∆xn + pnxn−k = 0, (21)

and

∆2xn + cnxn+1 = 0, (22)

where {pn} and {cn} are nonnegative real sequences and k is a positive integer.
Eq. (21) is oscillatory if

α := lim inf
n→∞

(
1
k

n−1∑
i=n−k

pi

)
>

kk

(k+ 1)k+1
, [3, Theorem 7.5.1]

or

α ≤
kk

(k+ 1)k+1
and lim sup

n→∞

(
1
k

n−1∑
i=n−k

pi

)
> 1−

α2

2(2− α)
. [13]

Eq. (22) is oscillatory if
∞∑
i=n0

ci = ∞, [14]

or
∞∑
i=n0

ci <∞ and lim inf
n→∞

n
∞∑

i=n+1

ci >
1
4
. [15,16]

More oscillation criteria for (21) can be found in [17,18] while for Eq. (22) the reader is referred to [1,2,15,16,19–22].
The following result deals with almost oscillation.

Theorem 6. Assume that (9) holds. Then Eq. (2) is almost oscillatory if there exists a positive integer i such that either one of the
following conditions is satisfied:

∞∑
j=n0

Qjhij−δ(q) = ∞, (23)

or
∞∑
j=n0

Qjhij−δ(q) <∞ and lim inf
n→∞

n
∞∑

j=n+1

Qjhij−δ(q) >
1
4
. (24)

Theorem 2 implies the following result.
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Theorem 7. Assume that Eq. (5) holds and either an = 0 for infinitely many values of n or τ < δ, an > 0 for n ≥ n1 ≥ n0. If
either

α := lim inf
n→∞

(
1
δ

n−1∑
i=n−δ

Qi

)
>

δδ

(δ + 1)δ+1
,

or

α ≤
δδ

(δ + 1)δ+1
and lim sup

n→∞

(
1
δ

n−1∑
i=n−δ

Qi

)
> 1−

α2

2(2− α)
,

are satisfied, then Eq. (2) is oscillatory.

As an improvement to the above criteria, we obtain the following result which is an application of Theorem 3.

Theorem 8. Assume that (5) holds and either an = 0 for infinitely many values of n or τ < δ, an > 0 for n ≥ n1 ≥ n0 and
either

α := lim inf
n→∞

(
1

δ − τ

n−1∑
j=n−δ+τ

Qj
aj+τ−δ

)
>

(δ − τ)δ−τ

(δ − τ + 1)δ−τ+1
,

or

α ≤
(δ − τ)δ−τ

(δ − τ + 1)δ−τ+1
and lim sup

n→∞

(
1

δ − τ

n−1∑
j=n−δ+τ

Qj
aj+τ−δ

)
> 1−

α2

2(2− α)
,

are satisfied. Assume, further, that either (23) or (24) holds when q = 0. Then Eq. (2) is oscillatory.

An application of Theorem 4 leads to the following result.

Theorem 9. Assume that λ = 1 and an ∈ [0, 1] for all n ≥ n0. If either
∞∑
i=n0

(1− aj−δ)Qj = ∞, (25)

or
∞∑
i=n0

(1− aj−δ)Qj <∞ and lim inf
n→∞

n
∞∑

i=n+1

(1− aj−δ)Qj >
1
4
, (26)

then Eq. (2) is oscillatory.

The following result is an application to Theorem 5.

Theorem 10. Assume that λ = 1 and either (18) or (19) holds. If either
∞∑
i=n0

Qj = ∞, (27)

or
∞∑
i=n0

Qj <∞ and lim inf
n→∞

n
∞∑

i=n+1

Qj >
1
4
, (28)

then Eq. (2) is oscillatory.

We refer the reader here to the fact that the second part of (28) implies the existence of a sufficiently small ε0 > 0 such that
lim infn→∞ n

∑
∞

n+1 Qj >
1
4 (1+ ε0).

As an illustrative example, we consider the difference equation

∆2
(
xn +

λ

n2
xn−τ

)
+
2
nβ
xn−δ −

1
n5
xn−σ = 0, (29)

where β ∈ R, τ , δ, σ are positive integers satisfying that δ ≥ σ + 1, δ > τ . Since

Qj
aj+τ−δ

= (j+ τ − δ)2
[
2
jβ
−

1
(j− δ + σ)5

]
.



1996 H.A. El-Morshedy / Computers and Mathematics with Applications 58 (2009) 1988–1997

Then

lim
n→∞

Qn
an+τ−δ

≥ 2,

for β ≤ 2. Therefore, the constant α of Theorem 8 satisfies that

α = 2 >
(δ − τ)δ−τ

(δ − τ + 1)δ−τ+1
.

Also; since hin(q) > 1 then
∞∑
Qjhij−δ(q) = ∞, if β ≤ 1.

For β ∈ (1, 2],

lim inf
n→∞

n
∞∑

j=n+1

Qjhij−δ(q) > lim infn→∞
n
∞∑

j=n+1

Qj.

But limn→∞ n2Qn ≥ 2. Then for all ε ∈ (0, 1] there exists nε > 0 such that Qn ≥ 2−ε
n2

for n ≥ nε , and hence

∞∑
j=n+1

Qj >
2− ε
n+ 1

.

Thus

lim inf
n→∞

n
∞∑

j=n+1

Qjhij−δ(q) > lim infn→∞

n(2− ε)
n+ 1

= 2− ε >
1
4
.

Then all solutions of Eq. (29) oscillate when λ = −1 and β ≤ 2 according Theorem 8.
For λ = 1, we drop the condition δ > τ . If n0 > 2 + δ, then (1 − an−δ)Qn > 3

4Qn for n ≥ n0. Thus (25) holds as long as
β ≤ 1. For β ∈ (1, 2], we have

∞∑
j=n0

(1− aj−δ)Qj <
∞∑
j=n0

Qj <
∞∑
j=n0

2
jβ
<∞.

Let nε > n0, then similar arguments as before yield,

lim inf
n→∞

n
∞∑

j=n+1

(1− aj−δ)Qj > lim inf
n→∞

n
∞∑

j=n+1

3(2− ε)
4j2

=
3
4
(2− ε) >

1
4
.

Thus all solutions of Eq. (29) oscillates according to Theorem 9 when β ≤ 2.
It is important to refer to the fact that Eq. (29) is nonoscillatory when β > 2 according to [8] since

∞∑
n=n0

n|pn| =
∞∑
n=n0

2
nβ−1

<∞, and
∞∑
n=n0

n|qn| =
∞∑
n=n0

2
n4
<∞,

in this case and 0 < an = 1
n2
< 1

(2+δ)2
< 1 for n ≥ n0. Thus Eq. (29) oscillates if and only if β ≤ 2.

This example suggests some kind of sharpness of our results when (4) holds. This author believes that there exists Pn ≥ 0
(related to pn and qn) such that (2) is nonoscillatory provided that the second order ordinary difference equation

∆2xn + Pnxn+1 = 0,

is nonoscillatory. We also believe that Theorem 4 is true if (17) is replaced by the equation

∆2xn +
Qn
1+ an

xn+1 = 0.

Finally, it will be very interesting if one could prove Theorem 5 for ε0 = 0.
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