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Abstract

Let Gn be a class of graphs onn vertices. For an integerc, let ex(Gn, c) be the smallest integer
such that ifG is a graph inGn with more thanex(Gn, c) edges, thenG contains a cycle of length
more thanc. A classical result of Erdös and Gallai is that ifGn is the class of all simple graphs on
n vertices, thenex(Gn, c) = c

2(n − 1). The result is best possible whenn − 1 is divisible byc − 1,
in view of the graph consisting of copies ofKc all having exactly one vertex in common. Woodall
improved the result by giving best possible bounds for the remaining cases whenn−1 is not divisible
by c − 1, and conjectured that ifGn is the class of all 2-connected simple graphs onn vertices, then

ex(Gn, c)= max{f (n,2, c), f (n, �c/2�, c)},

wheref (n, t, c) =
(
c+1−t

2

)
+ t (n − c − 1 + t), 2� t�c/2, is the number of edges in the graph

obtained fromKc+1−t by addingn− (c+ 1 − t) isolated vertices each joined to the samet vertices
of Kc+1−t . By using a result of Woodall together with an edge-switching technique, we confirm
Woodall’s conjecture in this paper.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The graphs considered here are finite, undirected, and simple (no loops or parallel edges).
The sets of vertices and edges of a graphG are denoted byV (G) andE(G), respectively.
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A classical result of Erdös and Gallai[2, Theorem 2.7]is that for an integerc�2, if G is a
graph onn vertices with more thanc2(n− 1) edges, thenG contains a cycle of length more
thanc. The result is best possible whenn − 1 is divisible byc − 1, in view of the graph
consisting of copies ofKc all having exactly one vertex in common. However, whenn− 1
is not divisible byc− 1, the boundc2(n− 1) can be decreased. The first improvement was
obtained by Woodall[4] for the case whenc� n+3

2 , and later Woodall[5] completed all the
rest cases by proving that ifc�2, andn = t (c− 1)+p+ 1 wheret�0 and 0�p < c− 1,
andG is a graph onn vertices with more thant

(
c
2

)+ (
p+1

2

)
edges, thenG contains a cycle of

length more thanc. This result is best possible, in view of the graph consisting oft copies of
Kc and one copy ofKp+1, all having exactly one vertex in common. Caccetta and Vijayan
[1] gave an alternative proof of the result, and in addition, characterize the structure of the
extremal graphs. We note that all the extremal graphs here are not 2-connected. What is the
maximum number of edges a 2-connected graph can have without cycles of length more
thanc? For 2� t�c/2, define

f (n, t, c) =
(
c + 1 − t

2

)
+ t (n− c − 1 + t),

which is the number of edges in the 2-connected graph obtained fromKc+1−t by adding
n− (c+ 1 − t) isolated vertices each joined to the samet vertices ofKc+1−t . Woodall[5]
proposed the following conjecture.

Conjecture 1.1. If 2�c�n − 1, and G is a2-connected graph on n vertices with more
than

max{f (n,2, c), f (n, �c/2�, c)}
edges, then G contains a cycle of length more than c.

Toward to a proof of the conjecture, Woodall[5] obtained the following result.

Theorem 1.2(Woodall[5] ). If 2�c� 2n+2
3 , and G is a2-connected graph on n vertices

with more thanf (n, �c/2�, c) edges, then G contains a cycle of length more than c.

By using this result and an edge-switching technique, we confirm Conjecture 1.1 by
Theorem 3.1 in Section 3. Woodall[5] also conjectured that if, furthermore,Ghas minimum
degreek, then the right bound should be max{f (n, k, c), f (n, �c/2�, c)} (this conjecture is
still open).

Throughout this paper, forx, y ∈ V (G), xy denotes the edge with endsx andy. If
xy ∈ E(G), we say thaty is aneighborof x, or y is joined to x. Let H be a subgraph of
G, NH(x) is the set of the neighbors ofx which are inH, anddH (x) = |NH(x)| is the
degreeof x in H. When no confusion can occur, we shall writeN(x) andd(x), instead of
NG(x) anddG(x). G − H denotes the graph obtained fromG by deleting all the vertices
of H together with all the edges with at least one end inH, while for F ⊆ E(G),G \ F
denotes the graph obtained fromG by deleting all the edges ofF. If xy /∈ E(G), G + xy

is the graph obtained fromG by adding the new edgexy. For subgraphsF andH,E(F,H)
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denotes the set, ande(F,H) the number, of edges with one end inF and the other end in
H. DefineNH(F) = ∪x∈FNH (x). For simplicity, we writeE(F) ande(F ) for E(F, F )
ande(F, F ), respectively. In particular,e(G) = |E(G)|. Let S ⊆ V (G). S is acut set, and
acut vertexwhen|S| = 1, ofG if G− S has more components thanG.Sis anindependent
setif E(S) = ∅. A subgraphH is inducedbyS if V (H) = S andxy ∈ E(H) if and only if
xy ∈ E(G).

LetC = a1a2 · · · ac be a cycle. We assume thatC has an orientation which is consistent
with the increasing order of the indices ofai , 1� i�c− 1, and the edgeaca1 is fromac to
a1. Fora ∈ V (C), definea− anda+ to be the vertices onC immediately before and after
a, respectively, according to the orientation ofC, anda−− = (a−)− anda++ = (a+)+.
Thus, ifa = ai , thena− = ai−1 anda+ = ai+1, wherea0 = ac andac+1 = a1.

2. Local structure and edge-switching

Definition 2.1. LetC be a cycle in a graphG. We say thatC is locally maximal if there is
no cycleC′ in G such that|E(C′)| > |E(C)| and|E(C′) ∩ E(C,G− C)|�2.

Definition 2.2. Let xy be an edge in a graphG and letA ⊆ N(y) \ (N(x) ∪ {x}). The
edge-switchinggraph ofG with respect to A(from y to x), denoted byG[y → x;A], is
the graph obtained fromG by deleting all the edgesyz, z ∈ A and adding all the edges
xz, z ∈ A. In notation,

G[y → x;A] = (G \ {yz : z ∈ A}) ∪ {xz : z ∈ A}.
WhenA = N(y) \ (N(x) ∪ {x}), the above definition is identical with the one in[3].

Lemma 2.3. LetC be a locallymaximal cycle in a2-connected graphGandRa component
ofG− C. Suppose thatx, x′ ∈ NC(R) with x �= x′ andy ∈ NR(x).

(i) LetZ = NR(y) \ (NR(x) ∪ {x}). Then C remains a locally maximal cycle inG[y →
x;Z].

(ii) If D is a subgraph of R such thatNR−D(D) = {y} andND(y) ∩ND(x) = ∅, then, for
A = ND(y), C remains a locally maximal cycle inG[y → x;A], and furthermore, if
NC(R−D) = {x}, then C also remains a locally maximal cycle inG[y → x;A]+yx′.

Proof. (i) Let Z = {z1, z2, . . . , zk} andF = {xzi : 1� i�k}, and so

G[y → x;Z] = (G \ {yzi : 1� i�k}) ∪ F.
If C is not a locally maximal cycle inG[y → x;Z], then there is a cycleC′ inG[y → x;Z]
with |E(C′)| > |E(C)| and

|E(C′) ∩ E(C,G[y → x;Z] − C)|�2. (2.1)

Let C′ = a1a2 · · · ap. SinceC is locally maximal inG, and by (2.1), we have that
1� |E(C′) ∩ F |�2.
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Case1. |E(C′)∩F | = 1. Suppose thatx = at andat+1 ∈ {z1, z2, . . . zk}. If y /∈ V (C′),
replacingxat+1 by xyat+1, we obtain thatC′′ = a1 · · · xyat+1 · · · ap. If y ∈ V (C′), say
y = as and we may assume thats > t + 1, by (2.1), it must be thatas−1 ∈ V (R),
and so by the construction ofG[y → x;Z], we have thatas−1 ∈ N(x) in G. Then, let
C′′ = a1 · · · xas−1as−2 · · · at+1yas+1 · · · ap. In either case,C′′ is a cycle contradicting the
local maximality ofC.
Case2. |E(C′) ∩ F | = 2. Suppose thatx = at and soat−1, at+1 ∈ {z1, z2, . . . , zk}. If

y /∈ V (C′), let

C′′ = (C′ \ {xat−1, xat+1}) ∪ {yat−1, yat+1}.

If y ∈ V (C′), sayy = as and we may assume thats > t + 1, by (2.1),as−1, as+1 ∈ V (R),
and soas−1, as+1 ∈ N(x) in G. Then, let

C′′ = (C′ \ {xat−1, xat+1, yas−1, yas+1}) ∪ {xas−1, xas+1, yat−1, yat+1}.

In either case,C′′ is a cycle contradicting the local maximality ofC.
(ii) SinceND(y)∩ND(x) = ∅ andA = ND(y), usingNR−D(D) = {y}, the same proof

as in (i) (withZ replaced byA) yields thatC is a locally maximal cycle inG[y → x;A].
(In fact, in this case, ifC′ is a cycle with|E(C′) ∩ E(C,G[y → x;A] − C)|�2 and
E(C′) ∩ {xz : z ∈ A} �= ∅, theny /∈ V (C′).) Furthermore, ifNC(R − D) = {x}, let
G∗ = G[y → x;A] + yx′. If C is not a locally maximal cycle inG∗, then there is a cycle
C∗ in G∗ with |E(C∗)| > |E(C)| and

|E(C∗) ∩ E(C,G∗ − C)|�2

and moreover,yx′ ∈ E(C∗), which implies thatV (C∗) ∩ V (D) = ∅. Furthermore, since
NC(R−D) = {x}, we have thatx′ ∈ NC(D). Thus, we may obtain a cycleC′ fromC∗ by
replacingyx′ with a path fromy to x′ with all internal vertices inD. Then, as seen in (i),
C′ can be transformed into a cycle contradicting the local maximality ofC. This completes
the proof of Lemma 2.3. �

Lemma 2.4. LetC be a locallymaximal cycle in a2-connected graphGandRa component
ofG− C.One of the following two statements holds.

(i) NR(x) = V (R) for everyx ∈ NC(R).
(ii) There isy ∈ NR(x) for somex ∈ NC(R)andanonempty setA ⊆ NR(y)\(NR(x)∪{x})

such that

G′ =
{
G[y → x;A] if G[y → x;A] is 2-connected,
G[y → x;A] + yx′ otherwise,

is 2-connected, wherex′ ∈ NC(R) \ {x}, and moreover, C remains a locally maximal
cycle inG′.
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Proof. Suppose that (i) does not hold. ThenNR(x) �= V (R) for somex ∈ NC(R), which
implies that there isy ∈ NR(x) such that

Zy = NR(y) \ (NR(x) ∪ {x}) �= ∅.
If G[y → x;Zy] is 2-connected, then by Lemma 2.3(i),C remains a locally maximal cycle
in G[y → x;Zy], and (ii) holds withA = Zy andG′ = G[y → x;Zy]. Suppose thus
that this is not the case. Then,x is the unique cut vertex ofG[y → x;Zy]. LetRy be the
smallest component inG[y → x;Zy] − x with V (Ry) ⊆ V (R). Ry is defined for eachy
with Zy �= ∅. (That is,G[y → x;Zy] is not 2-connected for eachy with Zy �= ∅.) For
simplicity, we may assume thatyhas been chosen such that|V (Ry)| is as small as possible.
Then, eitherRy = {y} ory is a cut vertex ofR. We claim thatx is joined to every vertex ofRy
inG. If this is not true, then there is aw ∈ V (Ry) with Zw �= ∅. Then,G[w → x;Zw] − x
has a component that is a proper subset ofRy , which implies that|V (Rw)| < |V (Ry)|,
contradicting the choice ofy. This proves the claim. By the claim, we have thaty ∈ Ry .
Let R1, R2, . . . , Rt be the components ofG[y → x;Zy] − x, wheret�2,R1 = Ry , and
V (C) \ {x} ⊆ V (Rt ). We note thatR1 = Ry , which is a component inG[y → x;Zy] − x

with V (R1) ⊆ V (R) (soR1 is adjacent only toy andx inG). SinceG is 2-connected, there
must bex′ ∈ NC(R) \ {x} joined to some vertexy′ of R − R1 in G. Clearly,y′ ∈ Rt . Let
D = Rt − V (C). Then,NR−D(D) = {y} andND(y) ∩ ND(x) = ∅. LetA = ND(y). If
G[y → x;A] is 2-connected, letG′ = G[y → x;A]; if G[y → x;A] is not 2-connected,
thenNC(R − D) = {x}, and we letG′ = G[y → x;A] + yx′. In either case,G′ is 2-
connected, and by Lemma 2.3(ii),C is a locally maximal cycle inG′. This proves Lemma
2.4. �

3. Proof of the theorem

Theorem 3.1. Let C be a locally maximal cycle of length c in a2-connected graph G on n
vertices. If23n+ 1�c�n− 1, then

e(G)� max{f (n,2, c), f (n, �c/2�, c)}.

Proof. Suppose thatR1, R2, . . . , Rm are the components ofG − C, m�1. Repeatedly
applying Lemma 2.4 to eachRi (note that since the setA is nonempty, each time Lemma
2.4(ii) is applied, the number of edges not incident withC strictly decreases), we have a
2-connected graphG′ in which e(G)�e(G′), C remains a locally maximal cycle, and for
each componentR of G′ − C, NR(x) = V (R) for everyx ∈ NC(R). For simplicity, we
may simply assume thatG has been chosen to be the final graph after repeatedly applying
Lemma 2.4, and so

NRi (x) = V (Ri) for everyx ∈ NC(Ri), 1� i�m. (3.1)

Letni = |V (Ri)| andki = |NC(Ri)|, 1� i�m. For anyi, 1� i�m, suppose thatNC(Ri) =
{x1, x2, . . . , xki }. LetPjt be a longest path fromxj to xt with all internal vertices inRi . By
(3.1), for allj �= t , Pjt have the same length, denoted bydi , which is 2 plus the length of



384 G. Fan et al. / Journal of Combinatorial Theory, Series B 92 (2004) 379–394

a longest path inRi . So,Ri contains no path of length more thandi − 2. It follows from a
result of Erdös and Gallai[2, Theorem 2.6]that

e(Ri)�
di − 2

2
ni, 1� i�m.

LetH be the subgraph induced byV (C). Then,

e(G)�e(H)+
m∑
i=1

(e(Ri)+ niki)�e(H)+ 1

2

m∑
i=1

ni(di − 2 + 2ki).

Choose� such thatd� + 2k� = max{di + 2ki,1� i�m} and letd = d� andk = k�. It
follows, using

∑m
i=1 ni = n− c, that

e(G)�e(H)+ d − 2 + 2k

2
(n− c). (3.2)

Let R = R� andX = NC(R) = {x1, x2, . . . , xk}. ThenC − X consists ofk segments
S1, S2, . . . , Sk, whereSi is the segment ofC from x+

i to x−
i+1. Setsi = |V (Si)|, 1� i�k.

We first prove several lemmas that deal with the estimation of the number of edges between
Si andSj . �

Lemma 3.2. For i �= j , let Si = a1a2 · · · ap and Sj = b1b2 · · · bq , wherep = si and
q = sj .

(i) If arb+ ∈ E(G), then
(r − 1)+ (+− 1)�d − 1 and (p − r)+ (q − +)�d − 1.

(ii) For ar , ap−t with r + t�d − 1 (so r�p − t), if there are distinctb+, bm such that
arb+, ap−t bm ∈ E(G) (or arbm, ap−t b+ ∈ E(G)), then|m− +|�d + 1 − r − t .

Proof. (i) Sincearb+ ∈ E(G), we have a cycleC′ = arb+b++1 · · · bqxj+1x
+
j+1 · · · xiP xjx−

j

· · · xi+1apap−1 · · · ar of lengthc+(d−1)−(r−1)−(+−1)with |E(C′)∩E(C,G−C)| = 2,
whereP is a path of lengthd from xi to xj with all its internal vertices inR. By the choice
of C, (r − 1)+ (+− 1)�d − 1. By symmetry,(p − r)+ (q − +)�d − 1, as required.

(ii) Without loss of generality, suppose thatarb+, ap−t bm ∈ E(G). Let P be a path of
lengthd from xi to xi+1 with all internal vertices inR. Then

C′ = xix
−
i · · · xj+1bqbq−1 · · · bmap−t ap−t−1 · · · arb+b+−1 · · · xi+1Pxi

is cycle of length

c + (d − 1)− (r + t − 1)− (m− +− 1) = c + d + 1 − r − t − (m− +)

with |E(C′) ∩ E(C,G − C)| = 2. By the choice ofC, |m − +|�d + 1 − r − t , as
required. �
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Lemma 3.3. For i �= j , let Si = a1a2 · · · ap and Sj = b1b2 · · · bq , wherep = si and
q = sj .

(i) For ar , ap−t with r + t�d − 1,

e({ar , ap−t }, Sj )�q − (d − r − t).

(ii) For each m, 1�m�q − 1,

e(bmbm+1, Si)�2p − d + 1

with equality only ifp = d − 1,ande(bm, Si) = p or e(bm+1, Si) = p.
(iii) e({a1, b1}, Si)�p ande({ap, bq}, Si)�p.

Proof. (i) Let B be the set of vertices inSj which are joined to bothar andap−t . If B �= ∅,
then for eachbi ∈ B, by Lemma 3.2(ii),

e({ar , ap−t }, bi+j ) = 0 and e({ar , ap−t }, bi−j ) = 0

for all j, 1�j�d − r − t , which implies that there are at least(|B|+ 1)(d − r − t) vertices
in Sj , none of which is joined to eitherar or ap−t . It follows that

e({ar , ap−t }, Sj ) � 2|B| + (q − |B| − (|B| + 1)(d − r − t))

= q − (d − r − t)− |B|(d − 1 − r − t).

But r + t�d − 1, and thus we may suppose thatB = ∅.
If e(ap−t , Sj ) = 0, thene({ar , ap−t }, Sj ) = e(ar , Sj ). By Lemma 3.2(i), none of the

first d− r vertices ofSj is joined toar , and hencee(ar , Sj )�q− (d− r)�q− (d− r− t).
Therefore, we may assume thate(ap−t , Sj ) > 0, and similarly,e(ar , Sj ) > 0.

Let ap−t b+, arbm ∈ E(G) and chooseb+ andbm as close to each other as possible, so
that none of the vertices (inSj ) betweenb+ andbm is joined toar or ap−t . By Lemma
3.2(ii), |m− +|�d + 1 − r − t . It follows that there are at leastd − r − t vertices that are
not joined toar or ap−t . Therefore,e({ar , ap−t }, Sj )�q − (d − r − t), as required.

(ii) We first consider the case that there isar such thate(ar , bmbm+1) = 2. Choose such
ar as close toa1 or ap as possible. We may assume thatr − 1�p− r. By the choice ofar ,
none of the first and the lastr − 1 vertices ofSi can be joined to bothbm andbm+1, which
gives thate(bmbm+1, Si)�2p− 2(r − 1). If r − 1� d

2 , thene(bmbm+1, Si)�2p− d, and
we are done. Suppose therefore thatr − 1� d−1

2 , that isr� d+1
2 . By Lemma 3.2(ii), none

of the lastd − r vertices ofSi can be joined tobm or bm+1, that is,e(bmbm+1, ai) = 0 for
all i, p − (d − r)+ 1� i�p. It follows that

e(bmbm+1, Si)�2p − (r − 1)− 2(d − r) = 2p − d − (d − r − 1).

If d is odd (sod�3), then, sincer� d+1
2 , we haved − r − 1� d−3

2 �0; if d is even, then
r� d

2 , and we haved−r−1� d−2
2 �0; In either case, we have thate(bmbm+1, Si)�2p−d.

Next we consider the case that

e(bmbm+1, ai)�1 for all i, 1� i�p. (3.3)
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Then,

e(bmbm+1, Si)�p = 2p − d − (p − d).

Thus,e(bmbm+1, Si)�2p− d + 1, with equality only ifp = d − 1, and all equalities hold
in (3.3), which implies, by Lemma 3.2(ii), that eithere(bm, Si) = p or e(bm+1, Si) = p.

(iii) Let A = {ai : a1ai+1 ∈ E(G), 1� i�p − 1}. If there isai ∈ A such that
aib1 ∈ E(G), thenC′ = b1aiai−1 · · · a1ai+1ai+2 · · · apxi+1 · · · xjPxix−

i · · · bqbq−1 · · · b1
is a cycle of lengthc + d − 1 and|E(C′) ∩ E(C,G − C)| = 2, contradicting the choice
of C. Thus,A ∩NSi (b1) = ∅, which implies thate(b1, Si)�p − |A| = p − e(a1, Si), and
so e(b1, Si) + e(a1, Si)�p. By symmetry,e(bq, Si) + e(ap, Si)�p. This completes the
proof of Lemma 3.3. �

Lemma 3.4. Suppose thatd�3.For i �= j ,

e(Si, Sj )�
{
(sj − 1)(si − 1)− sj (d−2)

2 + sj−2
2 if si = d − 1 andsj �2d − 1,

(sj − 1)(si − 1)− sj (d−2)
2 otherwise.

Proof. Let Si = a1a2 · · · ap andSj = b1b2 · · · bq , wherep = si andq = sj . By Lemma
3.3(i) (Si andSj interchange,r = 1 andt = 0),

e({b1, bq}, Si)�p − (d − 1). (3.4)

Without loss of generality, we may assume thate(b1, Si)�e(bq, Si), and so

e(bq, Si)�
1

2
e({b1, bq}, Si).

Then

e({b1, b2, bq}, Si) = e({b1, bq}, Si)+ e({b2, bq}, Si)− e(bq, Si)

� 1

2
e({b1, bq}, Si)+ e({b2, bq}, Si).

By Lemma 3.3(i) (Si andSj interchange andr + t = 2),

e({b2, bq}, Si)�p − (d − 2).

It follows from (3.4) that

e({b1, b2, bq}, Si)� 1

2
(p − d + 1)+ p − (d − 2) = 3

2
(p − d + 1)+ 1. (3.5)

If p�d or if there is no vertexb ∈ Sj with e(b, Si) = p, then by Lemma 3.3(ii) (without
equalities),

e(bmbm+1, Si)�2p − d, 1�m�q − 1.

Therefore, ifq is even,

e(Sj − {b1, bq}, Si)� q − 2

2
(2p − d),
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which together with (3.4) gives that

e(Si, Sj )�
q − 2

2
(2p − d)+ p − (d − 1) = (q − 1)(p − 1)− q

2
(d − 2);

if q is odd (soq�3),

e(Sj − {b1, b2, bq}, Si)� q − 3

2
(2p − d),

which together with (3.5) gives that

e(Si, Sj ) � q − 3

2
(2p − d)+ 3

2
(p − d + 1)+ 1

= (q − 1)(p − 1)− q

2
(d − 2)− p − 3

2
,

and sincep�d�3, the required result follows.
Suppose therefore thatp = d − 1 and there isb+ ∈ Sj such thate(b+, Si) = p. By

Lemma 3.2(i),+ − 1�d − 1 andq − +�d − 1, which gives thatq�2d − 1. By Lemma
3.3(ii), we have now that

e(bmbm+1, Si)�2p − d + 1, 1�m�q − 1

and thus, ifq is even,

e(Sj − {b1, bq}, Si)� q − 2

2
(2p − d)+ q − 2

2
,

if q is odd,

e(Sj − {b1, b2, bq}, Si)� q − 3

2
(2p − d)+ q − 3

2
.

Since (3.4) and (3.5) still hold, ifq is even,

e(Si, Sj )�(q − 1)(p − 1)− q

2
(d − 2)+ q − 2

2
,

if q is odd,

e(Si, Sj )�(q − 1)(p − 1)− q

2
(d − 2)+ q − 3

2
.

Consequently,

e(Si, Sj )�(q − 1)(p − 1)− q

2
(d − 2)+ q − 2

2
.

This completes the proof of Lemma 3.4.�

Lemma 3.5. Suppose thatd�3.For i �= j , if sj = d − 1, let F be the subgraph induced
byV (Si) ∪ V (Sj ), then∑

x∈Si
dF (x)�si(si − 1)+ sj − 2

2
(2si − d)+ 2.
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Proof. As before, letSi = a1a2 · · · ap andSj = b1b2 · · · bq , wherep = si andq = sj . Let
br ∈ Sj . If r� d

2 , by Lemma 3.2(i),br is not joined to any of the first� d2� vertices ofSi ,
which gives thate(br , Si)�p− d

2 . If r� d+1
2 , sinceq = d − 1, we have thatq − r� d−3

2 ,
and again by Lemma 3.2(i),br is not joined to any of the last� d+1

2 � vertices ofSi , which
gives thate(br , Si)�p − d+1

2 . Consequently,

e(br , Si)�p − d

2
for eachr, 1�r�q.

So

q−1∑
r=2

e(br , Si)�(q − 2)(p − d

2
) = q − 2

2
(2p − d).

Therefore,

e(Si, Sj )�
q − 2

2
(2p − d)+ e({b1, bq}, Si).

Using the fact thatdSi (a+)�p − 1 for all +, 2�+�p − 1, we have that∑
x∈Si

dSi (x)�(p − 2)(p − 1)+ e({a1, ap}, Si).

Noting that∑
x∈Si

dF (x) =
∑
x∈Si

dSi (x)+ e(Si, Sj ),

we obtain that∑
x∈Si

dF (x) � (p − 2)(p − 1)+ q − 2

2
(2p − d)

+ e({a1, ap}, Si)+ e({b1, bq}, Si)
= (p − 2)(p − 1)+ q − 2

2
(2p − d)+ e({a1, b1, ap, bq}, Si).

By Lemma 3.3(iii),e({a1, b1}, Si)�p ande({ap, bq}, Si)�p, and hence,

e({a1, b1, ap, bq}�2p.

It follows that∑
x∈Si

dF (x)�p(p − 1)+ q − 2

2
(2p − d)+ 2,

as required by Lemma 3.5.
Now, we return to the proof of Theorem 3.1. By (3.2), we need to estimatee(H). The

proof is divided into two parts, according tod�3 ord = 2.
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Part I. d�3. LetA = {i : si = d − 1} andB = {i : si�2d − 1}. Seta = |A|,
b = |B|, s = ∑k

i=1 si ands′ = ∑
i∈B si . By the definition,s′ �b(2d − 1). We first show

that

k∑
i=1

∑
x∈Si

dH (x)�c2 + c + 3k2 − 3ck − 2k − (d − 2)(c − 3)

2
. (3.6)

If A = ∅ orB = ∅, then by Lemma 3.4, for alli �= j ,

e(Si, Sj )�(sj − 1)(si − 1)− sj

2
(d − 2)

and thus, using
∑
j �=i sj = s − si ,

∑
j �=i

e(Si, Sj )�(s − si − (k − 1))(si − 1)− s − si

2
(d − 2). (3.7)

Therefore,∑
x∈Si

dH (x) �
∑
j �=i

e(Si, Sj )+ si(si − 1)+ sik

� s(si − 1)+ si + (k − 1)− s − si

2
(d − 2) (3.8)

and so,
k∑
i=1

∑
x∈Si

dH (x) � s(s − k)+ s + k(k − 1)− s(k − 1)

2
(d − 2)

= s(s − k)+ s + k(k − 1)− (d − 2)(s + k − 3)

2

− (d − 2)(k − 2)(s − 1)+ (d − 2)

2

= c2 + c + 3k2 − 3ck − 2k − (d − 2)(c − 3)

2

− (d − 2)(k − 2)(s − 1)+ (d − 2)

2
, (3.9)

where we have used thats = c−k. Butd�3 andk�2, and so (3.6) follows. In what follows,
suppose therefore thata�1 andb�1. For a segmentSi , we distinguish the following three
cases.
Case1. i /∈ A ∪ B. By Lemma 3.4, for allj �= i,

e(Si, Sj )�(sj − 1)(si − 1)− sj

2
(d − 2) (3.10)

and as the derivation of (3.8),∑
x∈Si

dH (x)�s(si − 1)+ si + (k − 1)− s − si

2
(d − 2). (3.11)
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Case2. i ∈ A. By Lemma 3.4, ifj /∈ B, we have (3.10). Ifj ∈ B,

e(Si, Sj )�(sj − 1)(si − 1)− sj

2
(d − 2)+ sj − 2

2
.

Thus,∑
j �=i

e(Si, Sj ) �
∑
j �=i

[
(sj − 1)(si − 1)− sj

2
(d − 2)

]
+

∑
j∈B

sj − 2

2

� (s − si − (k − 1))(si − 1)− s − si

2
(d − 2)+ s′ − 2b

2

and as the way (3.8) is derived from (3.7), we have that,

∑
x∈Si

dH (x)�s(si − 1)+ si + (k − 1)− s − si

2
(d − 2)+ s′ − 2b

2
. (3.12)

Case3. i ∈ B. Let + ∈ A and letF be the subgraph induced byV (Si) ∪ V (S+). By
Lemma 3.5,∑

x∈si
dF (x) � si(si − 1)+ s+ − 2

2
(2si − d)+ 2

� si(si − 1)+ (s+ − 1)(si − 1)− s+

2
(d − 2)− (si − d − 1).

For all j /∈ {i, +}, by Lemma 3.4,

e(Si, Sj )�(sj − 1)(si − 1)− sj

2
(d − 2).

It follows that∑
x∈Si

dH (x) �
∑
x∈Si

dF (x)+
∑
j /∈{i,+}

e(Si, Sj )+ sik

�
∑
j �=i

[
(si − 1)(sj − 1)− sj

2
(d − 2)

]
+ si(si − 1)+ sik − (si − d − 1)

= s(si − 1)+ si + (k − 1)− s − si

2
(d − 2)− (si − d − 1). (3.13)

By (3.11), (3.12), and (3.13), we have that

k∑
i=1

∑
x∈Si

dH (x) �
k∑
i=1

[
s(si − 1)+ si + (k − 1)− s − si

2
(d − 2)

]

+
∑
i∈A

s′ − 2b

2
−

∑
i∈B

(si − d − 1). (3.14)
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As seen in the derivation of (3.9) from (3.8), the first summation at the right-hand side of
(3.14) is

c2 + c + 3k2 − 3ck − 2k − (d − 2)(c − 3)

2

− (d − 2)(k − 2)(s − 1)+ (d − 2)

2
. (3.15)

Clearly,∑
i∈A

s′ − 2b

2
−

∑
i∈B

(si − d − 1) = as′ − 2ab

2
− (s′ − bd − b)

= s′(a − 1)

2
− b

2
(2a − 3)− s′ − b(2d − 1)

2

� s′(a − 1)

2
− b

2
(2a − 3). (3.16)

Applying (3.16) and (3.15) into (3.14), and writing

g(d, a, k) = s′(a − 1)

2
− b

2
(2a − 3)− (d − 2)(k − 2)(s − 1)+ (d − 2)

2
,

we have that

k∑
i=1

∑
x∈Si

dH (x)�c2 + c + 3k2 − 3ck − 2k − (d − 2)(c − 3)

2
+ g(d, a, k).

It remains to show thatg(d, a, k)�0. Clearly,

g(d, a, k)�g(3, a, k) = s′(a − 1)

2
− b

2
(2a − 3)− (k − 2)(s − 1)+ 1

2
.

If k = 2, thena = 1 andb = 1, and we have thatg(3,1,2) = 0. If a�2, then, using
k�a + 1 ands�s′ + 1, we have that

g(3, a, k)� − b

2
− 1

2
< 0.

Therefore we assume thatk�3 anda = 1. Then,

g(3,1, k) = b

2
− (k − 2)(s − 1)+ 1

2
� b − (s − 1)− 1

2
.

Sinces�b+1, we have thatg(3,1, k) < 0. In each case,g(d, a, k)�0. This proves (3.6).
By the fact that

2e(H) =
∑
x∈H

dH (x)�k(c − 1)+
k∑
i=1

∑
x∈Si

dH (x),

it follows from (3.6) that

2e(H)�c2 + c + 3k2 − 2ck − 3k − (d − 2)(c − 3)

2
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and so

e(H)� 1

2
(c2 + c + 3k2 − 2ck − 3k)− (d − 2)(c − 3)

4
.

It follows from (3.2) that

e(G)� 1

2
(c2 + c + 3k2 + 2kn− 4ck − 3k)+ (d − 2)

4
(2n− 3c + 3).

Sincec� 2
3n+ 1,

e(G)� 1

2
(c2 + c + 3k2 + 2kn− 4ck − 3k) = f (n, k, c).

Since 2�k�c/2, we have thatf (n, k, c)� max{f (n,2, c), f (n, �c/2�, c)}, and the the-
orem follows. This completes the proof of Part I.
Part II. d = 2. Letw be the unique vertex ofR (sod(w) = k) andG′ the subgraph

induced byV (C) ∪ {w}. ThenG′ is non-hamiltonian. Choose a cycleC′ (in G′) of length
c such thate(C′,G′ −C′) as large as possible, among all cycles of lengthc inG′. Suppose
thatu is the unique vertex ofG′ −C′ andX is the set of neighbors ofu inG′. Setx = |X|.
Then,k�x� c

2, andC′ − X consists ofx segmentsS1, S2, . . . , Sx . For simplicity, we
consider these segments as same as those in Part I above, withk replaced byx. As before,
definesi = |V (Si)|, 1� i�x. SetY = {Si : si = 1, 1� i�x} andy = |Y |. Let B =
{S1, S2, . . . , Sx}\Y andb = |B|. For simplicity, we may assume thatB = {S1, S2, . . . , Sb}
(sosi�2 for eachi, 1� i�b) and let

s =
b∑
i=1

si, and so, c = s + x + y.

Let F = G′ − (Y ∪ {u}). We shall show that for eachi, 1� i�b,∑
v∈Si

dF (v)�(si − 1)(c − x)+ x + si − 1. (3.17)

Let Si = a1a2 · · · ap with p = si , and for anyj �= i, 1�j�b, Sj = b1b2 · · · bq with
q = sj . By Lemma 3.3(i) (withr = 1 andt = 0),

e({a1, ap}, Sj )�q − 1 (3.18)

and for each+, 1�+�p − 1, by Lemma 3.2(ii) (Si andSj interchange,r = 1 andt = 0),
e(a+a++1, {b1, bq})�2, which implies that

e(a+a++1, Sj )�2q − 2, 1�+�p − 1. (3.19)

Case1.p is even. By (3.19),

e(Si − {a1, ap}, Sj )� p − 2

2
(2q − 2) = (p − 2)(q − 1).

Combining with (3.18) yields that

e(Si, Sj )�(p − 1)(q − 1) = (si − 1)(sj − 1).
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This holds for allj �= i, 1�j�b, and thus,∑
j �=i

e(Si, Sj )�(si − 1)(s − si − b + 1).

Noting that∑
v∈Si

dF (v) =
∑
j �=i

e(Si, Sj )+
∑
v∈Si

dSi (v)+ e(Si, X),

we have that∑
v∈Si

dF (v) � (si − 1)(s − si − b + 1)+ si(si − 1)+ xsi

= (si − 1)(s − b + x)+ x + si − 1 (3.20)

and (3.17) follows from the fact thats − b + x = c − y − b = c − x.
Case2.p is odd (sop�3).
If dF (a1)�x + 1, thena2b1 /∈ E(G), for otherwise there is a cycleC′′ with V (C′′) =

(V (C) ∪ {w}) \ {a1}, contradicting the choice ofC′, and thus,e(a2, Sj )�q − 1, which
together with (3.18) gives that

e({a1, a2, ap}, Sj )�2(q − 1).

By (3.19),

e(Si − {a1, a2, ap}, Sj )� p − 3

2
(2q − 2) = (p − 3)(q − 1).

It follows that

e(Si, Sj )�(p − 1)(q − 1) = (si − 1)(sj − 1),

which holds for allj �= i, 1�j�b, and as above we obtain (3.17).
If dF (a1)�x, by (3.19),

e(Si − {a1}, Sj )� p − 1

2
(2q − 2) = (p − 1)(q − 1) = (si − 1)(sj − 1),

for all j �= i, 1�j�b, and thus,∑
j �=i

e(Si − {a1}, Sj )�(si − 1)(s − si − b + 1).

Therefore,∑
v∈Si

dF (v) � dF (a1)+
∑
j �=i

e(Si − {a1}, Sj )+ (si − 1)(si − 1)+ x(si − 1)

� x + (si − 1)(s − si − b + 1)+ (si − 1)(si − 1)+ x(si − 1),

= (si − 1)(s − b + x)+ x,

which is less than the right-hand side of (3.20), and as there, (3.17) follows.
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Summing (3.17) over alli, 1� i�b, we obtain that

b∑
i=1

∑
v∈Si

dF (v)�(s − b)(c − x)+ xb + s − b.

Then

2e(F ) =
b∑
i=1

∑
v∈Si

dF (v)+
∑
v∈X

dF (v)

� (s − b)(c − x)+ xb + s − b + x(c − 1 − y)

= c2 + c + 3x2 − 2cx − 2yx − 3x.

By the choice ofC′, dG′(v)�x for each vertexv ∈ Y , and by Lemma 3.2(i),Y is an
independent set inG. Therefore,

e(G′) = e(F )+
∑
v∈Y

dG′(v)+ dG′(u)�e(F )+ xy + x

and so

e(G′)� 1

2
(c2 + c + 3x2 − 2cx − x).

Since

e(G)�e(G′)+ k(n− c − 1)�e(G′)+ x(n− c − 1),

we have that

e(G)� 1

2
(c2 + c + 3x2 + 2xn− 4cx − 3x) = f (n, x, c).

Again, since 2�x�c/2, we have thatf (n, x, c)� max{f (n,2, c), f (n, �c/2�, c)}, and
the theorem follows. This completes the proof of the theorem.�

Since a longest cycle is locally maximal, we see that Theorem 3.1 together with Theorem
1.2 confirms Conjecture 1.1.
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