Journal of Combinatorial Theory

Cycles in 2-connected graphs

Genghua Fan ${ }^{\text {a, }}$, Xuezheng Lv ${ }^{\text {b }}$, Pei Wang ${ }^{\text {b }}$
${ }^{a}$ Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China
${ }^{\mathrm{b}}$ Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, China

Received 16 December 2003

Abstract

Let \mathscr{G}_{n} be a class of graphs on n vertices. For an integer c, let $\operatorname{ex}\left(\mathscr{G}_{n}, c\right)$ be the smallest integer such that if G is a graph in \mathscr{G}_{n} with more than $\operatorname{ex}\left(\mathscr{G}_{n}, c\right)$ edges, then G contains a cycle of length more than c. A classical result of Erdös and Gallai is that if \mathscr{G}_{n} is the class of all simple graphs on n vertices, then $\operatorname{ex}\left(\mathscr{G}_{n}, c\right)=\frac{c}{2}(n-1)$. The result is best possible when $n-1$ is divisible by $c-1$, in view of the graph consisting of copies of K_{C} all having exactly one vertex in common. Woodall improved the result by giving best possible bounds for the remaining cases when $n-1$ is not divisible by $c-1$, and conjectured that if \mathscr{G}_{n} is the class of all 2-connected simple graphs on n vertices, then $$
\operatorname{ex}\left(\mathscr{G}_{n}, c\right)=\max \{f(n, 2, c), f(n,\lfloor c / 2\rfloor, c)\},
$$ where $f(n, t, c)=\binom{c+1-t}{2}+t(n-c-1+t), 2 \leqslant t \leqslant c / 2$, is the number of edges in the graph obtained from K_{c+1-t} by adding $n-(c+1-t)$ isolated vertices each joined to the same t vertices of K_{c+1-t}. By using a result of Woodall together with an edge-switching technique, we confirm Woodall's conjecture in this paper.

© 2004 Elsevier Inc. All rights reserved.
Keywords: Cycles; 2-connected graphs; Extremal graphs

1. Introduction

The graphs considered here are finite, undirected, and simple (no loops or parallel edges). The sets of vertices and edges of a graph G are denoted by $V(G)$ and $E(G)$, respectively.

[^0]A classical result of Erdös and Gallai [2, Theorem 2.7] is that for an integer $c \geqslant 2$, if G is a graph on n vertices with more than $\frac{c}{2}(n-1)$ edges, then G contains a cycle of length more than c. The result is best possible when $n-1$ is divisible by $c-1$, in view of the graph consisting of copies of K_{c} all having exactly one vertex in common. However, when $n-1$ is not divisible by $c-1$, the bound $\frac{c}{2}(n-1)$ can be decreased. The first improvement was obtained by Woodall [4] for the case when $c \geqslant \frac{n+3}{2}$, and later Woodall [5] completed all the rest cases by proving that if $c \geqslant 2$, and $n=t(c-1)+p+1$ where $t \geqslant 0$ and $0 \leqslant p<c-1$, and G is a graph on n vertices with more than $t\binom{c}{2}+\binom{p+1}{2}$ edges, then G contains a cycle of length more than c. This result is best possible, in view of the graph consisting of t copies of K_{c} and one copy of K_{p+1}, all having exactly one vertex in common. Caccetta and Vijayan [1] gave an alternative proof of the result, and in addition, characterize the structure of the extremal graphs. We note that all the extremal graphs here are not 2-connected. What is the maximum number of edges a 2 -connected graph can have without cycles of length more than c ? For $2 \leqslant t \leqslant c / 2$, define

$$
f(n, t, c)=\binom{c+1-t}{2}+t(n-c-1+t)
$$

which is the number of edges in the 2-connected graph obtained from K_{c+1-t} by adding $n-(c+1-t)$ isolated vertices each joined to the same t vertices of K_{c+1-t}. Woodall [5] proposed the following conjecture.

Conjecture 1.1. If $2 \leqslant c \leqslant n-1$, and G is a 2 -connected graph on n vertices with more than

$$
\max \{f(n, 2, c), f(n,\lfloor c / 2\rfloor, c)\}
$$

edges, then G contains a cycle of length more than c.
Toward to a proof of the conjecture, Woodall [5] obtained the following result.
Theorem 1.2 (Woodall [5]). If $2 \leqslant c \leqslant \frac{2 n+2}{3}$, and G is a 2 -connected graph on n vertices with more than $f(n,\lfloor c / 2\rfloor, c)$ edges, then G contains a cycle of length more than c.

By using this result and an edge-switching technique, we confirm Conjecture 1.1 by Theorem 3.1 in Section 3. Woodall [5] also conjectured that if, furthermore, G has minimum degree k, then the right bound should be $\max \{f(n, k, c), f(n,\lfloor c / 2\rfloor, c)\}$ (this conjecture is still open).

Throughout this paper, for $x, y \in V(G), x y$ denotes the edge with ends x and y. If $x y \in E(G)$, we say that y is a neighbor of x, or y is joined to x. Let H be a subgraph of $G, N_{H}(x)$ is the set of the neighbors of x which are in H, and $d_{H}(x)=\left|N_{H}(x)\right|$ is the degree of x in H. When no confusion can occur, we shall write $N(x)$ and $d(x)$, instead of $N_{G}(x)$ and $d_{G}(x) . G-H$ denotes the graph obtained from G by deleting all the vertices of H together with all the edges with at least one end in H, while for $F \subseteq E(G), G \backslash F$ denotes the graph obtained from G by deleting all the edges of F. If $x y \notin E(G), G+x y$ is the graph obtained from G by adding the new edge $x y$. For subgraphs F and $H, E(F, H)$
denotes the set, and $e(F, H)$ the number, of edges with one end in F and the other end in H. Define $N_{H}(F)=\cup_{x \in F} N_{H}(x)$. For simplicity, we write $E(F)$ and $e(F)$ for $E(F, F)$ and $e(F, F)$, respectively. In particular, $e(G)=|E(G)|$. Let $S \subseteq V(G)$. S is a cut set, and a cut vertex when $|S|=1$, of G if $G-S$ has more components than G. S is an independent set if $E(S)=\emptyset$. A subgraph H is induced by S if $V(H)=S$ and $x y \in E(H)$ if and only if $x y \in E(G)$.

Let $C=a_{1} a_{2} \cdots a_{c}$ be a cycle. We assume that C has an orientation which is consistent with the increasing order of the indices of $a_{i}, 1 \leqslant i \leqslant c-1$, and the edge $a_{c} a_{1}$ is from a_{c} to a_{1}. For $a \in V(C)$, define a^{-}and a^{+}to be the vertices on C immediately before and after a, respectively, according to the orientation of C, and $a^{--}=\left(a^{-}\right)^{-}$and $a^{++}=\left(a^{+}\right)^{+}$. Thus, if $a=a_{i}$, then $a^{-}=a_{i-1}$ and $a^{+}=a_{i+1}$, where $a_{0}=a_{c}$ and $a_{c+1}=a_{1}$.

2. Local structure and edge-switching

Definition 2.1. Let C be a cycle in a graph G. We say that C is locally maximal if there is no cycle C^{\prime} in G such that $\left|E\left(C^{\prime}\right)\right|>|E(C)|$ and $\left|E\left(C^{\prime}\right) \cap E(C, G-C)\right| \leqslant 2$.

Definition 2.2. Let $x y$ be an edge in a graph G and let $A \subseteq N(y) \backslash(N(x) \cup\{x\})$. The edge-switching graph of G with respect to A (from y to x), denoted by $G[y \rightarrow x ; A]$, is the graph obtained from G by deleting all the edges $y z, z \in A$ and adding all the edges $x z, z \in A$. In notation,

$$
G[y \rightarrow x ; A]=(G \backslash\{y z: z \in A\}) \cup\{x z: z \in A\}
$$

When $A=N(y) \backslash(N(x) \cup\{x\})$, the above definition is identical with the one in [3].
Lemma 2.3. Let C be a locally maximal cycle in a 2 -connected graph G and R a component of $G-C$. Suppose that $x, x^{\prime} \in N_{C}(R)$ with $x \neq x^{\prime}$ and $y \in N_{R}(x)$.
(i) Let $Z=N_{R}(y) \backslash\left(N_{R}(x) \cup\{x\}\right)$. Then C remains a locally maximal cycle in $G[y \rightarrow$ $x ; Z]$.
(ii) If D is a subgraph of R such that $N_{R-D}(D)=\{y\}$ and $N_{D}(y) \cap N_{D}(x)=\emptyset$, then, for $A=N_{D}(y), C$ remains a locally maximal cycle in $G[y \rightarrow x ; A]$, and furthermore, if $N_{C}(R-D)=\{x\}$, then C also remains a locally maximal cycle in $G[y \rightarrow x ; A]+y x^{\prime}$.

Proof. (i) Let $Z=\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$ and $F=\left\{x z_{i}: 1 \leqslant i \leqslant k\right\}$, and so

$$
G[y \rightarrow x ; Z]=\left(G \backslash\left\{y z_{i}: 1 \leqslant i \leqslant k\right\}\right) \cup F .
$$

If C is not a locally maximal cycle in $G[y \rightarrow x ; Z]$, then there is a cycle C^{\prime} in $G[y \rightarrow x ; Z]$ with $\left|E\left(C^{\prime}\right)\right|>|E(C)|$ and

$$
\begin{equation*}
\left|E\left(C^{\prime}\right) \cap E(C, G[y \rightarrow x ; Z]-C)\right| \leqslant 2 \tag{2.1}
\end{equation*}
$$

Let $C^{\prime}=a_{1} a_{2} \cdots a_{p}$. Since C is locally maximal in G, and by (2.1), we have that $1 \leqslant\left|E\left(C^{\prime}\right) \cap F\right| \leqslant 2$.

Case 1. $\left|E\left(C^{\prime}\right) \cap F\right|=1$. Suppose that $x=a_{t}$ and $a_{t+1} \in\left\{z_{1}, z_{2}, \ldots z_{k}\right\}$. If $y \notin V\left(C^{\prime}\right)$, replacing $x a_{t+1}$ by $x y a_{t+1}$, we obtain that $C^{\prime \prime}=a_{1} \cdots x y a_{t+1} \cdots a_{p}$. If $y \in V\left(C^{\prime}\right)$, say $y=a_{s}$ and we may assume that $s>t+1$, by (2.1), it must be that $a_{s-1} \in V(R)$, and so by the construction of $G[y \rightarrow x ; Z]$, we have that $a_{s-1} \in N(x)$ in G. Then, let $C^{\prime \prime}=a_{1} \cdots x a_{s-1} a_{s-2} \cdots a_{t+1} y a_{s+1} \cdots a_{p}$. In either case, $C^{\prime \prime}$ is a cycle contradicting the local maximality of C.

Case 2. $\left|E\left(C^{\prime}\right) \cap F\right|=2$. Suppose that $x=a_{t}$ and so $a_{t-1}, a_{t+1} \in\left\{z_{1}, z_{2}, \ldots, z_{k}\right\}$. If $y \notin V\left(C^{\prime}\right)$, let

$$
C^{\prime \prime}=\left(C^{\prime} \backslash\left\{x a_{t-1}, x a_{t+1}\right\}\right) \cup\left\{y a_{t-1}, y a_{t+1}\right\}
$$

If $y \in V\left(C^{\prime}\right)$, say $y=a_{s}$ and we may assume that $s>t+1$, by (2.1), $a_{s-1}, a_{s+1} \in V(R)$, and so $a_{s-1}, a_{s+1} \in N(x)$ in G. Then, let

$$
C^{\prime \prime}=\left(C^{\prime} \backslash\left\{x a_{t-1}, x a_{t+1}, y a_{s-1}, y a_{s+1}\right\}\right) \cup\left\{x a_{s-1}, x a_{s+1}, y a_{t-1}, y a_{t+1}\right\}
$$

In either case, $C^{\prime \prime}$ is a cycle contradicting the local maximality of C.
(ii) Since $N_{D}(y) \cap N_{D}(x)=\emptyset$ and $A=N_{D}(y)$, using $N_{R-D}(D)=\{y\}$, the same proof as in (i) (with Z replaced by A) yields that C is a locally maximal cycle in $G[y \rightarrow x ; A]$. (In fact, in this case, if C^{\prime} is a cycle with $\left|E\left(C^{\prime}\right) \cap E(C, G[y \rightarrow x ; A]-C)\right| \leqslant 2$ and $E\left(C^{\prime}\right) \cap\{x z: z \in A\} \neq \emptyset$, then $y \notin V\left(C^{\prime}\right)$.) Furthermore, if $N_{C}(R-D)=\{x\}$, let $G^{*}=G[y \rightarrow x ; A]+y x^{\prime}$. If C is not a locally maximal cycle in G^{*}, then there is a cycle C^{*} in G^{*} with $\left|E\left(C^{*}\right)\right|>|E(C)|$ and

$$
\left|E\left(C^{*}\right) \cap E\left(C, G^{*}-C\right)\right| \leqslant 2
$$

and moreover, $y x^{\prime} \in E\left(C^{*}\right)$, which implies that $V\left(C^{*}\right) \cap V(D)=\emptyset$. Furthermore, since $N_{C}(R-D)=\{x\}$, we have that $x^{\prime} \in N_{C}(D)$. Thus, we may obtain a cycle C^{\prime} from C^{*} by replacing $y x^{\prime}$ with a path from y to x^{\prime} with all internal vertices in D. Then, as seen in (i), C^{\prime} can be transformed into a cycle contradicting the local maximality of C. This completes the proof of Lemma 2.3.

Lemma 2.4. Let C be a locally maximal cycle in a 2 -connected graph G and R a component of $G-C$. One of the following two statements holds.
(i) $N_{R}(x)=V(R)$ for every $x \in N_{C}(R)$.
(ii) There is $y \in N_{R}(x)$ for some $x \in N_{C}(R)$ and a nonempty set $A \subseteq N_{R}(y) \backslash\left(N_{R}(x) \cup\{x\}\right)$ such that

$$
G^{\prime}= \begin{cases}G[y \rightarrow x ; A] & \text { if } G[y \rightarrow x ; A] \text { is 2-connected, } \\ G[y \rightarrow x ; A]+y x^{\prime} & \text { otherwise, }\end{cases}
$$

is 2-connected, where $x^{\prime} \in N_{C}(R) \backslash\{x\}$, and moreover, C remains a locally maximal cycle in G^{\prime}.

Proof. Suppose that (i) does not hold. Then $N_{R}(x) \neq V(R)$ for some $x \in N_{C}(R)$, which implies that there is $y \in N_{R}(x)$ such that

$$
Z_{y}=N_{R}(y) \backslash\left(N_{R}(x) \cup\{x\}\right) \neq \emptyset .
$$

If $G\left[y \rightarrow x ; Z_{y}\right]$ is 2-connected, then by Lemma 2.3(i), C remains a locally maximal cycle in $G\left[y \rightarrow x ; Z_{y}\right]$, and (ii) holds with $A=Z_{y}$ and $G^{\prime}=G\left[y \rightarrow x ; Z_{y}\right]$. Suppose thus that this is not the case. Then, x is the unique cut vertex of $G\left[y \rightarrow x ; Z_{y}\right]$. Let R_{y} be the smallest component in $G\left[y \rightarrow x ; Z_{y}\right]-x$ with $V\left(R_{y}\right) \subseteq V(R) . R_{y}$ is defined for each y with $Z_{y} \neq \emptyset$. (That is, $G\left[y \rightarrow x ; Z_{y}\right]$ is not 2 -connected for each y with $Z_{y} \neq \emptyset$.) For simplicity, we may assume that y has been chosen such that $\left|V\left(R_{y}\right)\right|$ is as small as possible. Then, either $R_{y}=\{y\}$ or y is a cut vertex of R. We claim that x is joined to every vertex of R_{y} in G. If this is not true, then there is a $w \in V\left(R_{y}\right)$ with $Z_{w} \neq \emptyset$. Then, $G\left[w \rightarrow x ; Z_{w}\right]-x$ has a component that is a proper subset of R_{y}, which implies that $\left|V\left(R_{w}\right)\right|<\left|V\left(R_{y}\right)\right|$, contradicting the choice of y. This proves the claim. By the claim, we have that $y \in R_{y}$. Let $R_{1}, R_{2}, \ldots, R_{t}$ be the components of $G\left[y \rightarrow x ; Z_{y}\right]-x$, where $t \geqslant 2, R_{1}=R_{y}$, and $V(C) \backslash\{x\} \subseteq V\left(R_{t}\right)$. We note that $R_{1}=R_{y}$, which is a component in $G\left[y \rightarrow x ; Z_{y}\right]-x$ with $V\left(R_{1}\right) \subseteq V(R)$ (so R_{1} is adjacent only to y and x in G). Since G is 2-connected, there must be $x^{\prime} \in N_{C}(R) \backslash\{x\}$ joined to some vertex y^{\prime} of $R-R_{1}$ in G. Clearly, $y^{\prime} \in R_{t}$. Let $D=R_{t}-V(C)$. Then, $N_{R-D}(D)=\{y\}$ and $N_{D}(y) \cap N_{D}(x)=\emptyset$. Let $A=N_{D}(y)$. If $G[y \rightarrow x ; A]$ is 2-connected, let $G^{\prime}=G[y \rightarrow x ; A]$; if $G[y \rightarrow x ; A]$ is not 2-connected, then $N_{C}(R-D)=\{x\}$, and we let $G^{\prime}=G[y \rightarrow x ; A]+y x^{\prime}$. In either case, G^{\prime} is 2connected, and by Lemma 2.3(ii), C is a locally maximal cycle in G^{\prime}. This proves Lemma 2.4.

3. Proof of the theorem

Theorem 3.1. Let C be a locally maximal cycle of length c in a 2-connected graph G on n vertices. If $\frac{2}{3} n+1 \leqslant c \leqslant n-1$, then

$$
e(G) \leqslant \max \{f(n, 2, c), f(n,\lfloor c / 2\rfloor, c)\} .
$$

Proof. Suppose that $R_{1}, R_{2}, \ldots, R_{m}$ are the components of $G-C, m \geqslant 1$. Repeatedly applying Lemma 2.4 to each R_{i} (note that since the set A is nonempty, each time Lemma 2.4(ii) is applied, the number of edges not incident with C strictly decreases), we have a 2-connected graph G^{\prime} in which $e(G) \leqslant e\left(G^{\prime}\right), C$ remains a locally maximal cycle, and for each component R of $G^{\prime}-C, N_{R}(x)=V(R)$ for every $x \in N_{C}(R)$. For simplicity, we may simply assume that G has been chosen to be the final graph after repeatedly applying Lemma 2.4, and so

$$
\begin{equation*}
N_{R_{i}}(x)=V\left(R_{i}\right) \text { for every } x \in N_{C}\left(R_{i}\right), \quad 1 \leqslant i \leqslant m \tag{3.1}
\end{equation*}
$$

Let $n_{i}=\left|V\left(R_{i}\right)\right|$ and $k_{i}=\left|N_{C}\left(R_{i}\right)\right|, 1 \leqslant i \leqslant m$. For any $i, 1 \leqslant i \leqslant m$, suppose that $N_{C}\left(R_{i}\right)=$ $\left\{x_{1}, x_{2}, \ldots, x_{k_{i}}\right\}$. Let $P_{j t}$ be a longest path from x_{j} to x_{t} with all internal vertices in R_{i}. By (3.1), for all $j \neq t, P_{j t}$ have the same length, denoted by d_{i}, which is 2 plus the length of
a longest path in R_{i}. So, R_{i} contains no path of length more than $d_{i}-2$. It follows from a result of Erdös and Gallai [2, Theorem 2.6] that

$$
e\left(R_{i}\right) \leqslant \frac{d_{i}-2}{2} n_{i}, \quad 1 \leqslant i \leqslant m .
$$

Let H be the subgraph induced by $V(C)$. Then,

$$
e(G) \leqslant e(H)+\sum_{i=1}^{m}\left(e\left(R_{i}\right)+n_{i} k_{i}\right) \leqslant e(H)+\frac{1}{2} \sum_{i=1}^{m} n_{i}\left(d_{i}-2+2 k_{i}\right) .
$$

Choose α such that $d_{\alpha}+2 k_{\alpha}=\max \left\{d_{i}+2 k_{i}, 1 \leqslant i \leqslant m\right\}$ and let $d=d_{\alpha}$ and $k=k_{\alpha}$. It follows, using $\sum_{i=1}^{m} n_{i}=n-c$, that

$$
\begin{equation*}
e(G) \leqslant e(H)+\frac{d-2+2 k}{2}(n-c) \tag{3.2}
\end{equation*}
$$

Let $R=R_{\alpha}$ and $X=N_{C}(R)=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$. Then $C-X$ consists of k segments $S_{1}, S_{2}, \ldots, S_{k}$, where S_{i} is the segment of C from x_{i}^{+}to x_{i+1}^{-}. Set $s_{i}=\left|V\left(S_{i}\right)\right|, 1 \leqslant i \leqslant k$. We first prove several lemmas that deal with the estimation of the number of edges between S_{i} and S_{j}.

Lemma 3.2. For $i \neq j$, let $S_{i}=a_{1} a_{2} \cdots a_{p}$ and $S_{j}=b_{1} b_{2} \cdots b_{q}$, where $p=s_{i}$ and $q=s_{j}$.
(i) If $a_{r} b_{\ell} \in E(G)$, then

$$
(r-1)+(\ell-1) \geqslant d-1 \quad \text { and } \quad(p-r)+(q-\ell) \geqslant d-1 .
$$

(ii) For a_{r}, a_{p-t} with $r+t \leqslant d-1$ (so $\left.r \leqslant p-t\right)$, if there are distinct b_{ℓ}, b_{m} such that $a_{r} b_{\ell}, a_{p-t} b_{m} \in E(G)\left(\right.$ or $\left.a_{r} b_{m}, a_{p-t} b_{\ell} \in E(G)\right)$, then $|m-\ell| \geqslant d+1-r-t$.

Proof. (i) Since $a_{r} b_{\ell} \in E(G)$, we have a cycle $C^{\prime}=a_{r} b_{\ell} b_{\ell+1} \cdots b_{q} x_{j+1} x_{j+1}^{+} \cdots x_{i} P x_{j} x_{j}^{-}$ $\cdots x_{i+1} a_{p} a_{p-1} \cdots a_{r}$ of length $c+(d-1)-(r-1)-(\ell-1)$ with $\left|E\left(C^{\prime}\right) \cap E(C, G-C)\right|=2$, where P is a path of length d from x_{i} to x_{j} with all its internal vertices in R. By the choice of $C,(r-1)+(\ell-1) \geqslant d-1$. By symmetry, $(p-r)+(q-\ell) \geqslant d-1$, as required.
(ii) Without loss of generality, suppose that $a_{r} b_{\ell}, a_{p-t} b_{m} \in E(G)$. Let P be a path of length d from x_{i} to x_{i+1} with all internal vertices in R. Then

$$
C^{\prime}=x_{i} x_{i}^{-} \cdots x_{j+1} b_{q} b_{q-1} \cdots b_{m} a_{p-t} a_{p-t-1} \cdots a_{r} b_{\ell} b_{\ell-1} \cdots x_{i+1} P x_{i}
$$

is cycle of length

$$
c+(d-1)-(r+t-1)-(m-\ell-1)=c+d+1-r-t-(m-\ell)
$$

with $\left|E\left(C^{\prime}\right) \cap E(C, G-C)\right|=2$. By the choice of $C,|m-\ell| \geqslant d+1-r-t$, as required.

Lemma 3.3. For $i \neq j$, let $S_{i}=a_{1} a_{2} \cdots a_{p}$ and $S_{j}=b_{1} b_{2} \cdots b_{q}$, where $p=s_{i}$ and $q=s_{j}$.
(i) For a_{r}, a_{p-t} with $r+t \leqslant d-1$,

$$
e\left(\left\{a_{r}, a_{p-t}\right\}, S_{j}\right) \leqslant q-(d-r-t) .
$$

(ii) For each $m, 1 \leqslant m \leqslant q-1$,

$$
e\left(b_{m} b_{m+1}, S_{i}\right) \leqslant 2 p-d+1
$$

with equality only if $p=d-1$, and $e\left(b_{m}, S_{i}\right)=p$ or $e\left(b_{m+1}, S_{i}\right)=p$.
(iii) $e\left(\left\{a_{1}, b_{1}\right\}, S_{i}\right) \leqslant p$ and $e\left(\left\{a_{p}, b_{q}\right\}, S_{i}\right) \leqslant p$.

Proof. (i) Let B be the set of vertices in S_{j} which are joined to both a_{r} and a_{p-t}. If $B \neq \emptyset$, then for each $b_{i} \in B$, by Lemma 3.2(ii),

$$
e\left(\left\{a_{r}, a_{p-t}\right\}, b_{i+j}\right)=0 \quad \text { and } \quad e\left(\left\{a_{r}, a_{p-t}\right\}, b_{i-j}\right)=0
$$

for all $j, 1 \leqslant j \leqslant d-r-t$, which implies that there are at least $(|B|+1)(d-r-t)$ vertices in S_{j}, none of which is joined to either a_{r} or a_{p-t}. It follows that

$$
\begin{aligned}
e\left(\left\{a_{r}, a_{p-t}\right\}, S_{j}\right) & \leqslant 2|B|+(q-|B|-(|B|+1)(d-r-t)) \\
& =q-(d-r-t)-|B|(d-1-r-t) .
\end{aligned}
$$

But $r+t \leqslant d-1$, and thus we may suppose that $B=\emptyset$.
If $e\left(a_{p-t}, S_{j}\right)=0$, then $e\left(\left\{a_{r}, a_{p-t}\right\}, S_{j}\right)=e\left(a_{r}, S_{j}\right)$. By Lemma 3.2(i), none of the first $d-r$ vertices of S_{j} is joined to a_{r}, and hence $e\left(a_{r}, S_{j}\right) \leqslant q-(d-r) \leqslant q-(d-r-t)$. Therefore, we may assume that $e\left(a_{p-t}, S_{j}\right)>0$, and similarly, $e\left(a_{r}, S_{j}\right)>0$.

Let $a_{p-t} b_{\ell}, a_{r} b_{m} \in E(G)$ and choose b_{ℓ} and b_{m} as close to each other as possible, so that none of the vertices (in S_{j}) between b_{ℓ} and b_{m} is joined to a_{r} or a_{p-t}. By Lemma 3.2(ii), $|m-\ell| \geqslant d+1-r-t$. It follows that there are at least $d-r-t$ vertices that are not joined to a_{r} or a_{p-t}. Therefore, $e\left(\left\{a_{r}, a_{p-t}\right\}, S_{j}\right) \leqslant q-(d-r-t)$, as required.
(ii) We first consider the case that there is a_{r} such that $e\left(a_{r}, b_{m} b_{m+1}\right)=2$. Choose such a_{r} as close to a_{1} or a_{p} as possible. We may assume that $r-1 \leqslant p-r$. By the choice of a_{r}, none of the first and the last $r-1$ vertices of S_{i} can be joined to both b_{m} and b_{m+1}, which gives that $e\left(b_{m} b_{m+1}, S_{i}\right) \leqslant 2 p-2(r-1)$. If $r-1 \geqslant \frac{d}{2}$, then $e\left(b_{m} b_{m+1}, S_{i}\right) \leqslant 2 p-d$, and we are done. Suppose therefore that $r-1 \leqslant \frac{d-1}{2}$, that is $r \leqslant \frac{d+1}{2}$. By Lemma 3.2(ii), none of the last $d-r$ vertices of S_{i} can be joined to b_{m} or b_{m+1}, that is, $e\left(b_{m} b_{m+1}, a_{i}\right)=0$ for all $i, p-(d-r)+1 \leqslant i \leqslant p$. It follows that

$$
e\left(b_{m} b_{m+1}, S_{i}\right) \leqslant 2 p-(r-1)-2(d-r)=2 p-d-(d-r-1)
$$

If d is odd (so $d \geqslant 3$), then, since $r \leqslant \frac{d+1}{2}$, we have $d-r-1 \geqslant \frac{d-3}{2} \geqslant 0$; if d is even, then $r \leqslant \frac{d}{2}$, and we have $d-r-1 \geqslant \frac{d-2}{2} \geqslant 0$; In either case, we have that $e\left(b_{m} b_{m+1}, S_{i}\right) \leqslant 2 p-d$.

Next we consider the case that

$$
\begin{equation*}
e\left(b_{m} b_{m+1}, a_{i}\right) \leqslant 1 \quad \text { for all } i, \quad 1 \leqslant i \leqslant p \tag{3.3}
\end{equation*}
$$

Then,

$$
e\left(b_{m} b_{m+1}, S_{i}\right) \leqslant p=2 p-d-(p-d)
$$

Thus, $e\left(b_{m} b_{m+1}, S_{i}\right) \leqslant 2 p-d+1$, with equality only if $p=d-1$, and all equalities hold in (3.3), which implies, by Lemma 3.2(ii), that either $e\left(b_{m}, S_{i}\right)=p$ or $e\left(b_{m+1}, S_{i}\right)=p$.
(iii) Let $A=\left\{a_{i}: a_{1} a_{i+1} \in E(G), 1 \leqslant i \leqslant p-1\right\}$. If there is $a_{i} \in A$ such that $a_{i} b_{1} \in E(G)$, then $C^{\prime}=b_{1} a_{i} a_{i-1} \cdots a_{1} a_{i+1} a_{i+2} \cdots a_{p} x_{i+1} \cdots x_{j} P x_{i} x_{i}^{-} \cdots b_{q} b_{q-1} \cdots b_{1}$ is a cycle of length $c+d-1$ and $\left|E\left(C^{\prime}\right) \cap E(C, G-C)\right|=2$, contradicting the choice of C. Thus, $A \cap N_{S_{i}}\left(b_{1}\right)=\emptyset$, which implies that $e\left(b_{1}, S_{i}\right) \leqslant p-|A|=p-e\left(a_{1}, S_{i}\right)$, and so $e\left(b_{1}, S_{i}\right)+e\left(a_{1}, S_{i}\right) \leqslant p$. By symmetry, $e\left(b_{q}, S_{i}\right)+e\left(a_{p}, S_{i}\right) \leqslant p$. This completes the proof of Lemma 3.3.

Lemma 3.4. Suppose that $d \geqslant 3$. For $i \neq j$,

$$
e\left(S_{i}, S_{j}\right) \leqslant \begin{cases}\left(s_{j}-1\right)\left(s_{i}-1\right)-\frac{s_{j}(d-2)}{2}+\frac{s_{j}-2}{2} & \text { if } s_{i}=d-1 \text { and } s_{j} \geqslant 2 d-1 \\ \left(s_{j}-1\right)\left(s_{i}-1\right)-\frac{s_{j}(d-2)}{2} & \text { otherwise } .\end{cases}
$$

Proof. Let $S_{i}=a_{1} a_{2} \cdots a_{p}$ and $S_{j}=b_{1} b_{2} \cdots b_{q}$, where $p=s_{i}$ and $q=s_{j}$. By Lemma 3.3(i) (S_{i} and S_{j} interchange, $r=1$ and $t=0$),

$$
\begin{equation*}
e\left(\left\{b_{1}, b_{q}\right\}, S_{i}\right) \leqslant p-(d-1) \tag{3.4}
\end{equation*}
$$

Without loss of generality, we may assume that $e\left(b_{1}, S_{i}\right) \leqslant e\left(b_{q}, S_{i}\right)$, and so

$$
e\left(b_{q}, S_{i}\right) \geqslant \frac{1}{2} e\left(\left\{b_{1}, b_{q}\right\}, S_{i}\right)
$$

Then

$$
\begin{aligned}
e\left(\left\{b_{1}, b_{2}, b_{q}\right\}, S_{i}\right) & =e\left(\left\{b_{1}, b_{q}\right\}, S_{i}\right)+e\left(\left\{b_{2}, b_{q}\right\}, S_{i}\right)-e\left(b_{q}, S_{i}\right) \\
& \leqslant \frac{1}{2} e\left(\left\{b_{1}, b_{q}\right\}, S_{i}\right)+e\left(\left\{b_{2}, b_{q}\right\}, S_{i}\right)
\end{aligned}
$$

By Lemma 3.3(i) (S_{i} and S_{j} interchange and $r+t=2$),

$$
e\left(\left\{b_{2}, b_{q}\right\}, S_{i}\right) \leqslant p-(d-2)
$$

It follows from (3.4) that

$$
\begin{equation*}
e\left(\left\{b_{1}, b_{2}, b_{q}\right\}, S_{i}\right) \leqslant \frac{1}{2}(p-d+1)+p-(d-2)=\frac{3}{2}(p-d+1)+1 \tag{3.5}
\end{equation*}
$$

If $p \geqslant d$ or if there is no vertex $b \in S_{j}$ with $e\left(b, S_{i}\right)=p$, then by Lemma 3.3(ii) (without equalities),

$$
e\left(b_{m} b_{m+1}, S_{i}\right) \leqslant 2 p-d, \quad 1 \leqslant m \leqslant q-1
$$

Therefore, if q is even,

$$
e\left(S_{j}-\left\{b_{1}, b_{q}\right\}, S_{i}\right) \leqslant \frac{q-2}{2}(2 p-d)
$$

which together with (3.4) gives that

$$
e\left(S_{i}, S_{j}\right) \leqslant \frac{q-2}{2}(2 p-d)+p-(d-1)=(q-1)(p-1)-\frac{q}{2}(d-2)
$$

if q is odd (so $q \geqslant 3$),

$$
e\left(S_{j}-\left\{b_{1}, b_{2}, b_{q}\right\}, S_{i}\right) \leqslant \frac{q-3}{2}(2 p-d)
$$

which together with (3.5) gives that

$$
\begin{aligned}
e\left(S_{i}, S_{j}\right) & \leqslant \frac{q-3}{2}(2 p-d)+\frac{3}{2}(p-d+1)+1 \\
& =(q-1)(p-1)-\frac{q}{2}(d-2)-\frac{p-3}{2}
\end{aligned}
$$

and since $p \geqslant d \geqslant 3$, the required result follows.
Suppose therefore that $p=d-1$ and there is $b_{\ell} \in S_{j}$ such that $e\left(b_{\ell}, S_{i}\right)=p$. By Lemma 3.2(i), $\ell-1 \geqslant d-1$ and $q-\ell \geqslant d-1$, which gives that $q \geqslant 2 d-1$. By Lemma 3.3(ii), we have now that

$$
e\left(b_{m} b_{m+1}, S_{i}\right) \leqslant 2 p-d+1, \quad 1 \leqslant m \leqslant q-1
$$

and thus, if q is even,

$$
e\left(S_{j}-\left\{b_{1}, b_{q}\right\}, S_{i}\right) \leqslant \frac{q-2}{2}(2 p-d)+\frac{q-2}{2}
$$

if q is odd,

$$
e\left(S_{j}-\left\{b_{1}, b_{2}, b_{q}\right\}, S_{i}\right) \leqslant \frac{q-3}{2}(2 p-d)+\frac{q-3}{2} .
$$

Since (3.4) and (3.5) still hold, if q is even,

$$
e\left(S_{i}, S_{j}\right) \leqslant(q-1)(p-1)-\frac{q}{2}(d-2)+\frac{q-2}{2}
$$

if q is odd,

$$
e\left(S_{i}, S_{j}\right) \leqslant(q-1)(p-1)-\frac{q}{2}(d-2)+\frac{q-3}{2} .
$$

Consequently,

$$
e\left(S_{i}, S_{j}\right) \leqslant(q-1)(p-1)-\frac{q}{2}(d-2)+\frac{q-2}{2} .
$$

This completes the proof of Lemma 3.4.

Lemma 3.5. Suppose that $d \geqslant 3$. For $i \neq j$, if $s_{j}=d-1$, let F be the subgraph induced by $V\left(S_{i}\right) \cup V\left(S_{j}\right)$, then

$$
\sum_{x \in S_{i}} d_{F}(x) \leqslant s_{i}\left(s_{i}-1\right)+\frac{s_{j}-2}{2}\left(2 s_{i}-d\right)+2
$$

Proof. As before, let $S_{i}=a_{1} a_{2} \cdots a_{p}$ and $S_{j}=b_{1} b_{2} \cdots b_{q}$, where $p=s_{i}$ and $q=s_{j}$. Let $b_{r} \in S_{j}$. If $r \leqslant \frac{d}{2}$, by Lemma 3.2(i), b_{r} is not joined to any of the first $\left\lceil\frac{d}{2}\right\rceil$ vertices of S_{i}, which gives that $e\left(b_{r}, S_{i}\right) \leqslant p-\frac{d}{2}$. If $r \geqslant \frac{d+1}{2}$, since $q=d-1$, we have that $q-r \leqslant \frac{d-3}{2}$, and again by Lemma 3.2(i), b_{r} is not joined to any of the last $\left\lceil\frac{d+1}{2}\right\rceil$ vertices of S_{i}, which gives that $e\left(b_{r}, S_{i}\right) \leqslant p-\frac{d+1}{2}$. Consequently,

$$
e\left(b_{r}, S_{i}\right) \leqslant p-\frac{d}{2} \quad \text { for each } r, \quad 1 \leqslant r \leqslant q
$$

So

$$
\sum_{r=2}^{q-1} e\left(b_{r}, S_{i}\right) \leqslant(q-2)\left(p-\frac{d}{2}\right)=\frac{q-2}{2}(2 p-d)
$$

Therefore,

$$
e\left(S_{i}, S_{j}\right) \leqslant \frac{q-2}{2}(2 p-d)+e\left(\left\{b_{1}, b_{q}\right\}, S_{i}\right)
$$

Using the fact that $d_{S_{i}}\left(a_{\ell}\right) \leqslant p-1$ for all $\ell, 2 \leqslant \ell \leqslant p-1$, we have that

$$
\sum_{x \in S_{i}} d_{S_{i}}(x) \leqslant(p-2)(p-1)+e\left(\left\{a_{1}, a_{p}\right\}, S_{i}\right)
$$

Noting that

$$
\sum_{x \in S_{i}} d_{F}(x)=\sum_{x \in S_{i}} d_{S_{i}}(x)+e\left(S_{i}, S_{j}\right),
$$

we obtain that

$$
\begin{aligned}
\sum_{x \in S_{i}} d_{F}(x) \leqslant & (p-2)(p-1)+\frac{q-2}{2}(2 p-d) \\
& +e\left(\left\{a_{1}, a_{p}\right\}, S_{i}\right)+e\left(\left\{b_{1}, b_{q}\right\}, S_{i}\right) \\
= & (p-2)(p-1)+\frac{q-2}{2}(2 p-d)+e\left(\left\{a_{1}, b_{1}, a_{p}, b_{q}\right\}, S_{i}\right)
\end{aligned}
$$

By Lemma 3.3(iii), $e\left(\left\{a_{1}, b_{1}\right\}, S_{i}\right) \leqslant p$ and $e\left(\left\{a_{p}, b_{q}\right\}, S_{i}\right) \leqslant p$, and hence,

$$
e\left(\left\{a_{1}, b_{1}, a_{p}, b_{q}\right\} \leqslant 2 p\right.
$$

It follows that

$$
\sum_{x \in S_{i}} d_{F}(x) \leqslant p(p-1)+\frac{q-2}{2}(2 p-d)+2
$$

as required by Lemma 3.5.
Now, we return to the proof of Theorem 3.1. By (3.2), we need to estimate $e(H)$. The proof is divided into two parts, according to $d \geqslant 3$ or $d=2$.

Part I. $d \geqslant 3$. Let $A=\left\{i: s_{i}=d-1\right\}$ and $B=\left\{i: s_{i} \geqslant 2 d-1\right\}$. Set $a=|A|$, $b=|B|, s=\sum_{i=1}^{k} s_{i}$ and $s^{\prime}=\sum_{i \in B} s_{i}$. By the definition, $s^{\prime} \geqslant b(2 d-1)$. We first show that

$$
\begin{equation*}
\sum_{i=1}^{k} \sum_{x \in S_{i}} d_{H}(x) \leqslant c^{2}+c+3 k^{2}-3 c k-2 k-\frac{(d-2)(c-3)}{2} \tag{3.6}
\end{equation*}
$$

If $A=\emptyset$ or $B=\emptyset$, then by Lemma 3.4, for all $i \neq j$,

$$
e\left(S_{i}, S_{j}\right) \leqslant\left(s_{j}-1\right)\left(s_{i}-1\right)-\frac{s_{j}}{2}(d-2)
$$

and thus, using $\sum_{j \neq i} s_{j}=s-s_{i}$,

$$
\begin{equation*}
\sum_{j \neq i} e\left(S_{i}, S_{j}\right) \leqslant\left(s-s_{i}-(k-1)\right)\left(s_{i}-1\right)-\frac{s-s_{i}}{2}(d-2) \tag{3.7}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
\sum_{x \in S_{i}} d_{H}(x) & \leqslant \sum_{j \neq i} e\left(S_{i}, S_{j}\right)+s_{i}\left(s_{i}-1\right)+s_{i} k \\
& \leqslant s\left(s_{i}-1\right)+s_{i}+(k-1)-\frac{s-s_{i}}{2}(d-2) \tag{3.8}
\end{align*}
$$

and so,

$$
\begin{align*}
\sum_{i=1}^{k} \sum_{x \in S_{i}} d_{H}(x) \leqslant & s(s-k)+s+k(k-1)-\frac{s(k-1)}{2}(d-2) \\
= & s(s-k)+s+k(k-1)-\frac{(d-2)(s+k-3)}{2} \\
& -\frac{(d-2)(k-2)(s-1)+(d-2)}{2} \\
= & c^{2}+c+3 k^{2}-3 c k-2 k-\frac{(d-2)(c-3)}{2} \\
& -\frac{(d-2)(k-2)(s-1)+(d-2)}{2} \tag{3.9}
\end{align*}
$$

where we have used that $s=c-k$. But $d \geqslant 3$ and $k \geqslant 2$, and so (3.6) follows. In what follows, suppose therefore that $a \geqslant 1$ and $b \geqslant 1$. For a segment S_{i}, we distinguish the following three cases.

Case 1. $i \notin A \cup B$. By Lemma 3.4, for all $j \neq i$,

$$
\begin{equation*}
e\left(S_{i}, S_{j}\right) \leqslant\left(s_{j}-1\right)\left(s_{i}-1\right)-\frac{s_{j}}{2}(d-2) \tag{3.10}
\end{equation*}
$$

and as the derivation of (3.8),

$$
\begin{equation*}
\sum_{x \in S_{i}} d_{H}(x) \leqslant s\left(s_{i}-1\right)+s_{i}+(k-1)-\frac{s-s_{i}}{2}(d-2) \tag{3.11}
\end{equation*}
$$

Case 2. $i \in A$. By Lemma 3.4, if $j \notin B$, we have (3.10). If $j \in B$,

$$
e\left(S_{i}, S_{j}\right) \leqslant\left(s_{j}-1\right)\left(s_{i}-1\right)-\frac{s_{j}}{2}(d-2)+\frac{s_{j}-2}{2} .
$$

Thus,

$$
\begin{aligned}
\sum_{j \neq i} e\left(S_{i}, S_{j}\right) & \leqslant \sum_{j \neq i}\left[\left(s_{j}-1\right)\left(s_{i}-1\right)-\frac{s_{j}}{2}(d-2)\right]+\sum_{j \in B} \frac{s_{j}-2}{2} \\
& \leqslant\left(s-s_{i}-(k-1)\right)\left(s_{i}-1\right)-\frac{s-s_{i}}{2}(d-2)+\frac{s^{\prime}-2 b}{2}
\end{aligned}
$$

and as the way (3.8) is derived from (3.7), we have that,

$$
\begin{equation*}
\sum_{x \in S_{i}} d_{H}(x) \leqslant s\left(s_{i}-1\right)+s_{i}+(k-1)-\frac{s-s_{i}}{2}(d-2)+\frac{s^{\prime}-2 b}{2} \tag{3.12}
\end{equation*}
$$

Case 3. $i \in B$. Let $\ell \in A$ and let F be the subgraph induced by $V\left(S_{i}\right) \cup V\left(S_{\ell}\right)$. By Lemma 3.5,

$$
\begin{aligned}
\sum_{x \in s_{i}} d_{F}(x) & \leqslant s_{i}\left(s_{i}-1\right)+\frac{s_{\ell}-2}{2}\left(2 s_{i}-d\right)+2 \\
& \leqslant s_{i}\left(s_{i}-1\right)+\left(s_{\ell}-1\right)\left(s_{i}-1\right)-\frac{s_{\ell}}{2}(d-2)-\left(s_{i}-d-1\right)
\end{aligned}
$$

For all $j \notin\{i, \ell\}$, by Lemma 3.4,

$$
e\left(S_{i}, S_{j}\right) \leqslant\left(s_{j}-1\right)\left(s_{i}-1\right)-\frac{s_{j}}{2}(d-2)
$$

It follows that

$$
\begin{align*}
\sum_{x \in S_{i}} d_{H}(x) \leqslant & \sum_{x \in S_{i}} d_{F}(x)+\sum_{j \notin\{i, \ell\}} e\left(S_{i}, S_{j}\right)+s_{i} k \\
\leqslant & \sum_{j \neq i}\left[\left(s_{i}-1\right)\left(s_{j}-1\right)-\frac{s_{j}}{2}(d-2)\right] \\
& +s_{i}\left(s_{i}-1\right)+s_{i} k-\left(s_{i}-d-1\right) \\
= & s\left(s_{i}-1\right)+s_{i}+(k-1)-\frac{s-s_{i}}{2}(d-2)-\left(s_{i}-d-1\right) . \tag{3.13}
\end{align*}
$$

By (3.11), (3.12), and (3.13), we have that

$$
\begin{align*}
\sum_{i=1}^{k} \sum_{x \in S_{i}} d_{H}(x) \leqslant & \sum_{i=1}^{k}\left[s\left(s_{i}-1\right)+s_{i}+(k-1)-\frac{s-s_{i}}{2}(d-2)\right] \\
& +\sum_{i \in A} \frac{s^{\prime}-2 b}{2}-\sum_{i \in B}\left(s_{i}-d-1\right) \tag{3.14}
\end{align*}
$$

As seen in the derivation of (3.9) from (3.8), the first summation at the right-hand side of (3.14) is

$$
\begin{align*}
c^{2} & +c+3 k^{2}-3 c k-2 k-\frac{(d-2)(c-3)}{2} \\
& -\frac{(d-2)(k-2)(s-1)+(d-2)}{2} \tag{3.15}
\end{align*}
$$

Clearly,

$$
\begin{align*}
\sum_{i \in A} \frac{s^{\prime}-2 b}{2}-\sum_{i \in B}\left(s_{i}-d-1\right) & =\frac{a s^{\prime}-2 a b}{2}-\left(s^{\prime}-b d-b\right) \\
& =\frac{s^{\prime}(a-1)}{2}-\frac{b}{2}(2 a-3)-\frac{s^{\prime}-b(2 d-1)}{2} \\
& \leqslant \frac{s^{\prime}(a-1)}{2}-\frac{b}{2}(2 a-3) \tag{3.16}
\end{align*}
$$

Applying (3.16) and (3.15) into (3.14), and writing

$$
g(d, a, k)=\frac{s^{\prime}(a-1)}{2}-\frac{b}{2}(2 a-3)-\frac{(d-2)(k-2)(s-1)+(d-2)}{2}
$$

we have that

$$
\sum_{i=1}^{k} \sum_{x \in S_{i}} d_{H}(x) \leqslant c^{2}+c+3 k^{2}-3 c k-2 k-\frac{(d-2)(c-3)}{2}+g(d, a, k)
$$

It remains to show that $g(d, a, k) \leqslant 0$. Clearly,

$$
g(d, a, k) \leqslant g(3, a, k)=\frac{s^{\prime}(a-1)}{2}-\frac{b}{2}(2 a-3)-\frac{(k-2)(s-1)+1}{2} .
$$

If $k=2$, then $a=1$ and $b=1$, and we have that $g(3,1,2)=0$. If $a \geqslant 2$, then, using $k \geqslant a+1$ and $s \geqslant s^{\prime}+1$, we have that

$$
g(3, a, k) \leqslant-\frac{b}{2}-\frac{1}{2}<0
$$

Therefore we assume that $k \geqslant 3$ and $a=1$. Then,

$$
g(3,1, k)=\frac{b}{2}-\frac{(k-2)(s-1)+1}{2} \leqslant \frac{b-(s-1)-1}{2} .
$$

Since $s \geqslant b+1$, we have that $g(3,1, k)<0$. In each case, $g(d, a, k) \leqslant 0$. This proves (3.6).
By the fact that

$$
2 e(H)=\sum_{x \in H} d_{H}(x) \leqslant k(c-1)+\sum_{i=1}^{k} \sum_{x \in S_{i}} d_{H}(x)
$$

it follows from (3.6) that

$$
2 e(H) \leqslant c^{2}+c+3 k^{2}-2 c k-3 k-\frac{(d-2)(c-3)}{2}
$$

and so

$$
e(H) \leqslant \frac{1}{2}\left(c^{2}+c+3 k^{2}-2 c k-3 k\right)-\frac{(d-2)(c-3)}{4} .
$$

It follows from (3.2) that

$$
e(G) \leqslant \frac{1}{2}\left(c^{2}+c+3 k^{2}+2 k n-4 c k-3 k\right)+\frac{(d-2)}{4}(2 n-3 c+3) .
$$

Since $c \geqslant \frac{2}{3} n+1$,

$$
e(G) \leqslant \frac{1}{2}\left(c^{2}+c+3 k^{2}+2 k n-4 c k-3 k\right)=f(n, k, c) .
$$

Since $2 \leqslant k \leqslant c / 2$, we have that $f(n, k, c) \leqslant \max \{f(n, 2, c), f(n,\lfloor c / 2\rfloor, c)\}$, and the theorem follows. This completes the proof of Part I.

Part II. $\quad d=2$. Let w be the unique vertex of $R($ so $d(w)=k)$ and G^{\prime} the subgraph induced by $V(C) \cup\{w\}$. Then G^{\prime} is non-hamiltonian. Choose a cycle C^{\prime} (in G^{\prime}) of length c such that $e\left(C^{\prime}, G^{\prime}-C^{\prime}\right)$ as large as possible, among all cycles of length c in G^{\prime}. Suppose that u is the unique vertex of $G^{\prime}-C^{\prime}$ and X is the set of neighbors of u in G^{\prime}. Set $x=|X|$. Then, $k \leqslant x \leqslant \frac{c}{2}$, and $C^{\prime}-X$ consists of x segments $S_{1}, S_{2}, \ldots, S_{x}$. For simplicity, we consider these segments as same as those in Part I above, with k replaced by x. As before, define $s_{i}=\left|V\left(S_{i}\right)\right|, 1 \leqslant i \leqslant x$. Set $Y=\left\{S_{i}: s_{i}=1,1 \leqslant i \leqslant x\right\}$ and $y=|Y|$. Let $B=$ $\left\{S_{1}, S_{2}, \ldots, S_{x}\right\} \backslash Y$ and $b=|B|$. For simplicity, we may assume that $B=\left\{S_{1}, S_{2}, \ldots, S_{b}\right\}$ (so $s_{i} \geqslant 2$ for each $i, 1 \leqslant i \leqslant b$) and let

$$
s=\sum_{i=1}^{b} s_{i}, \quad \text { and so, } \quad c=s+x+y .
$$

Let $F=G^{\prime}-(Y \cup\{u\})$. We shall show that for each $i, 1 \leqslant i \leqslant b$,

$$
\begin{equation*}
\sum_{v \in S_{i}} d_{F}(v) \leqslant\left(s_{i}-1\right)(c-x)+x+s_{i}-1 \tag{3.17}
\end{equation*}
$$

Let $S_{i}=a_{1} a_{2} \cdots a_{p}$ with $p=s_{i}$, and for any $j \neq i, 1 \leqslant j \leqslant b, S_{j}=b_{1} b_{2} \cdots b_{q}$ with $q=s_{j}$. By Lemma 3.3(i) (with $r=1$ and $t=0$),

$$
\begin{equation*}
e\left(\left\{a_{1}, a_{p}\right\}, S_{j}\right) \leqslant q-1 \tag{3.18}
\end{equation*}
$$

and for each $\ell, 1 \leqslant \ell \leqslant p-1$, by Lemma 3.2(ii) (S_{i} and S_{j} interchange, $r=1$ and $t=0$), $e\left(a_{\ell} a_{\ell+1},\left\{b_{1}, b_{q}\right\}\right) \leqslant 2$, which implies that

$$
\begin{equation*}
e\left(a_{\ell} a_{\ell+1}, S_{j}\right) \leqslant 2 q-2, \quad 1 \leqslant \ell \leqslant p-1 . \tag{3.19}
\end{equation*}
$$

Case 1. p is even. By (3.19),

$$
e\left(S_{i}-\left\{a_{1}, a_{p}\right\}, S_{j}\right) \leqslant \frac{p-2}{2}(2 q-2)=(p-2)(q-1)
$$

Combining with (3.18) yields that

$$
e\left(S_{i}, S_{j}\right) \leqslant(p-1)(q-1)=\left(s_{i}-1\right)\left(s_{j}-1\right)
$$

This holds for all $j \neq i, 1 \leqslant j \leqslant b$, and thus,

$$
\sum_{j \neq i} e\left(S_{i}, S_{j}\right) \leqslant\left(s_{i}-1\right)\left(s-s_{i}-b+1\right) .
$$

Noting that

$$
\sum_{v \in S_{i}} d_{F}(v)=\sum_{j \neq i} e\left(S_{i}, S_{j}\right)+\sum_{v \in S_{i}} d_{S_{i}}(v)+e\left(S_{i}, X\right),
$$

we have that

$$
\begin{align*}
\sum_{v \in S_{i}} d_{F}(v) & \leqslant\left(s_{i}-1\right)\left(s-s_{i}-b+1\right)+s_{i}\left(s_{i}-1\right)+x s_{i} \\
& =\left(s_{i}-1\right)(s-b+x)+x+s_{i}-1 \tag{3.20}
\end{align*}
$$

and (3.17) follows from the fact that $s-b+x=c-y-b=c-x$.
Case 2. p is odd (so $p \geqslant 3$).
If $d_{F}\left(a_{1}\right) \geqslant x+1$, then $a_{2} b_{1} \notin E(G)$, for otherwise there is a cycle $C^{\prime \prime}$ with $V\left(C^{\prime \prime}\right)=$ $(V(C) \cup\{w\}) \backslash\left\{a_{1}\right\}$, contradicting the choice of C^{\prime}, and thus, $e\left(a_{2}, S_{j}\right) \leqslant q-1$, which together with (3.18) gives that

$$
e\left(\left\{a_{1}, a_{2}, a_{p}\right\}, S_{j}\right) \leqslant 2(q-1)
$$

By (3.19),

$$
e\left(S_{i}-\left\{a_{1}, a_{2}, a_{p}\right\}, S_{j}\right) \leqslant \frac{p-3}{2}(2 q-2)=(p-3)(q-1) .
$$

It follows that

$$
e\left(S_{i}, S_{j}\right) \leqslant(p-1)(q-1)=\left(s_{i}-1\right)\left(s_{j}-1\right)
$$

which holds for all $j \neq i, 1 \leqslant j \leqslant b$, and as above we obtain (3.17).
If $d_{F}\left(a_{1}\right) \leqslant x$, by (3.19),

$$
e\left(S_{i}-\left\{a_{1}\right\}, S_{j}\right) \leqslant \frac{p-1}{2}(2 q-2)=(p-1)(q-1)=\left(s_{i}-1\right)\left(s_{j}-1\right)
$$

for all $j \neq i, 1 \leqslant j \leqslant b$, and thus,

$$
\sum_{j \neq i} e\left(S_{i}-\left\{a_{1}\right\}, S_{j}\right) \leqslant\left(s_{i}-1\right)\left(s-s_{i}-b+1\right)
$$

Therefore,

$$
\begin{aligned}
\sum_{v \in S_{i}} d_{F}(v) & \leqslant d_{F}\left(a_{1}\right)+\sum_{j \neq i} e\left(S_{i}-\left\{a_{1}\right\}, S_{j}\right)+\left(s_{i}-1\right)\left(s_{i}-1\right)+x\left(s_{i}-1\right) \\
& \leqslant x+\left(s_{i}-1\right)\left(s-s_{i}-b+1\right)+\left(s_{i}-1\right)\left(s_{i}-1\right)+x\left(s_{i}-1\right) \\
& =\left(s_{i}-1\right)(s-b+x)+x
\end{aligned}
$$

which is less than the right-hand side of (3.20), and as there, (3.17) follows.

Summing (3.17) over all $i, 1 \leqslant i \leqslant b$, we obtain that

$$
\sum_{i=1}^{b} \sum_{v \in S_{i}} d_{F}(v) \leqslant(s-b)(c-x)+x b+s-b
$$

Then

$$
\begin{aligned}
2 e(F) & =\sum_{i=1}^{b} \sum_{v \in S_{i}} d_{F}(v)+\sum_{v \in X} d_{F}(v) \\
& \leqslant(s-b)(c-x)+x b+s-b+x(c-1-y) \\
& =c^{2}+c+3 x^{2}-2 c x-2 y x-3 x
\end{aligned}
$$

By the choice of $C^{\prime}, d_{G^{\prime}}(v) \leqslant x$ for each vertex $v \in Y$, and by Lemma 3.2(i), Y is an independent set in G. Therefore,

$$
e\left(G^{\prime}\right)=e(F)+\sum_{v \in Y} d_{G^{\prime}}(v)+d_{G^{\prime}}(u) \leqslant e(F)+x y+x
$$

and so

$$
e\left(G^{\prime}\right) \leqslant \frac{1}{2}\left(c^{2}+c+3 x^{2}-2 c x-x\right)
$$

Since

$$
e(G) \leqslant e\left(G^{\prime}\right)+k(n-c-1) \leqslant e\left(G^{\prime}\right)+x(n-c-1),
$$

we have that

$$
e(G) \leqslant \frac{1}{2}\left(c^{2}+c+3 x^{2}+2 x n-4 c x-3 x\right)=f(n, x, c)
$$

Again, since $2 \leqslant x \leqslant c / 2$, we have that $f(n, x, c) \leqslant \max \{f(n, 2, c), f(n,\lfloor c / 2\rfloor, c)\}$, and the theorem follows. This completes the proof of the theorem.

Since a longest cycle is locally maximal, we see that Theorem 3.1 together with Theorem 1.2 confirms Conjecture 1.1.

References

[1] L. Caccetta, K. Vijayan, Maximal cycle in graphs, Discrete Math. 98 (1991) 1-7.
[2] P. Erdös, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337356.
[3] Genghua Fan, Subgraph coverings and edge switchings, J. Combin. Theory Ser. B 84 (2002) 54-83.
[4] D.R. Woodall, Sufficient conditions for circuits in graphs, Proc. London Math. Soc. 24 (3) (1972) 739-755.
[5] D.R. Woodall, Maximal circuits of graphs, I, Acta Math. Acad. Sci. Hungar. 28 (1976) 77-80.

[^0]: E-mail addresses: fan@fzu.edu.cn (G. Fan), xzlv@mail.amss.ac.cn (X. Lv), wangpei@ mail.amss.ac.cn (P. Wang).
 ${ }^{1}$ Research supported by the National Science Foundation of China and the Chinese Academy of Sciences.

