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Abstract

Let 4, be a class of graphs anvertices. For an integes, let ex(¥,, ¢) be the smallest integer
such that ifG is a graph in@,, with more tharex(%,, c) edges, theis contains a cycle of length
more tharc. A classical result of Erdés and Gallai is thatdj; is the class of all simple graphs on
nvertices, therx(9,, ¢) = %(n — 1). The result is best possible when- 1 is divisible byc — 1,
in view of the graph consisting of copies &f. all having exactly one vertex in common. Woodall
improved the result by giving best possible bounds for the remaining cases:wheis not divisible
by ¢ — 1, and conjectured that #,, is the class of all 2-connected simple graphsiaertices, then

ex(gn, C) = max{f(”v 27 C)’ f(n7 LC/2J7 C)}a

where f(n, t,c) = (”*%*’) +tn—c—1+1),2<tr<c/2,is the number of edges in the graph
obtained fromK . 1—; by addingn — (¢ + 1 — ¢) isolated vertices each joined to the samwertices

of K.+1-_. By using a result of Woodall together with an edge-switching technique, we confirm
Woodall’s conjecture in this paper.

© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The graphs considered here are finite, undirected, and simple (no loops or parallel edges).
The sets of vertices and edges of a gr&pare denoted by (G) and E(G), respectively.
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A classical result of Erdos and Gall&, Theorem 2.7]s that for an integer > 2, if Gis a

graph om vertices with more thaf§ (n — 1) edges, thet contains a cycle of length more
thanc. The result is best possible when- 1 is divisible byc — 1, in view of the graph
consisting of copies ok, all having exactly one vertex in common. However, when 1

is not divisible byc — 1, the bound; (n — 1) can be decreased. The firstimprovement was
obtained by Wooda[¥] for the case when> "—72“3 and later Woodall5] completed all the

rest cases by proving thatd£>2, andn =t (c— 1)+ p+1wheres >0and < p < c—1,

andG is a graph om vertices with more thar(g) + (”42“1) edges, thefs contains a cycle of
length more thaw. This result is best possible, in view of the graph consistingopies of

K. and one copy oK 1, all having exactly one vertex in common. Caccetta and Vijayan

[1] gave an alternative proof of the result, and in addition, characterize the structure of the
extremal graphs. We note that all the extremal graphs here are not 2-connected. What is the
maximum number of edges a 2-connected graph can have without cycles of length more
thanc? For 2<t <c/2, define

c+1—1¢

5 )+t(n—c—1+t),

fn,t,0)= <
which is the number of edges in the 2-connected graph obtainedKram_; by adding
n — (¢ + 1 —r) isolated vertices each joined to the samertices ofK.1_,. Woodall[5]
proposed the following conjecture.

Conjecture 1.1. If 2<c<n — 1, and G is a2-connected graph on n vertices with more
than

max{f(n, 2,¢c), f(n, [c/2], )}

edgesthen G contains a cycle of length more than c
Toward to a proof of the conjecture, Woodgi] obtained the following result.

Theorem 1.2(Woodall[5]). If 2<c< 242, and G is a2-connected graph on n vertices
with more thanf (n, |¢/2], ¢) edgesthen G contains a cycle of length more than c

By using this result and an edge-switching technique, we confirm Conjecture 1.1 by
Theorem 3.1 in Section 3. Wood§#] also conjectured that if, furthermoi® has minimum
degreek, then the right bound should be ngin, &, ¢), f(n, Lc/2], ¢)} (this conjecture is
still open).

Throughout this paper, fat,y € V(G), xy denotes the edge with endsandy. If
xy € E(G), we say thay is aneighborof x, ory is joinedto x. Let H be a subgraph of
G, Ny (x) is the set of the neighbors afwhich are inH, anddy (x) = |Ng(x)| is the
degreeof x in H. When no confusion can occur, we shall wiNéx) andd (x), instead of
Ng(x) anddg(x). G — H denotes the graph obtained fragby deleting all the vertices
of H together with all the edges with at least one endljrwhile for F € E(G),G \ F
denotes the graph obtained fragby deleting all the edges &. If xy ¢ E(G), G + xy
is the graph obtained fro@ by adding the new edgey. For subgraphE andH, E(F, H)
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denotes the set, ardF, H) the number, of edges with one endrrand the other end in
H. Define Ny (F) = Uyep Ny (x). For simplicity, we writeE (F) ande(F) for E(F, F)
ande(F, F), respectively. In particulag(G) = |E(G)|. LetS C V(G). Sis acut sefand
acut vertexwhen|S| = 1, of Gif G — S has more components th& Sis anindependent
setif E(S) = @. A subgrapt isinducedby Sif V(H) = S andxy € E(H) if and only if
xy € E(G).

LetC = ajaz - - - a. be a cycle. We assume thHathas an orientation which is consistent
with the increasing order of the indicesaf 1<i <c¢ — 1, and the edge, a; is froma, to
ay. Fora € V(C), definea™ anda™ to be the vertices o immediately before and after
a, respectively, according to the orientation@fanda™" = (¢~)~ anda™ = (a™)™.
Thus, ifa = a;, thena™ = a;_1 anda™ = a; 1, whereap = a. anda.,1 = as.

2. Local structure and edge-switching

Definition 2.1. Let C be a cycle in a grap. We say thatC is locally maximal if there is
no cycleC’ in G such that E(C")| > |[E(C)|and|E(C")NE(C,G — C)|<2.

Definition 2.2. Let xy be an edge in a grap® and letA € N(y) \ (N(x) U {x}). The
edge-switchinggraph of G with respect to Afrom y to x), denoted byG[y — x; A], is
the graph obtained fror® by deleting all the edgesz, z € A and adding all the edges
xz, z € A. In notation,

Gly > x; Al=(G\{yz: ze AP U{xz: z € A}.
WhenA = N(y) \ (N(x) U {x}), the above definition is identical with the one[8]j.

Lemma 2.3. Let C be alocally maximal cycle inxconnected graph G and R a component
of G — C. Suppose that, x" € N¢(R) withx # x" andy € Ng(x).

() LetZ = Ngr(y) \ (Ng(x) U {x}). Then C remains a locally maximal cycle @iy —
x; Z].

(ii) If Dis a subgraph of R such thafg_p (D) = {y} and Np(y) N Np(x) = ¥, then for
A = Np(y), C remains a locally maximal cycle ii[y — x; A], and furthermoreif
Nc(R— D) = {x},then C also remains a locally maximal cycleGiiy — x; A]+ yx'.

Proof. (i) Let Z = {z1,z2, ..., zx} and F = {xz; : 1<i<k}, and so
Gly - x; Z] = (G \{yzi : 1<i<khUF.

If Cis nota locally maximal cycle i [y — x; Z], thenthereisacycl€’ in G[y — x; Z]
with |[E(C)| > |E(C)| and

|E(C")N E(C, Gy — x; Z] — C)|<2. (2.1)

Let C" = aiaz---ap. SinceC is locally maximal inG, and by (2.1), we have that
I<|E(CHNFIL2.
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Casel. |[E(C")N F| = 1. Suppose that = a; anda; 1 € {z1, 22, ...zk}. If y ¢ V(C)),
replacingxa; 11 by xya;,1, we obtain thaC” = ay ---xya;41---a,. If y € V(C'), say
y = a, and we may assume that> ¢ + 1, by (2.1), it must be that;_1 € V(R),
and so by the construction @¢f[y — x; Z], we have thati;,_1 € N(x) in G. Then, let
C"=ay---xag_1a,_2---a;41yas41- - - ap. In either caseC” is a cycle contradicting the
local maximality ofC.

Case2. |[E(C’)N F| = 2. Suppose that = a; and saa;_1, a1 € {21, 22, ..., 2k} If
y ¢ V(C), let

c" = (C/ \ {xar—1, xa; 1)) U{yar—1, yary1}.

If y € V(C’), sayy = a;, and we may assume that- ¢ + 1, by (2.1),a;,_1, as+1 € V(R),
and saug_1, ag+1 € N(x) in G. Then, let

C" = (C'\ {xa;-1, xa;4+1, yas—1, yas+1}) U {xas_1, xas4+1, yar—1, yas+1}.

In either case(” is a cycle contradicting the local maximality ©f

(ii) Since Np(y) N Np(x) = dandA = Np(y), usingNg_p(D) = {y}, the same proof
as in (i) (withZ replaced byA) yields thatC is a locally maximal cycle irG[y — x; A].
(In fact, in this case, iiC’ is a cycle with|E(C") N E(C, G[y — x; A] — C)|<2 and
E(ChYN{xz : z € A} # @, theny ¢ V(C").) Furthermore, ifNc(R — D) = {x}, let
G* = G[y — x; Al + yx'. If Cis not a locally maximal cycle i;*, then there is a cycle
C*in G* with |[E(C*)| > |E(C)| and

|E(C*)NE(C, G* — C)| <2

and moreoveryx’ € E(C*), which implies thatv (C*) N V(D) = @. Furthermore, since
Nc (R — D) = {x}, we have that’ € N¢ (D). Thus, we may obtain a cyct&’ from C* by
replacingyx’ with a path fromy to x” with all internal vertices irD. Then, as seen in (i),
C’ can be transformed into a cycle contradicting the local maximality. dhis completes
the proof of Lemma 2.3. [J

Lemma 2.4. Let C be alocally maximal cycle inaconnected graph G and R a component
of G — C. One of the following two statements halds

(i) Nr(x) = V(R) for everyx € Nc(R).
(i) Thereisy € Ng(x)forsomex € N¢(R)andanonemptyset C Ng(y)\(Ng(x)U{x})
such that

G — Gly — x; A] if G[y — x; Al is 2-connected
| Gly — x; Al + yx’ otherwise

is 2-connectedwherex’ € Nc(R) \ {x}, and moreoverC remains a locally maximal
cycle inG’.
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Proof. Suppose that (i) does not hold. Thai (x) # V(R) for somex € N¢(R), which
implies that there i € Ng(x) such that

Zy = Nr(y) \ (Nr(x) U {x}) # 0.

If G[y — x; Z,]is 2-connected, then by Lemma 2.3(@)remains a locally maximal cycle
in Gly — x; Z,], and (ii) holds withA = Z, andG’ = G[y — x; Z,]. Suppose thus
that this is not the case. Thexis the unique cut vertex af[y — x; Z,]. Let R, be the
smallest component i6[y — x; Z,] —x with V(R,) € V(R). R, is defmed for eacly
with Z, # @. (That is,G[y — x; Zy] is not 2-connected for eaqhwnh Zy, # .) For
S|mpI|C|ty, we may assume thahas been chosen such the(R,)| is as small as possible.
Then, eitheR, = {y} oryis a cut vertex oR. We claim thakis joined to every vertex ak,,

in G. If this is not true, then there iswa € V(R,) with Z,, # @. Then,G[w — x; Z,,] —x
has a component that is a proper subser pfwhich implies thajV (R,)| < |[V(R))I,
contradicting the choice of. This proves the claim. By the claim, we have that¢ R,.
Let Ry, Ry, ..., R; be the components @y — x; Z,] — x, wheret >2, Ry = R, and
V(O)\ {x} C V(R,). We note thaik, = Ry, which is a component i[y — x; Z,] — x
with V(R1) € V(R) (soR1 is adjacent only tg andxin G). SinceG is 2-connected, there
must bex’ € N¢(R) \ {x} joined to some vertex’ of R — Ry in G. Clearly,y’ € R,. Let
D = R, — V(C). Then,Ng_p(D) = {y} andNp(y) N Np(x) = #. Let A = Np(y). If
G[y — x; Alis 2-connected, le&’ = G[y — x; A]; if G[y — x; A]is not 2-connected,
thenN¢c(R — D) = {x}, and we letG' = G[y — x; A] + yx'. In either caseG’ is 2-
connected, and by Lemma 2.3(i,is a locally maximal cycle irG’. This proves Lemma
24. O

3. Proof of the theorem

Theorem 3.1. Let C be a locally maximal cycle of length c irReconnected graph G on n
vertices. Ifén + 1<c<n — 1, then

e(G)ysmaxf(n, 2, c), f(n, Lc/2], )}

Proof. Suppose thaRi, Ro, ..., R, are the components @¥ — C, m > 1. Repeatedly
applying Lemma 2.4 to eacR; (note that since the sétis nonempty, each time Lemma
2.4(ii) is applied, the number of edges not incident witlstrictly decreases), we have a
2-connected grapt’ in which ¢(G) <e(G’), C remains a locally maximal cycle, and for
each componerR of G’ — C, Ng(x) = V(R) for everyx € Nc(R). For simplicity, we

may simply assume th& has been chosen to be the final graph after repeatedly applying
Lemma 2.4, and so

Ng, (x) = V(R;) for everyx € Nc(R;), 1<i<m. (3.2)

Letn; = |V(R;)|andk; = |[Nc(R;)|, 1<i <m.Foranyi, 1<i <m, supposetha¥Vc(R;) =
{x1,x2,..., x4} Let P;; be alongest path from; to x, with all internal vertices irR;. By
(3.1), for all j # ¢, P;; have the same length, denoteddpywhich is 2 plus the length of
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a longest path iR;. So, R; contains no path of length more than— 2. It follows from a
result of Erdos and Gallg2, Theorem 2.61hat

di —2
e(R;) <

ni, 1<i<m.

Let H be the subgraph induced B(C). Then,

m 1 m
e(G)<e(H) + Z (e(Ri) + niki) <e(H) + 5 Z ni(d; — 2+ 2k;).
i=1 i=1
Choosex such thatd, + 2k, = maxX{d; + 2k;, 1<i <m} and letd = d, andk = k. It
follows, using)_'_; n; = n — ¢, that

d—2+2k
e(G)<e(H) + TJr(n —0). (3.2)
Let R = Ry andX = N¢(R) = {x1,x2,...,x;}. ThenC — X consists otk segments
S1, S2, ..., Sk, wheres; is the segment of from x;“ tox; ;. Sets; = |[V(S)l, 1<i<k.

We first prove several lemmas that deal with the estimation of the number of edges between
S;iandS;. O

Lemma 3.2. Fori # j,letS; = ayaz---a, andS; = biby---b,, Wherep = s; and
q:s./.

(i) 1f abe € E(G), then
r—D+W€-1>d—-1 and (p—r)+(q—0)>d—1
(i) Foray, ap,—; withr +1<d — 1 (sor <p —t), if there are distincty;, b,, such that

arby, ap_tby € E(G) (Or arby, ap—iby € E(G)),thenjm —£|>2d +1—r —t.

Proof. (i) Sincea, b, € E(G),we have acycl€’ = a,bybyi1--- quj+1x]“+1 - X Pxjx;
S Xj41apap—1 - - - ay Oflengthe+(d—1)— (r—1)— (¢—1) with |E(CNE(C, G—C)| = 2,
whereP is a path of lengttd from x; to x; with all its internal vertices ifR. By the choice
of C,(r— 1)+ (¢ —1)>d— 1. By symmetry(p —r) + (¢ — ¢) >d — 1, as required.

(if) Without loss of generality, suppose thatb,, a,_b,, € E(G). Let P be a path of
lengthd from x; to x; 1 with all internal vertices irR. Then

C' = XiX; - Xjyibgbg -1+ bmap_rap -1+ arbebg—1- - xiy1Px;
is cycle of length
c+d-1)—-@r+t—-1D)—-m—L -1 =c+d+1—r—t—(m—10)

with |E(C’) N E(C,G — C)| = 2. By the choice ofC, |m — ¢|>d +1—r —t, as
required. [J
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Lemma 3.3. Fori # j,letS; = ayaz---a, andS; = biby--- by, Wherep = 5; and
q=5j.

(i) Fora,, ap—, withr +1<d -1,
e(far,ap—}, Sj))<q —(d —r —1).
(i) Foreachmil<m<qg —1,
e(bmbpt1, Si)<2p—d +1

with equality only ifp = d — 1,ande(b,,, S;) = p or e(by+1, Si) = p.
(iii) e(fa1, b1}, Sy <pande({a,, by}, S;) < p.

Proof. (i) Let B be the set of vertices ii; which are joined to both, anda,_;. If B # #,
then for eaclb; € B, by Lemma 3.2(ii),

e({ar.ap}.bisj) =0 and e(lar.ap_r).bi_j) =0

forallj, 1< j <d —r —t, which implies that there are at ledB| + 1)(d —r — r) vertices
in S;, none of which is joined to eithes. ora,_;. It follows that

e({ar,ap—}, Sj)) < 2B+ (q — |B| = (|B| + D)(d —r — 1))
=q—d-r—0—|Bld—-1-r—1.

Butr 4+t <d — 1, and thus we may suppose thkat= .

If e(ap—s, S;) = 0, thene({a,, ap—:}, S;) = e(ar, S;). By Lemma 3.2(i), none of the
firstd — r vertices ofS; is joined toa,, and hence(a,, S;)) <qg—(d—r)<qg—(d —r —1).
Therefore, we may assume that,_,, S;) > 0, and similarlye(a,, S;) > 0.

Leta,_;be, a,bym € E(G) and choosé, andb,, as close to each other as possible, so
that none of the vertices (ifi;) betweenb, andb,, is joined toa, or a,_,. By Lemma
3.2(ii), |m — €| >d + 1 — r —t. It follows that there are at leagt— r — ¢ vertices that are
not joined toa, ora,_;. Thereforee({a,, a,—}, S;)<g — (d —r —t), as required.

(ii) We first consider the case that thereijssuch thak(a,, b, b,,+1) = 2. Choose such
a, as close tay ora, as possible. We may assume that 1< p — r. By the choice ofy,,
none of the first and the last— 1 vertices ofS; can be joined to both,, andb,, 1, which
gives thate (b, b1, S)<2p — 2(r — ). If r — 1>4, thene(bybpi1, S) <2p — d, and
we are done. Suppose therefore that 1< 452, that isr < 431. By Lemma 3.2(ii), none
of the lastd — r vertices ofS; can be joined t®,, or b,,1, that is,e(b,,b;,+1, a;) = 0 for
alli, p— (d —r)+ 1<i<p. It follows that

e(bmbms1, S)<2p —(r—=1) —2d—r)=2p—d—(d—r—1).

If dis odd (sad > 3), then, since < 441, we haved — r — 1> 453> 0; if dis even, then
r<4,andwe have —r —1> 952 > 0; In either case, we have theb,, by, 1. S;) <2p—d.

Next we consider the case that

e(bmbm+1,a;)<1 foralli, 1<i<p. 3.3)
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Then,
e(bmbm+l, SiH)<p = 2P —d— (P —d).

Thus,e(bybm+1, Si) <2p —d + 1, with equality only ifp = d — 1, and all equalities hold
in (3.3), which implies, by Lemma 3.2(ii), that eithe,,, S;) = p ore(b,+1, Si) = p.

(i) Let A = {a; : a1a;41 € E(G), 1<i<p — 1}. If there isa; € A such that
a;by € E(G),thenC’ = bia;a;_1---a1a;+1a;12 - - “apXip1--XjPxix; - bgbg_1---b1
is a cycle of lengtle +d — 1 and|E(C") N E(C, G — C)| = 2, contradicting the choice
of C. Thus,A N N, (b1) = ¥, which implies that (b1, S;) <p — |A| = p — e(az, S;), and
soe(by, S;) + e(az, ;) < p. By symmetrye(by, S;) + e(ap, S;) < p. This completes the
proof of Lemma 3.3. O

Lemma 3.4. Suppose thai > 3. Fori # j,

(5j = Disi — 1) — U2 L 52 i, — g — lands;>2d — 1,

(s; —D(si — 1) — w otherwise

e(S;, ) <

Proof. Let S; = ajaz---a, andS; = biby---b,;, wherep = s5; andg = s;. By Lemma
3.3(i) (S; andS; interchange; = 1 andr = 0),

e({b1,bg}, Si)<p—(d = 1). (3.4)

Without loss of generality, we may assume thit, S;) <e(by, S;), and so

elby, $> se(lbs, by). 5.
Then
e({b1, b2, by}, Si) = e({b1, by}, Si) + e({b2, by}, Si) — e(by, Si)
< Jellbr. by}, $) + ellba, by), 5.
By Lemma 3.3(i) §; andS; interchange and + ¢t = 2),
e({b2, by}, Si)<p — (d —2).
It follows from (3.4) that

1 3
e({b1, b2, by}, Si) < E(p —d+D)+p—-Wd-2) = E(p —-d+1)+1 (3.5)

If p>d orifthere is no verted € S; with e(b, S;) = p, then by Lemma 3.3(ii) (without
equalities),

e(bnbns1, SH<2p —d,  1<m<q—1.

Therefore, ifqis even,

-2
e(Sj — {b1. by}, S1) < "T@p —d).
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which together with (3.4) gives that

-2
e(S,»,S,-><"T<2p—d>+p—(d—1> —(q-D(p-1 - %(d—zx

if gis odd (sog > 3),
qg—3
e(S; — {ba, b, by}, Si)<7(2p —d),

which together with (3.5) gives that

-3 3
e(Si, Sj) < %<2p—d>+§<p—d+1)+1

p—3

= (g — T P
=lg-Dp-D-35d-2 5

and sincep >d > 3, the required result follows.

Suppose therefore that = d — 1 and there i, € S; such thate(b,, S;) = p. By
Lemma 3.2()£ — 1>d — 1 andg — ¢ >d — 1, which gives thay >2d — 1. By Lemma
3.3(ii), we have now that

e(bmbm+la Si)<2p—d+l, 1<m<q—1
and thus, ifg is even,
-2 -2
e(Sj —{b1, by}, Si)qu(Zp —d) + qT,

if qis odd,

-3 -3
e(Sj — {b1. b2 by}, $) < "T(zp —d)+ qT

Since (3.4) and (3.5) still hold, dis even,

-2
e(Si, S)<(qg—D(p—1)— %(d —2)+ ‘IT
if gqis odd,
-3
(S, SH<(g—D(p—1) — %(d —2)+ qT
Consequently,
-2
e(Si, SH<(g—D(p—1) — %(d —2)+ ‘17

This completes the proof of Lemma 3.40]

Lemma 3.5. Suppose that >3.Fori # j,if s; = d — 1, let F be the subgraph induced
by V(S;) UV (S)), then

Sj—2

> dr@)<sitsi = 1) + =

XE&

(2s; —d) + 2.
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Proof. As before, letS; = ayaz - --a, andS; = b1bs - - - by, Wherep = s; andg = s;. Let
by € S;. If r<4%, by Lemma 3.2(i)j, is not joined to any of the first4] vertices ofs;,
which gives that (b,, $;) < p — 4. 1f r > 5L, sinceg = d — 1, we have thay — r <453,
and again by Lemma 3.2(ip, is not joined to any of the Ias{td%l] vertices ofS;, which
gives thatke(b,, S;)) <p — d—erl. Consequently,

d
e(br,Si)ép—E foreachr, 1<r<gq.

So
q—1
d -2
Y el S)<lg-2)(p — 5) = 15 @2p - d.
r=2
Therefore,

-2
e(Si. S < TS @p — d) + ellba. by). ).
Using the fact thatl, (a;) < p — L forall ¢, 2<£< p — 1, we have that

Y ds()<(p—2(p -1 +ellar, ap), 5.
XE&
Noting that
Y dr(x) =) ds(x) +e(Si, S)),
xe& xe&

we obtain that

—2
Y a0 <(p-2(p-D+I"@p-a)

xes;

+e({as, apl, Si) + e({b1, by}, Si)
=(p-2(p-D+ q—;2 (2p —d) + e({a1, b1, ap, by}, Si).
By Lemma 3.3(iii),e({a1, b1}, Si) < p ande({a,, by}, Si) < p, and hence,
e({ar, b1, ap, by} <2p.

It follows that

Y dr<pp-v+ 12 @p a2,

XE&

as required by Lemma 3.5.
Now, we return to the proof of Theorem 3.1. By (3.2), we need to estiaf@de. The
proof is divided into two parts, accordingdo>3 ord = 2.
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Partl. d>3.LetA =1{i: s; =d—1}andB = {i : s; >2d — 1}. Seta = |A]|,
b=|Bl,s =Yt siands’ = Y, s;. By the definitions’ >b(2d — 1). We first show
that

k

> ZdH(x)<62+c+3k2—3ck—2k—&2(C_3). (3.6)
i=1 x€eS;
If A=¢orB ={,thenbyLemma 3.4, for all # j,
(S SP<(s; = Dlsi =D = 2@ -2
and thus, using_;; s; = s — si,
3 eSS < (s —si — (k= D)5 — 1) — > _2” (d—2). (3.7)
J#i
Therefore,
D dux) <Y e(S;, ) +silsi — 1)+ sik
X€S; VES)
s DAsi+ k- -0 @d-2 (3.8)
and so,
k
33 duo) < st —k) s+ k(k— 1) - s(kz_l) d—2)
i=1 xeS;
— s k) +s+k(k—1)— (d_z)(sz+k_3)
_@=2k =26 -1+ -2
2
=c2+c+3k2—3ck—2k—%2(6_3)
B (d—2)(k—2)(s—1)+(d—2), (3.9)

2

where we have used that= ¢ —k. Butd >3 andk > 2, and so (3.6) follows. In what follows,
suppose therefore that> 1 andb > 1. For a segmers;, we distinguish the following three
cases.

Casel.i ¢ AU B. By Lemma 3.4, forallj # i,

e(Si. S)<(sj — D(si — 1) — S—é"(d _2) (3.10)

and as the derivation of (3.8),

s —

si
5 (d—2). (3.11)

Yo dn)<ssi =D 45+ (k= 1) -

XE&
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Case2.i € A. By Lemma 3.4, ifj ¢ B, we have (3.10). If € B,

Sj Sj—2
e(Si, Sj))<(Gsj —Dsi — D — E(d—Z) +-

Thus,

Yesisp <Y [6i-vei-n-ZLw-2]+ Y L

J#i J#i jeB

2

s’ —2b

SE—si— (k=D —D - @—-2+
and as the way (3.8) is derived from (3.7), we have that,

s — 8 s’ —2b
d—2 )
> ( ) + 5

Y du)<s(si =D +si+(k—1) —

X€S;

(3.12)

Case3.i € B. Let¢ € A and letF be the subgraph induced By(S;) U V(S¢). By

Lemma 3.5,

sg— 2
2

D dr(x) <silsi — D)+ 2si —d) +2

XeESs;
sl =D+ —Dls =D =5 @=2) — (s —d = D.
Forallj ¢ {i, ¢}, by Lemma 3.4,

e(S;. S)<(sj — Disi — 1) — % d—2).

It follows that

Y dux) < Y drx)+ Y e(Si,S)) +sik

X€ES; X€ES; J&i,t}
N
< ; [ =D~ D= Z @2
JF

+si(si =1 +sik — (si —d — 1)

:s(si—l)—i—s,-—i—(k—l)—s_zsi

d—-—2)—(s; —d —1).

By (3.11), (3.12), and (3.13), we have that

k

k
3 ZdH(x)<Z[s(si—l)—i—si—i-(k—l)—s_zsi (d—Z)]

i=1 xes; i=1

+ 3 S/TZZb—Z(s,-—d—l).

ieA ieB

(3.13)

(3.14)
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As seen in the derivation of (3.9) from (3.8), the first summation at the right-hand side of
(3.14)is

cz+c+3k2—3ck—2k—w
_ (d—2)(k—2)(;—l)+(d—2)‘ (3.15)
Clearly,
s'—2b as' — 2ab ,
> -y (i—d—1)=————(s'—bd—b)
: 2 : 2
i€eA ieB
_s'a=1) b s'—b2d -1
=T Y- 2
s'"a—1) b
<=~ (2a-3). )
<— 5 (203 (3.16)
Applying (3.16) and (3.15) into (3.14), and writing
od.a.k) = M—I—)(Za—&— (d—2)(k—2)(s—1)+(d—2)’
2 2 2
we have that
k
3N dn) <+ + 3P~ 3ck — 2%k — &2(0_3) +g(d.a, k).

i=1 xeSs;
It remains to show thai(d, a, k) <0. Clearly,
s'(a—1) k—-—26-1D+1
2 2 '

If kK = 2,thena = 1 andb = 1, and we have tha{(3,1,2) = 0. If « > 2, then, using
k>a+1ands>s’ + 1, we have that

gld,a,k)<g@B,a,k) =

b
—5 (-3 -

b 1
g(3,a,k)§ —§—§<0

Therefore we assume that> 3 anda = 1. Then,

b k-2 -1D+1 b—(s—1)—1
1 == — < .
8@, 1,k) > > >
Sinces >b+ 1, we have tha$(3, 1, k) < 0. In each casey(d, a, k) <0. This proves (3.6).
By the fact that

k
2e(H)y =) dy()<k(c =D+ Y du(x),

xeH i=1 xeS;
it follows from (3.6) that

(d—-2)(c-3

2e(H)<c?+ ¢+ 3k% — 2ck — 3k — 5
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and so
1 d—2)(—3
E(H)gé(c2+c+3k2—2ck_3k)_%4(")_

It follows from (3.2) that

(dzz) (2n — 3¢ + 3).

1
e(G)éE(c2+c+3k2+2kn — Ack — 3k) +
Sincec > 3n + 1,

1
(@< (c® + ¢ + 3k? + 2kn — 4ck — 3k) = f(n, k, ).

Since X k<c/2, we have thaf (n, k, c) < maxX{ f(n, 2,¢), f(n, [c/2], ¢)}, and the the-
orem follows. This completes the proof of Part I.

Part 1. d = 2. Letw be the unique vertex @ (sod(w) = k) andG’ the subgraph
induced byV (C) U {w}. ThenG’ is non-hamiltonian. Choose a cyd® (in G') of length
csuchthat(C’, G’ — (') as large as possible, among all cycles of lergjthG’. Suppose
thatu is the unique vertex o’ — C’ andX is the set of neighbors afin G’. Setx = | X]|.
Then,k<x <5, andC’ — X consists ofx segmentsSy, S, ..., S,. For simplicity, we
consider these segments as same as those in Part | abovg rejilaced by. As before,
defines; = |V($)|, 1<i<x.SetY = {S; : s; = 1, 1<i<x}andy = |Y|. LetB =
{S1, S2, ..., Sy}\ Y andb = | B|. For simplicity, we may assume thBt= {S1, S, ..., Sp}
(sos; >2 for each, 1<i <b) and let

b
S=Zsi, and s c=s+x+y.
i=1

Let F = G’ — (Y U {u}). We shall show that for each1<i <b,

D dr)<(si = Dc—x) +x+s5 — 1 (3.17)

vES;

Let S; = ayaz---ap, with p = s;, and for anyj # i, 1<j<b, S; = biba---b, with
g = sj. By Lemma 3.3(i) (withr = 1 andr = 0),

e({at, ap), S)<q — 1 (3.18)

and for eacl, 1<£< p — 1, by Lemma 3.2(ii) §; andS; interchangey = 1 andr = 0),
e(agagy1, {b1, bg}) <2, which implies that

e(agaey1, Sj)<2q —2, 1<l<p-1 (3.19)
Casel.pis even. By (3.19),

-2
e(S;i — {ar, ap}, S)) < ”T(Zq —2)=(p-2(g-1).

Combining with (3.18) yields that
e(Si, SH<(p—D@ -1 =(si —D(sj — 1.
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This holds for allj # i, 1< j <b, and thus,

DS SH<(si = V(s —si —b+1).

JF#i

Noting that
D dr) =) e(Si. S+ Y ds, () + e, X),
ves; J#Ei veS;

we have that
D dr) < (i —D(s —si —b+ 1) +si(si — 1) + xs;

veS;

=@ —-DG—-b+x)+x+s—1 (3.20)

and (3.17) follows from the factthat—b+x =c—y — b =c — x.

Case2.pis odd (sop > 3).

If dp(a1)>x + 1, thenazbr ¢ E(G), for otherwise there is a cyclé” with V(C”) =
(V(C) U {w}) \ {a1}, contradicting the choice af’, and thusg(az, S;) <¢g — 1, which
together with (3.18) gives that

e({a, a2, ap}, Sj)<2(q — 1).
By (3.19),

e(S; — {ax, az, ap}, Sj)é%3 (29—-2)=(p—-3(@—-D.
It follows that

e(Si. S<(p—-D@—-D =@ —DGs; =D,

which holds for allj # i, 1< j <b, and as above we obtain (3.17).
If dp(a1) <x, by (3.19),

-1
e(Si — {ar}. s,,~><”T 29-2)=(p-Dg—1) = (s —1s; — 1),
forall j #i, 1< j <b, and thus,

D e(Si—{ar), SH<(si = V(s —si — b+ 1.

J#

Therefore,
> dr() <dplan) + ) e(S; — far) $p) + (si = D(si = D+ x(si = 1)
veS; Ve

Sx+6E DG —=si=b+D+ (i —D(si =D +x(s; — D),
=i — DG —b+x)+x,

which is less than the right-hand side of (3.20), and as there, (3.17) follows.
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Summing (3.17) over all 1<i <b, we obtain that

b
Z Z dr()<(s —b)(c —x) +xb+s —b.

i=1 veS;

Then
b

2e(F) =Y dr()+ Y dr(v)

i=1 ves; veX
<G=bc—x)+xb+s—b+x(c—1—y)
=c‘2+c+3x2—2cx—2yx—3x.

By the choice ofC’, dg/(v) <x for each vertexwv € Y, and by Lemma 3.2(i)Y is an
independent set iG. Therefore,

e(G) = e(F) + ) dg/(v) +dg () <e(F) +xy +x

veY

and so
’ 1 2 2
e(G)gé(c 4+ ¢+ 3x° — 2cx — x).
Since
e(G)<e(G)+k(n—c—1<e(G)+x(n—c—1),

we have that
1
e(G)éé(c2 + ¢+ 3x% + 2xn — dex — 3x) = f(n,x,c).

Again, since X x <c¢/2, we have thatf (n, x,c) < max{f(n, 2, ¢), f(n, |c/2], c)}, and
the theorem follows. This completes the proof of the theorerl

Since alongest cycle is locally maximal, we see that Theorem 3.1 together with Theorem
1.2 confirms Conjecture 1.1.
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