

Available online at www.sciencedirect.com

Journal of Combinatorial Theory Series B

Journal of Combinatorial Theory, Series B 92 (2004) 379-394

www.elsevier.com/locate/jctb

Cycles in 2-connected graphs

Genghua Fan^{a, 1}, Xuezheng Lv^b, Pei Wang^b

^a Center for Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, China ^bInstitute of Systems Science, Chinese Academy of Sciences, Beijing 100080, China

Received 16 December 2003

Abstract

Let \mathscr{G}_n be a class of graphs on *n* vertices. For an integer *c*, let $ex(\mathscr{G}_n, c)$ be the smallest integer such that if *G* is a graph in \mathscr{G}_n with more than $ex(\mathscr{G}_n, c)$ edges, then *G* contains a cycle of length more than *c*. A classical result of Erdös and Gallai is that if \mathscr{G}_n is the class of all simple graphs on *n* vertices, then $ex(\mathscr{G}_n, c) = \frac{c}{2}(n-1)$. The result is best possible when n-1 is divisible by c-1, in view of the graph consisting of copies of K_c all having exactly one vertex in common. Woodall improved the result by giving best possible bounds for the remaining cases when n-1 is not divisible by c-1, and conjectured that if \mathscr{G}_n is the class of all 2-connected simple graphs on *n* vertices, then

 $ex(\mathscr{G}_n, c) = \max\{f(n, 2, c), f(n, \lfloor c/2 \rfloor, c)\},\$

where $f(n, t, c) = \binom{c+1-t}{2} + t(n-c-1+t)$, $2 \le t \le c/2$, is the number of edges in the graph obtained from K_{c+1-t} by adding n - (c+1-t) isolated vertices each joined to the same *t* vertices of K_{c+1-t} . By using a result of Woodall together with an edge-switching technique, we confirm Woodall's conjecture in this paper.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Cycles; 2-connected graphs; Extremal graphs

1. Introduction

The graphs considered here are finite, undirected, and simple (no loops or parallel edges). The sets of vertices and edges of a graph G are denoted by V(G) and E(G), respectively.

0095-8956/\$ - see front matter © 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.jctb.2004.09.003

E-mail addresses: fan@fzu.edu.cn (G. Fan), xzlv@mail.amss.ac.cn (X. Lv), wangpei@mail.amss.ac.cn (P. Wang).

¹ Research supported by the National Science Foundation of China and the Chinese Academy of Sciences.

A classical result of Erdös and Gallai [2, Theorem 2.7] is that for an integer $c \ge 2$, if *G* is a graph on *n* vertices with more than $\frac{c}{2}(n-1)$ edges, then *G* contains a cycle of length more than *c*. The result is best possible when n-1 is divisible by c-1, in view of the graph consisting of copies of K_c all having exactly one vertex in common. However, when n-1 is not divisible by c-1, the bound $\frac{c}{2}(n-1)$ can be decreased. The first improvement was obtained by Woodall [4] for the case when $c \ge \frac{n+3}{2}$, and later Woodall [5] completed all the rest cases by proving that if $c \ge 2$, and n = t(c-1) + p + 1 where $t \ge 0$ and $0 \le p < c-1$, and *G* is a graph on *n* vertices with more than $t\binom{c}{2} + \binom{p+1}{2}$ edges, then *G* contains a cycle of length more than *c*. This result is best possible, in view of the graph consisting of *t* copies of K_c and one copy of K_{p+1} , all having exactly one vertex in common. Caccetta and Vijayan [1] gave an alternative proof of the result, and in addition, characterize the structure of the extremal graphs. We note that all the extremal graphs here are not 2-connected. What is the maximum number of edges a 2-connected graph can have without cycles of length more than *c*? For $2 \le t \le c/2$, define

$$f(n, t, c) = \binom{c+1-t}{2} + t(n-c-1+t),$$

which is the number of edges in the 2-connected graph obtained from K_{c+1-t} by adding n - (c + 1 - t) isolated vertices each joined to the same *t* vertices of K_{c+1-t} . Woodall [5] proposed the following conjecture.

Conjecture 1.1. If $2 \le c \le n - 1$, and *G* is a 2-connected graph on *n* vertices with more than

 $\max\{f(n, 2, c), f(n, \lfloor c/2 \rfloor, c)\}\$

edges, then G contains a cycle of length more than c.

Toward to a proof of the conjecture, Woodall [5] obtained the following result.

Theorem 1.2 (Woodall [5]). If $2 \le c \le \frac{2n+2}{3}$, and G is a 2-connected graph on n vertices with more than $f(n, \lfloor c/2 \rfloor, c)$ edges, then G contains a cycle of length more than c.

By using this result and an edge-switching technique, we confirm Conjecture 1.1 by Theorem 3.1 in Section 3. Woodall [5] also conjectured that if, furthermore, *G* has minimum degree *k*, then the right bound should be max{ $f(n, k, c), f(n, \lfloor c/2 \rfloor, c)$ } (this conjecture is still open).

Throughout this paper, for $x, y \in V(G)$, xy denotes the edge with ends x and y. If $xy \in E(G)$, we say that y is a *neighbor* of x, or y is *joined* to x. Let H be a subgraph of G, $N_H(x)$ is the set of the neighbors of x which are in H, and $d_H(x) = |N_H(x)|$ is the degree of x in H. When no confusion can occur, we shall write N(x) and d(x), instead of $N_G(x)$ and $d_G(x)$. G - H denotes the graph obtained from G by deleting all the vertices of H together with all the edges with at least one end in H, while for $F \subseteq E(G), G \setminus F$ denotes the graph obtained from G by deleting all the edges of F. If $xy \notin E(G), G + xy$ is the graph obtained from G by adding the new edge xy. For subgraphs F and H, E(F, H)

denotes the set, and e(F, H) the number, of edges with one end in *F* and the other end in *H*. Define $N_H(F) = \bigcup_{x \in F} N_H(x)$. For simplicity, we write E(F) and e(F) for E(F, F) and e(F, F), respectively. In particular, e(G) = |E(G)|. Let $S \subseteq V(G)$. *S* is a *cut set*, and a *cut vertex* when |S| = 1, of *G* if G - S has more components than *G*. *S* is an *independent* set if $E(S) = \emptyset$. A subgraph *H* is *induced* by *S* if V(H) = S and $xy \in E(H)$ if and only if $xy \in E(G)$.

Let $C = a_1 a_2 \cdots a_c$ be a cycle. We assume that *C* has an orientation which is consistent with the increasing order of the indices of a_i , $1 \le i \le c-1$, and the edge $a_c a_1$ is from a_c to a_1 . For $a \in V(C)$, define a^- and a^+ to be the vertices on *C* immediately before and after *a*, respectively, according to the orientation of *C*, and $a^{--} = (a^-)^-$ and $a^{++} = (a^+)^+$. Thus, if $a = a_i$, then $a^- = a_{i-1}$ and $a^+ = a_{i+1}$, where $a_0 = a_c$ and $a_{c+1} = a_1$.

2. Local structure and edge-switching

Definition 2.1. Let *C* be a cycle in a graph *G*. We say that *C* is *locally maximal* if there is no cycle *C'* in *G* such that |E(C')| > |E(C)| and $|E(C') \cap E(C, G - C)| \le 2$.

Definition 2.2. Let *xy* be an edge in a graph *G* and let $A \subseteq N(y) \setminus (N(x) \cup \{x\})$. The *edge-switching* graph of *G* with respect to *A* (from *y* to *x*), denoted by $G[y \rightarrow x; A]$, is the graph obtained from *G* by deleting all the edges yz, $z \in A$ and adding all the edges xz, $z \in A$. In notation,

$$G[y \to x; A] = (G \setminus \{yz : z \in A\}) \cup \{xz : z \in A\}.$$

When $A = N(y) \setminus (N(x) \cup \{x\})$, the above definition is identical with the one in [3].

Lemma 2.3. Let C be a locally maximal cycle in a 2-connected graph G and R a component of G - C. Suppose that $x, x' \in N_C(R)$ with $x \neq x'$ and $y \in N_R(x)$.

- (i) Let $Z = N_R(y) \setminus (N_R(x) \cup \{x\})$. Then C remains a locally maximal cycle in $G[y \rightarrow x; Z]$.
- (ii) If D is a subgraph of R such that N_{R-D}(D) = {y} and N_D(y) ∩ N_D(x) = Ø, then, for A = N_D(y), C remains a locally maximal cycle in G[y → x; A], and furthermore, if N_C(R − D) = {x}, then C also remains a locally maximal cycle in G[y → x; A] + yx'.

Proof. (i) Let $Z = \{z_1, z_2, ..., z_k\}$ and $F = \{xz_i : 1 \le i \le k\}$, and so

$$G[y \to x; Z] = (G \setminus \{yz_i : 1 \leq i \leq k\}) \cup F.$$

If *C* is not a locally maximal cycle in $G[y \rightarrow x; Z]$, then there is a cycle *C'* in $G[y \rightarrow x; Z]$ with |E(C')| > |E(C)| and

$$|E(C') \cap E(C, G[y \to x; Z] - C)| \leqslant 2.$$

$$(2.1)$$

Let $C' = a_1 a_2 \cdots a_p$. Since C is locally maximal in G, and by (2.1), we have that $1 \leq |E(C') \cap F| \leq 2$.

Case 1. $|E(C') \cap F| = 1$. Suppose that $x = a_t$ and $a_{t+1} \in \{z_1, z_2, \dots, z_k\}$. If $y \notin V(C')$, replacing xa_{t+1} by xya_{t+1} , we obtain that $C'' = a_1 \cdots xya_{t+1} \cdots a_p$. If $y \in V(C')$, say $y = a_s$ and we may assume that s > t + 1, by (2.1), it must be that $a_{s-1} \in V(R)$, and so by the construction of $G[y \rightarrow x; Z]$, we have that $a_{s-1} \in N(x)$ in G. Then, let $C'' = a_1 \cdots xa_{s-1}a_{s-2} \cdots a_{t+1}ya_{s+1} \cdots a_p$. In either case, C'' is a cycle contradicting the local maximality of C.

Case 2. $|E(C') \cap F| = 2$. Suppose that $x = a_t$ and so $a_{t-1}, a_{t+1} \in \{z_1, z_2, ..., z_k\}$. If $y \notin V(C')$, let

$$C'' = (C' \setminus \{xa_{t-1}, xa_{t+1}\}) \cup \{ya_{t-1}, ya_{t+1}\}.$$

If $y \in V(C')$, say $y = a_s$ and we may assume that s > t + 1, by (2.1), $a_{s-1}, a_{s+1} \in V(R)$, and so $a_{s-1}, a_{s+1} \in N(x)$ in *G*. Then, let

$$C'' = (C' \setminus \{xa_{t-1}, xa_{t+1}, ya_{s-1}, ya_{s+1}\}) \cup \{xa_{s-1}, xa_{s+1}, ya_{t-1}, ya_{t+1}\}.$$

In either case, C'' is a cycle contradicting the local maximality of C.

(ii) Since $N_D(y) \cap N_D(x) = \emptyset$ and $A = N_D(y)$, using $N_{R-D}(D) = \{y\}$, the same proof as in (i) (with Z replaced by A) yields that C is a locally maximal cycle in $G[y \to x; A]$. (In fact, in this case, if C' is a cycle with $|E(C') \cap E(C, G[y \to x; A] - C)| \leq 2$ and $E(C') \cap \{xz : z \in A\} \neq \emptyset$, then $y \notin V(C')$.) Furthermore, if $N_C(R - D) = \{x\}$, let $G^* = G[y \to x; A] + yx'$. If C is not a locally maximal cycle in G^* , then there is a cycle C^* in G^* with $|E(C^*)| > |E(C)|$ and

$$|E(C^*) \cap E(C, G^* - C)| \leq 2$$

and moreover, $yx' \in E(C^*)$, which implies that $V(C^*) \cap V(D) = \emptyset$. Furthermore, since $N_C(R-D) = \{x\}$, we have that $x' \in N_C(D)$. Thus, we may obtain a cycle C' from C^* by replacing yx' with a path from y to x' with all internal vertices in D. Then, as seen in (i), C' can be transformed into a cycle contradicting the local maximality of C. This completes the proof of Lemma 2.3. \Box

Lemma 2.4. Let C be a locally maximal cycle in a 2-connected graph G and R a component of G - C. One of the following two statements holds.

- (i) $N_R(x) = V(R)$ for every $x \in N_C(R)$.
- (ii) There is $y \in N_R(x)$ for some $x \in N_C(R)$ and a nonempty set $A \subseteq N_R(y) \setminus (N_R(x) \cup \{x\})$ such that

$$G' = \begin{cases} G[y \to x; A] & \text{if } G[y \to x; A] \text{ is 2-connected,} \\ G[y \to x; A] + yx' & \text{otherwise,} \end{cases}$$

is 2-connected, where $x' \in N_C(R) \setminus \{x\}$, and moreover, C remains a locally maximal cycle in G'.

Proof. Suppose that (i) does not hold. Then $N_R(x) \neq V(R)$ for some $x \in N_C(R)$, which implies that there is $y \in N_R(x)$ such that

$$Z_{y} = N_{R}(y) \setminus (N_{R}(x) \cup \{x\}) \neq \emptyset.$$

If $G[y \rightarrow x; Z_y]$ is 2-connected, then by Lemma 2.3(i), C remains a locally maximal cycle in $G[y \rightarrow x; Z_y]$, and (ii) holds with $A = Z_y$ and $G' = G[y \rightarrow x; Z_y]$. Suppose thus that this is not the case. Then, x is the unique cut vertex of $G[y \to x; Z_y]$. Let R_y be the smallest component in $G[y \to x; Z_y] - x$ with $V(R_y) \subseteq V(R)$. R_y is defined for each y with $Z_y \neq \emptyset$. (That is, $G[y \rightarrow x; Z_y]$ is not 2-connected for each y with $Z_y \neq \emptyset$.) For simplicity, we may assume that y has been chosen such that $|V(R_y)|$ is as small as possible. Then, either $R_y = \{y\}$ or y is a cut vertex of R. We claim that x is joined to every vertex of R_y in G. If this is not true, then there is a $w \in V(R_v)$ with $Z_w \neq \emptyset$. Then, $G[w \to x; Z_w] - x$ has a component that is a proper subset of R_{y} , which implies that $|V(R_{w})| < |V(R_{y})|$, contradicting the choice of y. This proves the claim. By the claim, we have that $y \in R_y$. Let R_1, R_2, \ldots, R_t be the components of $G[y \to x; Z_y] - x$, where $t \ge 2, R_1 = R_y$, and $V(C) \setminus \{x\} \subseteq V(R_t)$. We note that $R_1 = R_y$, which is a component in $G[y \to x; Z_y] - x$ with $V(R_1) \subseteq V(R)$ (so R_1 is adjacent only to y and x in G). Since G is 2-connected, there must be $x' \in N_C(R) \setminus \{x\}$ joined to some vertex y' of $R - R_1$ in G. Clearly, $y' \in R_t$. Let $D = R_t - V(C)$. Then, $N_{R-D}(D) = \{y\}$ and $N_D(y) \cap N_D(x) = \emptyset$. Let $A = N_D(y)$. If $G[y \rightarrow x; A]$ is 2-connected, let $G' = G[y \rightarrow x; A]$; if $G[y \rightarrow x; A]$ is not 2-connected, then $N_C(R - D) = \{x\}$, and we let $G' = G[y \rightarrow x; A] + yx'$. In either case, G' is 2connected, and by Lemma 2.3(ii), C is a locally maximal cycle in G'. This proves Lemma 2.4.

3. Proof of the theorem

Theorem 3.1. Let C be a locally maximal cycle of length c in a 2-connected graph G on n vertices. If $\frac{2}{3}n + 1 \le c \le n - 1$, then

$$e(G) \leq \max\{f(n, 2, c), f(n, \lfloor c/2 \rfloor, c)\}.$$

Proof. Suppose that R_1, R_2, \ldots, R_m are the components of G - C, $m \ge 1$. Repeatedly applying Lemma 2.4 to each R_i (note that since the set *A* is nonempty, each time Lemma 2.4(ii) is applied, the number of edges not incident with *C* strictly decreases), we have a 2-connected graph G' in which $e(G) \le e(G')$, *C* remains a locally maximal cycle, and for each component *R* of G' - C, $N_R(x) = V(R)$ for every $x \in N_C(R)$. For simplicity, we may simply assume that *G* has been chosen to be the final graph after repeatedly applying Lemma 2.4, and so

$$N_{R_i}(x) = V(R_i) \text{ for every } x \in N_C(R_i), \quad 1 \le i \le m.$$
(3.1)

Let $n_i = |V(R_i)|$ and $k_i = |N_C(R_i)|$, $1 \le i \le m$. For any $i, 1 \le i \le m$, suppose that $N_C(R_i) = \{x_1, x_2, \dots, x_{k_i}\}$. Let P_{jt} be a longest path from x_j to x_t with all internal vertices in R_i . By (3.1), for all $j \ne t$, P_{jt} have the same length, denoted by d_i , which is 2 plus the length of

a longest path in R_i . So, R_i contains no path of length more than $d_i - 2$. It follows from a result of Erdös and Gallai [2, Theorem 2.6] that

$$e(R_i) \leqslant \frac{d_i - 2}{2} n_i, \quad 1 \leqslant i \leqslant m.$$

Let *H* be the subgraph induced by V(C). Then,

$$e(G) \leq e(H) + \sum_{i=1}^{m} (e(R_i) + n_i k_i) \leq e(H) + \frac{1}{2} \sum_{i=1}^{m} n_i (d_i - 2 + 2k_i).$$

Choose α such that $d_{\alpha} + 2k_{\alpha} = \max\{d_i + 2k_i, 1 \le i \le m\}$ and let $d = d_{\alpha}$ and $k = k_{\alpha}$. It follows, using $\sum_{i=1}^{m} n_i = n - c$, that

$$e(G) \leq e(H) + \frac{d-2+2k}{2}(n-c).$$
 (3.2)

Let $R = R_{\alpha}$ and $X = N_C(R) = \{x_1, x_2, \dots, x_k\}$. Then C - X consists of k segments S_1, S_2, \dots, S_k , where S_i is the segment of C from x_i^+ to x_{i+1}^- . Set $s_i = |V(S_i)|, 1 \le i \le k$. We first prove several lemmas that deal with the estimation of the number of edges between S_i and S_j . \Box

Lemma 3.2. For $i \neq j$, let $S_i = a_1 a_2 \cdots a_p$ and $S_j = b_1 b_2 \cdots b_q$, where $p = s_i$ and $q = s_j$.

(i) If $a_r b_\ell \in E(G)$, then

$$(r-1) + (\ell-1) \ge d-1$$
 and $(p-r) + (q-\ell) \ge d-1$.

(ii) For a_r , a_{p-t} with $r + t \leq d - 1$ (so $r \leq p - t$), if there are distinct b_ℓ , b_m such that $a_r b_\ell$, $a_{p-t} b_m \in E(G)$ (or $a_r b_m$, $a_{p-t} b_\ell \in E(G)$), then $|m - \ell| \geq d + 1 - r - t$.

Proof. (i) Since $a_r b_\ell \in E(G)$, we have a cycle $C' = a_r b_\ell b_{\ell+1} \cdots b_q x_{j+1} x_{j+1}^+ \cdots x_i P x_j x_j^ \cdots x_{i+1} a_p a_{p-1} \cdots a_r$ of length $c+(d-1)-(r-1)-(\ell-1)$ with $|E(C') \cap E(C, G-C)| = 2$, where *P* is a path of length *d* from x_i to x_j with all its internal vertices in *R*. By the choice of *C*, $(r-1) + (\ell-1) \ge d-1$. By symmetry, $(p-r) + (q-\ell) \ge d-1$, as required.

(ii) Without loss of generality, suppose that $a_r b_\ell$, $a_{p-t} b_m \in E(G)$. Let *P* be a path of length *d* from x_i to x_{i+1} with all internal vertices in *R*. Then

$$C' = x_i x_i^{-} \cdots x_{j+1} b_q b_{q-1} \cdots b_m a_{p-t} a_{p-t-1} \cdots a_r b_\ell b_{\ell-1} \cdots x_{i+1} P x_i$$

is cycle of length

$$c + (d - 1) - (r + t - 1) - (m - \ell - 1) = c + d + 1 - r - t - (m - \ell)$$

with $|E(C') \cap E(C, G - C)| = 2$. By the choice of C, $|m - \ell| \ge d + 1 - r - t$, as required. \Box

Lemma 3.3. For $i \neq j$, let $S_i = a_1 a_2 \cdots a_p$ and $S_j = b_1 b_2 \cdots b_q$, where $p = s_i$ and $q = s_j$.

(i) For a_r , a_{p-t} with $r + t \leq d - 1$,

$$e(\{a_r, a_{p-t}\}, S_i) \leq q - (d - r - t).$$

(ii) For each $m, 1 \leq m \leq q - 1$,

$$e(b_m b_{m+1}, S_i) \leq 2p - d + 1$$

with equality only if p = d - 1, and $e(b_m, S_i) = p$ or $e(b_{m+1}, S_i) = p$. (iii) $e(\{a_1, b_1\}, S_i) \leq p$ and $e(\{a_p, b_q\}, S_i) \leq p$.

Proof. (i) Let *B* be the set of vertices in S_j which are joined to both a_r and a_{p-t} . If $B \neq \emptyset$, then for each $b_i \in B$, by Lemma 3.2(ii),

$$e(\{a_r, a_{p-t}\}, b_{i+j}) = 0$$
 and $e(\{a_r, a_{p-t}\}, b_{i-j}) = 0$

for all j, $1 \le j \le d - r - t$, which implies that there are at least (|B| + 1)(d - r - t) vertices in S_j , none of which is joined to either a_r or a_{p-t} . It follows that

$$e(\{a_r, a_{p-t}\}, S_j) \leq 2|B| + (q - |B| - (|B| + 1)(d - r - t))$$

= q - (d - r - t) - |B|(d - 1 - r - t).

But $r + t \leq d - 1$, and thus we may suppose that $B = \emptyset$.

If $e(a_{p-t}, S_j) = 0$, then $e(\{a_r, a_{p-t}\}, S_j) = e(a_r, S_j)$. By Lemma 3.2(i), none of the first d - r vertices of S_j is joined to a_r , and hence $e(a_r, S_j) \leq q - (d - r) \leq q - (d - r - t)$. Therefore, we may assume that $e(a_{p-t}, S_j) > 0$, and similarly, $e(a_r, S_j) > 0$.

Let $a_{p-t}b_{\ell}$, $a_rb_m \in E(G)$ and choose b_{ℓ} and b_m as close to each other as possible, so that none of the vertices (in S_j) between b_{ℓ} and b_m is joined to a_r or a_{p-t} . By Lemma 3.2(ii), $|m - \ell| \ge d + 1 - r - t$. It follows that there are at least d - r - t vertices that are not joined to a_r or a_{p-t} . Therefore, $e(\{a_r, a_{p-t}\}, S_j) \le q - (d - r - t)$, as required.

(ii) We first consider the case that there is a_r such that $e(a_r, b_m b_{m+1}) = 2$. Choose such a_r as close to a_1 or a_p as possible. We may assume that $r - 1 \le p - r$. By the choice of a_r , none of the first and the last r - 1 vertices of S_i can be joined to both b_m and b_{m+1} , which gives that $e(b_m b_{m+1}, S_i) \le 2p - 2(r-1)$. If $r - 1 \ge \frac{d}{2}$, then $e(b_m b_{m+1}, S_i) \le 2p - d$, and we are done. Suppose therefore that $r - 1 \le \frac{d-1}{2}$, that is $r \le \frac{d+1}{2}$. By Lemma 3.2(ii), none of the last d - r vertices of S_i can be joined to b_m or b_{m+1} , that is, $e(b_m b_{m+1}, a_i) = 0$ for all $i, p - (d - r) + 1 \le i \le p$. It follows that

$$e(b_m b_{m+1}, S_i) \leq 2p - (r-1) - 2(d-r) = 2p - d - (d-r-1).$$

If *d* is odd (so $d \ge 3$), then, since $r \le \frac{d+1}{2}$, we have $d - r - 1 \ge \frac{d-3}{2} \ge 0$; if *d* is even, then $r \le \frac{d}{2}$, and we have $d - r - 1 \ge \frac{d-2}{2} \ge 0$; In either case, we have that $e(b_m b_{m+1}, S_i) \le 2p - d$. Next we consider the case that

$$e(b_m b_{m+1}, a_i) \leq 1 \quad \text{for all } i, \quad 1 \leq i \leq p.$$

$$(3.3)$$

Then.

$$e(b_m b_{m+1}, S_i) \leq p = 2p - d - (p - d).$$

Thus, $e(b_m b_{m+1}, S_i) \leq 2p - d + 1$, with equality only if p = d - 1, and all equalities hold in (3.3), which implies, by Lemma 3.2(ii), that either $e(b_m, S_i) = p$ or $e(b_{m+1}, S_i) = p$.

(iii) Let $A = \{a_i : a_1a_{i+1} \in E(G), 1 \le i \le p-1\}$. If there is $a_i \in A$ such that $a_ib_1 \in E(G)$, then $C' = b_1a_ia_{i-1}\cdots a_1a_{i+1}a_{i+2}\cdots a_px_{i+1}\cdots x_jPx_ix_i^{-}\cdots b_qb_{q-1}\cdots b_1$ is a cycle of length c + d - 1 and $|E(C') \cap E(C, G - C)| = 2$, contradicting the choice of *C*. Thus, $A \cap N_{S_i}(b_1) = \emptyset$, which implies that $e(b_1, S_i) \le p - |A| = p - e(a_1, S_i)$, and so $e(b_1, S_i) + e(a_1, S_i) \le p$. By symmetry, $e(b_q, S_i) + e(a_p, S_i) \le p$. This completes the proof of Lemma 3.3. \Box

Lemma 3.4. Suppose that $d \ge 3$. For $i \ne j$,

$$e(S_i, S_j) \leqslant \begin{cases} (s_j - 1)(s_i - 1) - \frac{s_j(d-2)}{2} + \frac{s_j - 2}{2} & \text{if } s_i = d - 1 \text{ and } s_j \ge 2d - 1, \\ (s_j - 1)(s_i - 1) - \frac{s_j(d-2)}{2} & \text{otherwise.} \end{cases}$$

Proof. Let $S_i = a_1 a_2 \cdots a_p$ and $S_j = b_1 b_2 \cdots b_q$, where $p = s_i$ and $q = s_j$. By Lemma 3.3(i) (S_i and S_j interchange, r = 1 and t = 0),

$$e(\{b_1, b_q\}, S_i) \leqslant p - (d - 1). \tag{3.4}$$

Without loss of generality, we may assume that $e(b_1, S_i) \leq e(b_q, S_i)$, and so

$$e(b_q, S_i) \ge \frac{1}{2}e(\{b_1, b_q\}, S_i).$$

Then

$$e(\{b_1, b_2, b_q\}, S_i) = e(\{b_1, b_q\}, S_i) + e(\{b_2, b_q\}, S_i) - e(b_q, S_i)$$

$$\leq \frac{1}{2}e(\{b_1, b_q\}, S_i) + e(\{b_2, b_q\}, S_i).$$

By Lemma 3.3(i) (S_i and S_j interchange and r + t = 2),

$$e(\{b_2, b_q\}, S_i) \leq p - (d - 2).$$

It follows from (3.4) that

$$e(\{b_1, b_2, b_q\}, S_i) \leq \frac{1}{2}(p-d+1) + p - (d-2) = \frac{3}{2}(p-d+1) + 1.$$
 (3.5)

If $p \ge d$ or if there is no vertex $b \in S_j$ with $e(b, S_i) = p$, then by Lemma 3.3(ii) (without equalities),

$$e(b_m b_{m+1}, S_i) \leq 2p - d, \qquad 1 \leq m \leq q - 1.$$

Therefore, if q is even,

$$e(S_j - \{b_1, b_q\}, S_i) \leqslant \frac{q-2}{2}(2p-d),$$

which together with (3.4) gives that

$$e(S_i, S_j) \leq \frac{q-2}{2}(2p-d) + p - (d-1) = (q-1)(p-1) - \frac{q}{2}(d-2);$$

if *q* is odd (so $q \ge 3$),

$$e(S_j - \{b_1, b_2, b_q\}, S_i) \leqslant \frac{q-3}{2}(2p-d),$$

which together with (3.5) gives that

$$e(S_i, S_j) \leqslant \frac{q-3}{2}(2p-d) + \frac{3}{2}(p-d+1) + 1$$
$$= (q-1)(p-1) - \frac{q}{2}(d-2) - \frac{p-3}{2},$$

and since $p \ge d \ge 3$, the required result follows.

Suppose therefore that p = d - 1 and there is $b_{\ell} \in S_j$ such that $e(b_{\ell}, S_i) = p$. By Lemma 3.2(i), $\ell - 1 \ge d - 1$ and $q - \ell \ge d - 1$, which gives that $q \ge 2d - 1$. By Lemma 3.3(ii), we have now that

$$e(b_m b_{m+1}, S_i) \leq 2p - d + 1, \qquad 1 \leq m \leq q - 1$$

and thus, if q is even,

$$e(S_j - \{b_1, b_q\}, S_i) \leq \frac{q-2}{2}(2p-d) + \frac{q-2}{2},$$

if q is odd,

$$e(S_j - \{b_1, b_2, b_q\}, S_i) \leq \frac{q-3}{2}(2p-d) + \frac{q-3}{2}$$

Since (3.4) and (3.5) still hold, if q is even,

$$e(S_i, S_j) \leq (q-1)(p-1) - \frac{q}{2}(d-2) + \frac{q-2}{2},$$

if q is odd,

$$e(S_i, S_j) \leq (q-1)(p-1) - \frac{q}{2}(d-2) + \frac{q-3}{2}.$$

Consequently,

$$e(S_i, S_j) \leq (q-1)(p-1) - \frac{q}{2}(d-2) + \frac{q-2}{2}.$$

This completes the proof of Lemma 3.4. \Box

Lemma 3.5. Suppose that $d \ge 3$. For $i \ne j$, if $s_j = d - 1$, let F be the subgraph induced by $V(S_i) \cup V(S_j)$, then

$$\sum_{x \in S_i} d_F(x) \leq s_i(s_i - 1) + \frac{s_j - 2}{2} (2s_i - d) + 2.$$

Proof. As before, let $S_i = a_1 a_2 \cdots a_p$ and $S_j = b_1 b_2 \cdots b_q$, where $p = s_i$ and $q = s_j$. Let $b_r \in S_j$. If $r \leq \frac{d}{2}$, by Lemma 3.2(i), b_r is not joined to any of the first $\lceil \frac{d}{2} \rceil$ vertices of S_i , which gives that $e(b_r, S_i) \leq p - \frac{d}{2}$. If $r \geq \frac{d+1}{2}$, since q = d - 1, we have that $q - r \leq \frac{d-3}{2}$, and again by Lemma 3.2(i), b_r is not joined to any of the last $\lceil \frac{d+1}{2} \rceil$ vertices of S_i , which gives that $e(b_r, S_i) \leq p - \frac{d+1}{2}$. Consequently,

$$e(b_r, S_i) \leq p - \frac{d}{2}$$
 for each $r, \quad 1 \leq r \leq q$.

So

$$\sum_{r=2}^{q-1} e(b_r, S_i) \leq (q-2)(p-\frac{d}{2}) = \frac{q-2}{2} (2p-d).$$

Therefore,

$$e(S_i, S_j) \leq \frac{q-2}{2}(2p-d) + e(\{b_1, b_q\}, S_i)$$

Using the fact that $d_{S_i}(a_\ell) \leq p-1$ for all $\ell, 2 \leq \ell \leq p-1$, we have that

$$\sum_{x \in S_i} d_{S_i}(x) \leq (p-2)(p-1) + e(\{a_1, a_p\}, S_i).$$

Noting that

$$\sum_{x \in S_i} d_F(x) = \sum_{x \in S_i} d_{S_i}(x) + e(S_i, S_j),$$

we obtain that

$$\sum_{x \in S_i} d_F(x) \leq (p-2)(p-1) + \frac{q-2}{2}(2p-d) + e(\{a_1, a_p\}, S_i) + e(\{b_1, b_q\}, S_i) = (p-2)(p-1) + \frac{q-2}{2}(2p-d) + e(\{a_1, b_1, a_p, b_q\}, S_i).$$

By Lemma 3.3(iii), $e(\{a_1, b_1\}, S_i) \leq p$ and $e(\{a_p, b_q\}, S_i) \leq p$, and hence,

$$e(\{a_1, b_1, a_p, b_q\} \leqslant 2p.$$

It follows that

$$\sum_{x \in S_i} d_F(x) \leq p(p-1) + \frac{q-2}{2} (2p-d) + 2,$$

as required by Lemma 3.5.

Now, we return to the proof of Theorem 3.1. By (3.2), we need to estimate e(H). The proof is divided into two parts, according to $d \ge 3$ or d = 2.

Part I. $d \ge 3$. Let $A = \{i : s_i = d - 1\}$ and $B = \{i : s_i \ge 2d - 1\}$. Set a = |A|, b = |B|, $s = \sum_{i=1}^{k} s_i$ and $s' = \sum_{i \in B} s_i$. By the definition, $s' \ge b(2d - 1)$. We first show that

$$\sum_{i=1}^{k} \sum_{x \in S_i} d_H(x) \leq c^2 + c + 3k^2 - 3ck - 2k - \frac{(d-2)(c-3)}{2}.$$
(3.6)

If $A = \emptyset$ or $B = \emptyset$, then by Lemma 3.4, for all $i \neq j$,

$$e(S_i, S_j) \leq (s_j - 1)(s_i - 1) - \frac{s_j}{2}(d - 2)$$

and thus, using $\sum_{j \neq i} s_j = s - s_i$,

$$\sum_{j \neq i} e(S_i, S_j) \leq (s - s_i - (k - 1))(s_i - 1) - \frac{s - s_i}{2} (d - 2).$$
(3.7)

Therefore,

$$\sum_{x \in S_i} d_H(x) \leqslant \sum_{j \neq i} e(S_i, S_j) + s_i(s_i - 1) + s_i k$$
$$\leqslant s(s_i - 1) + s_i + (k - 1) - \frac{s - s_i}{2} (d - 2)$$
(3.8)

and so,

$$\sum_{i=1}^{k} \sum_{x \in S_i} d_H(x) \leqslant s(s-k) + s + k(k-1) - \frac{s(k-1)}{2} (d-2)$$

$$= s(s-k) + s + k(k-1) - \frac{(d-2)(s+k-3)}{2}$$

$$- \frac{(d-2)(k-2)(s-1) + (d-2)}{2}$$

$$= c^2 + c + 3k^2 - 3ck - 2k - \frac{(d-2)(c-3)}{2}$$

$$- \frac{(d-2)(k-2)(s-1) + (d-2)}{2},$$
(3.9)

where we have used that s = c - k. But $d \ge 3$ and $k \ge 2$, and so (3.6) follows. In what follows, suppose therefore that $a \ge 1$ and $b \ge 1$. For a segment S_i , we distinguish the following three cases.

Case 1. $i \notin A \cup B$. By Lemma 3.4, for all $j \neq i$,

$$e(S_i, S_j) \leq (s_j - 1)(s_i - 1) - \frac{s_j}{2}(d - 2)$$
(3.10)

and as the derivation of (3.8),

$$\sum_{x \in S_i} d_H(x) \leqslant s(s_i - 1) + s_i + (k - 1) - \frac{s - s_i}{2} (d - 2).$$
(3.11)

Case 2. $i \in A$. By Lemma 3.4, if $j \notin B$, we have (3.10). If $j \in B$,

$$e(S_i, S_j) \leq (s_j - 1)(s_i - 1) - \frac{s_j}{2}(d - 2) + \frac{s_j - 2}{2}.$$

Thus,

$$\sum_{j \neq i} e(S_i, S_j) \leq \sum_{j \neq i} \left[(s_j - 1)(s_i - 1) - \frac{s_j}{2} (d - 2) \right] + \sum_{j \in B} \frac{s_j - 2}{2}$$
$$\leq (s - s_i - (k - 1))(s_i - 1) - \frac{s - s_i}{2} (d - 2) + \frac{s' - 2b}{2}$$

and as the way (3.8) is derived from (3.7), we have that,

$$\sum_{x \in S_i} d_H(x) \leq s(s_i - 1) + s_i + (k - 1) - \frac{s - s_i}{2} (d - 2) + \frac{s' - 2b}{2}.$$
(3.12)

Case 3. $i \in B$. Let $\ell \in A$ and let F be the subgraph induced by $V(S_i) \cup V(S_\ell)$. By Lemma 3.5,

$$\sum_{x \in s_i} d_F(x) \leq s_i(s_i - 1) + \frac{s_\ell - 2}{2} (2s_i - d) + 2$$
$$\leq s_i(s_i - 1) + (s_\ell - 1)(s_i - 1) - \frac{s_\ell}{2} (d - 2) - (s_i - d - 1).$$

For all $j \notin \{i, \ell\}$, by Lemma 3.4,

$$e(S_i, S_j) \leq (s_j - 1)(s_i - 1) - \frac{s_j}{2}(d - 2).$$

It follows that

$$\sum_{x \in S_i} d_H(x) \leqslant \sum_{x \in S_i} d_F(x) + \sum_{j \notin \{i, \ell\}} e(S_i, S_j) + s_i k$$

$$\leqslant \sum_{j \neq i} \left[(s_i - 1)(s_j - 1) - \frac{s_j}{2} (d - 2) \right]$$

$$+ s_i (s_i - 1) + s_i k - (s_i - d - 1)$$

$$= s(s_i - 1) + s_i + (k - 1) - \frac{s - s_i}{2} (d - 2) - (s_i - d - 1).$$
(3.13)

By (3.11), (3.12), and (3.13), we have that

$$\sum_{i=1}^{k} \sum_{x \in S_i} d_H(x) \leqslant \sum_{i=1}^{k} \left[s(s_i - 1) + s_i + (k - 1) - \frac{s - s_i}{2} (d - 2) \right] + \sum_{i \in A} \frac{s' - 2b}{2} - \sum_{i \in B} (s_i - d - 1).$$
(3.14)

As seen in the derivation of (3.9) from (3.8), the first summation at the right-hand side of (3.14) is

$$c^{2} + c + 3k^{2} - 3ck - 2k - \frac{(d-2)(c-3)}{2} - \frac{(d-2)(k-2)(s-1) + (d-2)}{2}.$$
(3.15)

Clearly,

$$\sum_{i \in A} \frac{s' - 2b}{2} - \sum_{i \in B} (s_i - d - 1) = \frac{as' - 2ab}{2} - (s' - bd - b)$$
$$= \frac{s'(a - 1)}{2} - \frac{b}{2} (2a - 3) - \frac{s' - b(2d - 1)}{2}$$
$$\leqslant \frac{s'(a - 1)}{2} - \frac{b}{2} (2a - 3).$$
(3.16)

Applying (3.16) and (3.15) into (3.14), and writing

$$g(d, a, k) = \frac{s'(a-1)}{2} - \frac{b}{2}(2a-3) - \frac{(d-2)(k-2)(s-1) + (d-2)}{2},$$

we have that

$$\sum_{i=1}^{k} \sum_{x \in S_i} d_H(x) \leq c^2 + c + 3k^2 - 3ck - 2k - \frac{(d-2)(c-3)}{2} + g(d, a, k).$$

It remains to show that $g(d, a, k) \leq 0$. Clearly,

$$g(d, a, k) \leq g(3, a, k) = \frac{s'(a-1)}{2} - \frac{b}{2}(2a-3) - \frac{(k-2)(s-1)+1}{2}.$$

If k = 2, then a = 1 and b = 1, and we have that g(3, 1, 2) = 0. If $a \ge 2$, then, using $k \ge a + 1$ and $s \ge s' + 1$, we have that

$$g(3, a, k) \leqslant -\frac{b}{2} - \frac{1}{2} < 0.$$

Therefore we assume that $k \ge 3$ and a = 1. Then,

$$g(3, 1, k) = \frac{b}{2} - \frac{(k-2)(s-1)+1}{2} \leqslant \frac{b-(s-1)-1}{2}.$$

Since $s \ge b + 1$, we have that g(3, 1, k) < 0. In each case, $g(d, a, k) \le 0$. This proves (3.6).

By the fact that

$$2e(H) = \sum_{x \in H} d_H(x) \leqslant k(c-1) + \sum_{i=1}^k \sum_{x \in S_i} d_H(x),$$

it follows from (3.6) that

$$2e(H) \leqslant c^{2} + c + 3k^{2} - 2ck - 3k - \frac{(d-2)(c-3)}{2}$$

and so

$$e(H) \leq \frac{1}{2} \left(c^2 + c + 3k^2 - 2ck - 3k \right) - \frac{(d-2)(c-3)}{4}$$

It follows from (3.2) that

$$e(G) \leq \frac{1}{2} \left(c^2 + c + 3k^2 + 2kn - 4ck - 3k \right) + \frac{(d-2)}{4} \left(2n - 3c + 3 \right).$$

Since $c \ge \frac{2}{3}n + 1$,

$$e(G) \leq \frac{1}{2} \left(c^2 + c + 3k^2 + 2kn - 4ck - 3k \right) = f(n, k, c).$$

Since $2 \le k \le c/2$, we have that $f(n, k, c) \le \max\{f(n, 2, c), f(n, \lfloor c/2 \rfloor, c)\}$, and the theorem follows. This completes the proof of Part I.

Part II. d = 2. Let w be the unique vertex of R (so d(w) = k) and G' the subgraph induced by $V(C) \cup \{w\}$. Then G' is non-hamiltonian. Choose a cycle C' (in G') of length c such that e(C', G' - C') as large as possible, among all cycles of length c in G'. Suppose that u is the unique vertex of G' - C' and X is the set of neighbors of u in G'. Set x = |X|. Then, $k \leq x \leq \frac{c}{2}$, and C' - X consists of x segments S_1, S_2, \ldots, S_x . For simplicity, we consider these segments as same as those in Part I above, with k replaced by x. As before, define $s_i = |V(S_i)|, 1 \leq i \leq x$. Set $Y = \{S_i : s_i = 1, 1 \leq i \leq x\}$ and y = |Y|. Let B = $\{S_1, S_2, \ldots, S_x\} \setminus Y$ and b = |B|. For simplicity, we may assume that $B = \{S_1, S_2, \ldots, S_b\}$ (so $s_i \geq 2$ for each $i, 1 \leq i \leq b$) and let

$$s = \sum_{i=1}^{p} s_i$$
, and so, $c = s + x + y$.

Let $F = G' - (Y \cup \{u\})$. We shall show that for each $i, 1 \leq i \leq b$,

$$\sum_{v \in S_i} d_F(v) \leq (s_i - 1)(c - x) + x + s_i - 1.$$
(3.17)

Let $S_i = a_1 a_2 \cdots a_p$ with $p = s_i$, and for any $j \neq i$, $1 \leq j \leq b$, $S_j = b_1 b_2 \cdots b_q$ with $q = s_j$. By Lemma 3.3(i) (with r = 1 and t = 0),

$$e(\{a_1, a_p\}, S_j) \leqslant q - 1 \tag{3.18}$$

and for each ℓ , $1 \leq \ell \leq p - 1$, by Lemma 3.2(ii) (S_i and S_j interchange, r = 1 and t = 0), $e(a_\ell a_{\ell+1}, \{b_1, b_a\}) \leq 2$, which implies that

$$e(a_{\ell}a_{\ell+1}, S_j) \leq 2q - 2, \quad 1 \leq \ell \leq p - 1.$$
 (3.19)

Case 1. *p* is even. By (3.19),

$$e(S_i - \{a_1, a_p\}, S_j) \leq \frac{p-2}{2}(2q-2) = (p-2)(q-1)$$

Combining with (3.18) yields that

$$e(S_i, S_j) \leq (p-1)(q-1) = (s_i - 1)(s_j - 1).$$

This holds for all $j \neq i$, $1 \leq j \leq b$, and thus,

$$\sum_{j \neq i} e(S_i, S_j) \leq (s_i - 1)(s - s_i - b + 1).$$

Noting that

$$\sum_{v \in S_i} d_F(v) = \sum_{j \neq i} e(S_i, S_j) + \sum_{v \in S_i} d_{S_i}(v) + e(S_i, X),$$

we have that

$$\sum_{v \in S_i} d_F(v) \leqslant (s_i - 1)(s - s_i - b + 1) + s_i(s_i - 1) + xs_i$$
$$= (s_i - 1)(s - b + x) + x + s_i - 1$$
(3.20)

and (3.17) follows from the fact that s - b + x = c - y - b = c - x.

Case 2. *p* is odd (so $p \ge 3$).

If $d_F(a_1) \ge x + 1$, then $a_2b_1 \notin E(G)$, for otherwise there is a cycle C'' with $V(C'') = (V(C) \cup \{w\}) \setminus \{a_1\}$, contradicting the choice of C', and thus, $e(a_2, S_j) \le q - 1$, which together with (3.18) gives that

$$e(\{a_1, a_2, a_p\}, S_j) \leq 2(q-1).$$

By (3.19),

$$e(S_i - \{a_1, a_2, a_p\}, S_j) \leqslant \frac{p-3}{2} (2q-2) = (p-3)(q-1)$$

It follows that

$$e(S_i, S_j) \leq (p-1)(q-1) = (s_i - 1)(s_j - 1),$$

which holds for all $j \neq i, 1 \leq j \leq b$, and as above we obtain (3.17).

If $d_F(a_1) \leq x$, by (3.19),

$$e(S_i - \{a_1\}, S_j) \leq \frac{p-1}{2} (2q-2) = (p-1)(q-1) = (s_i - 1)(s_j - 1),$$

for all $j \neq i, 1 \leq j \leq b$, and thus,

$$\sum_{j \neq i} e(S_i - \{a_1\}, S_j) \leq (s_i - 1)(s - s_i - b + 1).$$

Therefore,

$$\sum_{v \in S_i} d_F(v) \leq d_F(a_1) + \sum_{j \neq i} e(S_i - \{a_1\}, S_j) + (s_i - 1)(s_i - 1) + x(s_i - 1)$$
$$\leq x + (s_i - 1)(s - s_i - b + 1) + (s_i - 1)(s_i - 1) + x(s_i - 1),$$
$$= (s_i - 1)(s - b + x) + x,$$

which is less than the right-hand side of (3.20), and as there, (3.17) follows.

Summing (3.17) over all *i*, $1 \leq i \leq b$, we obtain that

$$\sum_{i=1}^{b} \sum_{v \in S_i} d_F(v) \leq (s-b)(c-x) + xb + s - b.$$

Then

$$2e(F) = \sum_{i=1}^{b} \sum_{v \in S_i} d_F(v) + \sum_{v \in X} d_F(v)$$

$$\leq (s-b)(c-x) + xb + s - b + x(c-1-y)$$

$$= c^2 + c + 3x^2 - 2cx - 2yx - 3x.$$

By the choice of C', $d_{G'}(v) \leq x$ for each vertex $v \in Y$, and by Lemma 3.2(i), Y is an independent set in G. Therefore,

$$e(G') = e(F) + \sum_{v \in Y} d_{G'}(v) + d_{G'}(u) \leq e(F) + xy + x$$

and so

$$e(G') \leq \frac{1}{2}(c^2 + c + 3x^2 - 2cx - x).$$

Since

$$e(G) \leqslant e(G') + k(n - c - 1) \leqslant e(G') + x(n - c - 1),$$

we have that

4

$$e(G) \leq \frac{1}{2}(c^2 + c + 3x^2 + 2xn - 4cx - 3x) = f(n, x, c).$$

Again, since $2 \le x \le c/2$, we have that $f(n, x, c) \le \max\{f(n, 2, c), f(n, \lfloor c/2 \rfloor, c)\}$, and the theorem follows. This completes the proof of the theorem. \Box

Since a longest cycle is locally maximal, we see that Theorem 3.1 together with Theorem 1.2 confirms Conjecture 1.1.

References

- [1] L. Caccetta, K. Vijayan, Maximal cycle in graphs, Discrete Math. 98 (1991) 1-7.
- [2] P. Erdös, T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337– 356.
- [3] Genghua Fan, Subgraph coverings and edge switchings, J. Combin. Theory Ser. B 84 (2002) 54-83.
- [4] D.R. Woodall, Sufficient conditions for circuits in graphs, Proc. London Math. Soc. 24 (3) (1972) 739–755.
- [5] D.R. Woodall, Maximal circuits of graphs, I, Acta Math. Acad. Sci. Hungar. 28 (1976) 77-80.