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1. Introduction and statement of the results

The Jacobian det∇u of some vector fieldu belonging toW1,n(Rn,Rn) plays a par-
ticular role in various partial differential equation arising from calculus of variati
mechanics, and geometry. Although det∇u is only integrable, but due to its special stru
ture this quantity has some suitable regularity properties. Recently in [8], Coifman
have shown that det∇u belongs to the Hardy spaceH1(Rn), a strict subspace ofL1(Rn).

In this paper, we shall focus on the casen = 2. LetΩ be a smooth and bounded d
main inR

2. Givenα �≡ 0 a non-negative measurable function and letu = (a, b) andξ be
functions defined onΩ . Consider the following problem:{−div(α∇ϕ)= ξ det∇u= ξ(ax1bx2 − ax2bx1) in Ω,

ϕ = 0 on∂Ω,
(1)

wherex = (x1, x2) anda, b are two functions belonging to some weighted Sobolev sp
which will be defined later. Fori = 1,2, axi denote the partial derivative with respe
to the variablexi . If Ω = R

2, we consider the limit condition lim|x|→+∞ϕ(x) = 0, where

|x| = r = (x2
1 + x2

2)
1/2. In the caseα = ξ = const, problem (1) is the classical Wen

problem{−∆ψ = det∇u= ax1bx2 − ax2bx1 in Ω,

ψ = 0 on∂Ω.
(2)

The classical Wente problem arises in the study of constant mean curvature imme
The functionξ in (1) plays the role of the mean curvature of the surface(ϕ, a, b)(Ω).
Whenu = (a, b) ∈ H 1(Ω,R2), it is proved in [5,12,13] thatψ , the solution of (2), is in
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that

er

this
] we

ending

f we
L∞(Ω). In particular, this provides control of∇ψ in L2(Ω) and continuity ofψ by simple
arguments. We also have

‖ψ‖∞ + ‖∇ψ‖2 � C0(Ω)‖∇a‖2‖∇b‖2. (3)

Denote by

C∞(Ω)= sup
∇a,∇b �=0

‖ψ‖∞
‖∇a‖2‖∇b‖2

(4)

and

C2(Ω)= sup
∇a,∇b �=0

‖∇ψ‖2

‖∇a‖2‖∇b‖2
. (5)

It is proved in [1,11,13] thatC∞(Ω) = 1/(2π) and in [9] thatC2(Ω) = √
3/(16π) (see

also [10]).
In [2], we give a generalization of problem (2) in Higher dimensions. We suppose

u ∈ W1,n(Rn,Rn) and we replace the operator−∆ in (2) by (−∆)n/2. We proved thatψ
is inL∞(Rn), for 1� k � n/2, ∇kψ is in Ln/k(Rn) and we also

‖ψ‖∞ + ‖∇kψ‖n/k � C‖∇u‖nn.
Moreover, we give the best constant involving theL∞ norm. We can imagine anoth
generalization of problem (2) by using for example the nonlinear operator−∆nψ =
−div(|∇ψ|n−2∇ψ) which is conformally invariant, that is why we are interested in
problem. We will give in the appendix a negative answer to this problem. Finally, in [3
always deal with problem (2) onR2, but we suppose that the functionsa andb (like in [6])
belong to some radial weighted Sobolev spaces. We prove some similar results dep
on the value of the weight on zero.

Bethuel and Ghidaglia, also Chanillo and Li have showed in [4] and [7], that i
consider the problem{

−∑2
i,j=1 ∂i(aij ∂jφ)= ax1bx2 − ax2bx1 in Ω,

φ = 0 on∂Ω,
(6)

whereaij = aji ∈L∞(Ω) and for someλ > 0, we have the ellipticity condition

λ−1|ξ |2 �
2∑

i,j=1

aij (x)ξiξj � λ|ξ |2,

thenφ ∈C(Ω̄)∩H 1
0 (Ω) and

‖φ‖∞ + ‖∇φ‖2 � C1‖∇a‖2‖∇b‖2,

whereC1 is independent ofΩ .
Note that (1) is invariant by conformal transformations. More precisely, letT :Ω →Ω ′

be a conformal transformation, if we denote byã = a ◦ T , b̃ = b ◦ T , α̃ = α ◦ T , and
ξ̃ = ξ ◦ T , then the solutioñϕ of (1) if we replacea by ã, b by b̃, α by α̃ andξ by ξ̃ is
ϕ̃ = ϕ ◦ T .

In the following, we will suppose thatΩ = B1 the unit disc ofR2. We say thatα andξ
satisfy (A1) if
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(A1) α andξ are a radial functions (i.e.,α(x)= β(r) andξ(x)= ζ(r), wherer = |x|). We
suppose also thatβ > 0 in (0,1] andβ, ζ in C3((0,1]).

We need to introduce some assumptions. We suppose thatα andξ satisfy (A1). We say
thatα andξ satisfy (A2)–(A4) if we have

(A2) lim
r→0

rβ(r)

1∫
r

β−1(t)
dt

t
= lim

r→0
rζ(r)

1∫
r

β−1(t)
dt

t
= 0;

(A3) ω(x)≡ ω(α, ξ)(x)= −r∂r
[
ζ(r)

1∫
r

β−1(t)
dt

t

]

is a positive function on(0,1];
(A4) We haveω ∈ C2((0,1]) by (A1), we assume that∆(

√
ω )� 0 on(0,1].

Remark 1. (1) In the case of the classical Wente problem (i.e.,α = ξ = const), the quantity
ω ≡ 1.

(2) Under assumptions (A3) and (A4), we have

hω(x)= |x|2
(

1

2
∆ω− 1

4
|∇ω|2ω−1

)
ω−1 � 0.

(3) If we denote byG the Green function associated to the operator−div(α∇·) onB1,
i.e., {−div(α∇G)= δ0 in B1,

G= 0 on∂B1.
(7)

Under hypothesis (A1) and (A2), we have

G(x)=G(r)= 1

2π

1∫
r

β−1(t)
dt

t
. (8)

Letω �≡ 0 be a non-negative function and we suppose thatω ∈L1
loc(B1). Define

‖f ‖2,ω =
(∫
B1

|f |2ωdx
)1/2

. (9)

We then define the spaceHω(B1) which is the closure ofD(B1) endowed with the norm
‖∇ · ‖2,ω. HereD(B1) is the space ofC∞, compact supported functions. Denote by

V = {
(a, b)∈Hω(B1)×Hω(B1) such thata �≡ const andb �≡ const

}
. (10)

Our first result is the following
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sts
Theorem 1. Let ϕ be the solution of(1). Suppose thatα and ξ satisfy(A1)–(A3) andω
defined in(A3) is inC([0,1]) with ω(0) > 0; then

sup
(a,b)∈V

|ϕ(0)|
‖∇a‖2,ω‖∇b‖2,ω

= 1

2π
. (11)

As a consequence of the proof of Theorem 1, we have

Corollary 1. Let ϕ be the solution of(1); then for every non-negative functionα and for
every functionξ (theses functions are not necessarily radially symmetric), we denote by
ω(x) = −2πr∂r(ξ(x)G(x)). Suppose thatω is a non-negative function, and there exi
x0 ∈ B1 such thatω is continuous and positive in a neighborhood ofx0; then we have

sup
(a,b)∈V

‖ϕ‖∞
‖∇a‖2,ω‖∇b‖2,ω

� 1

2π
. (12)

Consider the space

Dω(B1)=
{
f ∈D(B1) such that lim

r→0
rω′(r)f 2(x)= 0

}
(13)

and define the spacẽHω(B1) which is the closure ofDω(B1) endowed with the norm
‖∇ · ‖2,ω. Suppose that (A4) holds; we introduce the space

Ṽ = {
a, b ∈ H̃ω(B1) such thata �≡ const andb �≡ const

}
. (14)

We prove

Theorem 2. Letϕ be the solution of(1). If α andξ satisfy(A1)–(A4), then

sup
(a,b)∈Ṽ

|ϕ(0)|
‖∇a‖2,ω‖∇b‖2,ω

� 1

2π

1(
1+ inf

B1
hω

)1/2 . (15)

We now consider the symmetry case. Let

Vr = {
(a, b) ∈ V, (a, b)(x)= ω−1/2(x)g

(|x|)x}, (16)

whereg :B1 → R is some regular function. We still suppose thatα andξ satisfy (A1), we
say thatα andξ satisfy (A5)–(A7), if

(A5) lim
r→0

r3ω′(r)ω−1(r)= 0;
(A6) lim

r→0
rβ(r)= lim

r→0
r2ω−1(r)ζ(r)= 0;

(A7) ∀r ∈ (0,1], we haveζ(r)� 0.

We have

Theorem 3. Suppose thatα andξ satisfy(A1)–(A5), hw ∈ L∞(B1), and(a, b) ∈ Vr . If ϕ
is the solution of(1), then
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gap

by
s

1

2π

1(
1+ sup

B1

hω

) � sup
(a,b)∈Vr

|ϕ(0)|
‖∇a‖2,ω‖∇b‖2,ω

� 1

2π

1(
1+ inf

B1
hω

) . (17)

Moreover, if we assume thatα andξ satisfy(A6) and(A7), thenϕ ∈L∞(B1) and we have

sup
(a,b)∈Vr

‖ϕ‖∞
‖∇a‖2,ω‖∇b‖2,ω

� 1

2π

max
{
1,sup

B1

(
ξ/(αω)

)}
(
1+ inf

B1
hω

) . (18)

Remark 2. (1) A family of examplesα andξ satisfying (A1)–(A7) is

α(x)= ξ(x)= |x|s with s >−1.

In this case, we have

ω(x)= |x|s and hω = s2

4
.

(2) When we study the classical Wente problem, we note that the supremum of

‖ϕ‖∞
‖∇a‖2‖∇b‖2

is the same onV andVr , but here using Theorem 3 and Corollary 1, we observe a
phenomenon. In particular, for the caseα(x) = ξ(x) = |x|s , thenω(x) = |x|s and−1<
s � 0, we get by (17) and (18),

sup
(a,b)∈Vr

‖ϕ‖∞
‖∇a‖2,ω‖∇b‖2,ω

= 1

2π

1

1+ s2/4
.

(3) We can prove some similar result to (18) without supposing assumption (A7). In-
deed, following the proof of Theorem 3 and using (29) and (30), we have

sup
(a,b)∈Vr

‖ϕ‖∞
‖∇a‖2,ω‖∇b‖2,ω

� 1

2π

(
1+ sup

B1

(|ξ |/(αω)))
(
1+ inf

B1
hω

) . (19)

Corollary 2. There existα andξ satisfying(A1)–(A7) such that

sup
(a,b)∈Vr

‖ϕ‖∞
‖∇a‖2,ω‖∇b‖2,ω

< sup
(a,b)∈V

‖ϕ‖∞
‖∇a‖2,ω‖∇b‖2,ω

. (20)

2. Proofs of results

2.1. Proofs of Theorem 1 and Corollary 1

We will suppose thata andb belong toD(B1). The general case can be obtained
approximatinga andb by C∞ functions with compact support. The proof of (11) follow
similar arguments used in [1,11,13]. In fact, we have
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orol-
al

fine
ϕ(0)=
∫
B1

G(x)ξ(x)(ax1bx2 − ax2bx1) dx =
1∫

0

2π∫
0

G(r)ζ(r)(arbθ − aθbr) dθ dr

=
1∫

0

2π∫
0

G(r)ζ(r)
[
(abθ)r − (abr)θ

]
dθ dr = 1

2π

1∫
0

2π∫
0

1

r
ω(r)(a − ā)bθ dθ dr,

where we have used

ω(r)= −2πr∂r
(
G(r)ζ(r)

)
and ā(r)= 1

2π

2π∫
0

a(reiσ ) dσ.

Using

2π∫
0

|a − ā|2dθ �
2π∫
0

a2
θ dθ,

we have

∣∣ϕ(0)∣∣� 1

2π

1∫
0

1

r

( 2π∫
0

a2
θ dθ

)1/2( 2π∫
0

b2
θ dθ

)1/2

ωdr

� 1

2π

( 1∫
0

2π∫
0

1

r
a2
θω dθ dr

)1/2( 1∫
0

2π∫
0

1

r
b2
θω dθ dr

)1/2

� 1

2π

(∫
B1

|∇a|2ωdx
)1/2(∫

B1

|∇b|2ωdx
)1/2

� 1

2π
‖∇a‖2,ω‖∇b‖2,ω.

The second inequality is valid by (A1) and (A3). So we get

sup
(a,b)∈V

|ϕ(0)|
‖∇a‖2,ω‖∇b‖2,ω

� 1

2π
. (21)

Now we turn to prove the inverse inequality of (21) which gives also the proof of C
lary 1. Here we do not need to suppose (A1). First, we mention that by the conform
transformations, we can suppose thatx0 = 0. Let g be a function defined in(0,∞) such
that lim

r→0
r logrg(r)= 0, g(r)= 0 if r � 1 and(a, b)(x)= g(|x|)x ∈ V .

Let ρ > 0, denote by(aρ, bρ)(x)= (a, b)(x/ρ)= g(r/ρ)(x/ρ) andϕρ the solution of
(1) corresponding toaρ andbρ . Sinceα andξ are not supposed symmetric, then we de
ω by ω(x) ≡ ω(α, ξ)(x) = −2πr∂r(ξ(x)G(x)). Throughout, we will omit the variabler
of radial functionsg,g′ for the simplicity. Note that

G(x)ξ(x)= −ω(0)
logr

(
1+ or(1)

)
.

2π
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As in [1], we have after a change of variables

ϕρ(0)= 1

4π

2π∫
0

1∫
0

rω(ρx)g2(r) dr dθ
ρ→0−→ ω(0)

2

1∫
0

rg2(r) dr.

Furthermore,

‖∇aρ‖2
2,w =

2π∫
0

1∫
0

[
rg2 + r3g′2 cos2 θ + r2(g2)′ cos2 θ

]
ω(ρx) dr dθ.

Then we have

‖∇aρ‖2
2,ω

ρ→0−→ πω(0)

1∫
0

r3g′2 dr.

In the same way, we prove that

‖∇bρ‖2
2,ω

ρ→0−→ πω(0)

1∫
0

r3g′2 dr.

Finally choosinggε(r)= rε/2−1 − 1 with ε > 0, we have

lim
ρ→0

∣∣ϕρε (0)∣∣= ω(0)

2ε

(
1+ oε(1)

)
and

lim
ρ→0

∥∥∇aρε ∥∥2
2,ω = lim

ρ→0

∥∥∇bρε ∥∥2
2,ω = πω(0)

ε

(
1+ oε(1)

)
.

We deduce that

lim
ρ→0

|ϕρε (0)|
‖∇aρε ‖2,ω‖∇bρε ‖2,ω

→ 1

2π
asε → 0. ✷

2.2. Proof of Theorem 2

Here also, we suppose thata andb belong toDω(B1). The proof of (15) follows similar
arguments used in [3]. Denote byã(x) = ω(x)1/2a(x) and b̃(x) = ω(x)1/2b(x); then we
have

ϕ(0)=
∫
B1

G(x)ξ(x)(ax1bx2 − ax2bx1)(x) dx.

By an easy computation, we have

det∇u= ω−1(ãx1b̃x2 − ãx2b̃x1)− ω−2

2

[
ã(ωx1b̃x2 −ωx2b̃x1)− b̃(ωx1ãx2 −ωx2ãx1)

]
= ω−1

(ãr b̃θ − ãθ b̃r )− ω−2 [
ã(ωr b̃θ −ωθ b̃r)− b̃(ωr ãθ −ωθ ãr)

]
.

r 2r



718 S. Baraket, I. Bazarbacha / J. Math. Anal. Appl. 284 (2003) 711–723
Using (A2) and (8), we have lim
r→0

rζ(r)G(r)= 0. So

ϕ(0)=
1∫

0

G(r)ω−1(r)ζ(r)

2π∫
0

(ãr b̃θ − ãθ b̃r ) dθ dr

+ 1

2

1∫
0

G(r)ω−2(r)ω′(r)ζ(r)
2π∫
0

b̃2
(
ã

b̃

)
θ

dθ dr

=
1∫

0

G(r)ω−1(r)ζ(r)

2π∫
0

(ãr b̃θ − ãθ b̃r ) dθ dr

−
1∫

0

G(r)ω−2(r)ω′(r)ζ(r)
2π∫
0

ãb̃θ dθ dr

= −
1∫

0

((
G(r)ω−1(r)ζ(r)

)′ +G(r)ω−2(r)ω′(r)ζ(r)
) 2π∫

0

ãb̃θ dθ dr

= −
1∫

0

ω−1(r)
(
ζ(r)G(r)

)′ 2π∫
0

ãb̃θ dθ dr

= 1

2π

1∫
0

2π∫
0

1

r
(ã − ¯̃a)b̃θ dθ dr,

where

¯̃a(r)= 1

2π

2π∫
0

ã(reiσ ) dσ.

We have then

∣∣ϕ(0)∣∣� 1

2π

( 1∫
0

2π∫
0

1

r
|ã − ¯̃a|2dθ dr

)1/2( 1∫
0

2π∫
0

1

r
b2
θ dθ dr

)1/2

.

Next, we will evaluate‖∇a‖2,ω. We have

‖∇a‖2
2,ω =

∫
B1

∣∣∇[ω−1/2ã]∣∣2ωdx =
∫
B1

ã2

4
ω−2|∇ω|2 − ãω−1∇ã · ∇ω + |∇ã|2dx.

We have

2
∫
ãω−1∇ã · ∇ωdx =

∫
ã2(|∇ω|2ω−1 −∆ω

)
ω−1dx +

2π∫ [
rω′(r)a2]1

0dθ.
B1 B1 0
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Sincea ∈Dω(B1), then

‖∇a‖2
2,ω =

1∫
0

2π∫
0

1

r
hωã

2dθ dr +
1∫

0

2π∫
0

(
rã2

r + ã2
θ

r

)
dθ dr. (22)

In the same way, we prove that

‖∇b‖2
2,ω =

1∫
0

2π∫
0

1

r
hωb̃

2dθ dr +
1∫

0

2π∫
0

(
rb̃2

r + b̃2
θ

r

)
dθ dr, (23)

where the functionhω is that given in Remark 1. Since

2π∫
0

ã2dθ �
2π∫
0

|ã − ¯̃a|2dθ and

2π∫
0

ã2
θ dθ �

2π∫
0

|ã − ¯̃a|2dθ,

and using condition (A4), we deduce that

‖∇a‖2
2,ω �

(
1+ inf

B1
hω

) 1∫
0

2π∫
0

1

r
|ã − ¯̃a|2dθ dr

and

‖∇b‖2
2,ω �

1∫
0

2π∫
0

1

r
b̃2
θ dθ dr.

Finally, we get

∣∣ϕ(0)∣∣� 1

2π

1(
1+ inf

B1
hω

)1/2
‖∇a‖2,ω‖∇b‖2,ω. ✷

2.3. Proof of Theorem 3

Let (a, b) ∈ Vr , sinceω satisfies (A5), thenVr ⊂ Ṽ . Next, we will prove (17). In this
case

ϕ(0)= 1

2

1∫
0

rg2 dr.

According to (22) and (23) it is easy to see that

‖∇a‖2
2,ω = ‖∇b‖2

2,ω = π

( 1∫
rhωg

2dr +
1∫
r3g′2 dr

)
(24)
0 0
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xi-
and

1∫
0

r3g′2 dr =
1∫

0

rg2 dr +
1∫

0

r(rg)′2 dr. (25)

We deduce by (24) and (25) that

‖∇a‖2,ω‖∇b‖2,ω � π
(
1+ inf

B1
hω

) 1∫
0

rg2 dr (26)

and then

sup
(a,b)∈Vr

|ϕ(0)|
‖∇a‖2,ω‖∇b‖2,ω

� 1

2π

1(
1+ inf

B1
hω

) .
Also, by (24), we have

|ϕ(0)|
‖∇a‖2,ω‖∇b‖2,ω

� 1

2π

1∫
0

rg2 dr

sup
B1

hω

1∫
0

rg2 dr +
1∫

0

r3g′2dr

. (27)

Taking gε(r) = rε−1, with ε > 0, then we can check that(aε, bε)(x) = ω− 1
2gε(|x|)x is

in Vr , since we can approachgε by regular functions of compact support. Using appro
mation argument, (27) holds forgε . So, we obtain

|ϕε(0)|
‖∇aε‖2,ω‖∇bε‖2,ω

� 1

2π

1

(ε− 1)2 + sup
B1

hω
.

Let ε tends to 0; then

sup
(a,b)∈Vr

|ϕ(0)|
‖∇a‖2,ω‖∇b‖2,ω

� 1

2π

1(
1+ sup

B1

hω

)
and the proof of (17) is completed.

Next, we turn to prove (18). By (1), we have

−1

r

d

dr

[
rβ(r)

dϕ

dr

]
= ζ(r)

2r

d

dr

(
r2ω−1(r)g2(r)

)
= 1

2r

d

dr

(
r2ζ(r)ω−1(r)g2(r)

)− 1

2
rω−1(r)ζ ′(r)g2(r).

By (A5) and (A6), we have
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ϕ(r)= 1

2

1∫
r

tζ(t)β−1(t)ω−1(t)g2(t) dt − 1

2

1∫
r

1

tβ(t)

t∫
0

σ 2ζ ′(σ )ω−1(σ )g2(σ ) dσ dt

= 1

2

1∫
r

tg2(t) dt − πG(r)

r∫
0

t2ζ ′(t)ω−1(t)g2(t) dt

= 1

2

1∫
0

tg2(t) dt +
r∫

0

t

[
πtζ ′(t)

(
G(t)−G(r)

)− 1

2

ζ(t)

β(t)

]
ω−1(t)g2(t) dt.

Using (A3), we get

πtζ ′(t)� ζ(t)

2β(t)G(t)
for all t ∈ (0,1), (28)

and the following estimates hold:

ϕ(r)� 1

2

1∫
0

tg2(t) dt − 1

2

r∫
0

tω−1(t)
ζ(t)G(r)

β(t)G(t)
g2(t) dt, (29)

ϕ(r)� 1

2

1∫
r

tg2(t) dt − 1

2

r∫
0

tω−1(t)
ζ(t)G(r)

β(t)G(t)
g2(t) dt. (30)

We deduce by (A7) that

‖ϕ‖∞ � 1

2
max

{
1,sup

B1

ξ

αω

} 1∫
0

tg2(t) dt. (31)

Using (26), we have

‖ϕ‖∞
‖∇a‖2,ω‖∇b‖2,ω

� 1

2π

max
{
1,sup

B1

(
ξ/(αω)

)}
(
1+ inf

B1
hω

) .

The proof of Theorem 3 is completed.✷

Appendix A

Lemma A.1. Letu ∈W1,n(Rn,Rn), consider the following problem:{−∆nψ = −div
(|∇ψ|n−2∇ψ)= det∇u in R

n,

lim ψ(x)= 0. (A.1)

|x|→+∞
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mula
m
n

type
Then, we have

sup
∇u �=0

‖ψ‖n−1∞
‖∇u‖nn

= +∞. (A.2)

A.1. Proof of Lemma A.1

The operator−∆n is nonlinear, then we cannot give an integral representation for
of the solutionψ . But we hope thatψ is in L∞(Rn) since the right-hand side of proble
(A.1) is in the Hardy spaceH1(Rn). Also, for the operator−∆n there exists some functio
which plays the “same” role as a Green function

G(x)= − 1

σn−1
n

log|x|

(we have−∆nG = δ0 in D′(Rn)). Moreover the function logr is in BMO which is the
dual ofH1(Rn). For all these reasons, we could think to prove some inequality of the

‖ψ‖n−1∞ � C‖∇u‖nn.
The power (n− 1) is due to some homogeneity considerations (if we replaceu by λu then
the solution of (A.1) isλn/(n−1)ψ). Unfortunately, the best constant is+∞. Indeed, if we
chooseuε(x)= gε(r)x with gε(r)= rε−1e−(n−1)/nr with ε > 0, then

det∇uε = 1

nrn−1

d

dr

(
rngnε (r)

)
.

Problem (A.1) is equivalent to

− 1

rn−1

d

dr

[
rn−1

(
dψε

dr

)n−1]
= 1

nrn−1

d

dr

(
rngnε (r)

)
.

We have then

ψε(r)= 1

n1/(n−1)

+∞∫
r

t1/(n−1)gn/(n−1)
ε (t) dt.

So

‖ψε‖∞ = n− 1

nn/(n−1)ε

(
1+ oε(1)

)
.

By an easy computation, we have|∇uε|2 = ng2
ε (r)+ 2rgε(r)g′

ε(r)+ r2g′2
ε (r) and then

‖∇uε‖nn = σn(n− 1)n/2

nε

(
1+ oε(1)

)
.

We easily see that

lim
ε→0

‖ψε‖n−1∞
‖∇uε‖nn

= +∞. ✷
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