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1. Introduction and statement of theresults

The Jacobian d&tu of some vector field: belonging tow1*(R”, R") plays a par-
ticular role in various partial differential equation arising from calculus of variations,
mechanics, and geometry. Although &et is only integrable, but due to its special struc-
ture this quantity has some suitable regularity properties. Recently in [8], Coifman et al.
have shown that d&tu belongs to the Hardy spa@¢' (R"), a strict subspace df*(R").

In this paper, we shall focus on the case- 2. Let £2 be a smooth and bounded do-
main inR?. Givena # 0 a non-negative measurable function and/et (¢, b) andé be
functions defined o2. Consider the following problem:

{ —div(aVe) = £ detVu = &(ay, by, — ax,by,) i 2, W

=0 onos2,

wherex = (x1, x2) anda, b are two functions belonging to some weighted Sobolev spaces

which will be defined later. For = 1, 2, a,, denote the partial derivative with respect

to the variabler;. If £2 = R2, we consider the limit conditior|1| lim g(x) = 0, where
X|—>+00

x| = r = (x2 + x3)2. In the casex = & = const, problem (1) is the classical Wente
problem

— Ay =detVu = ay, by, — ax,by, N 82, @)
v =0 onoas2.

The classical Wente problem arises in the study of constant mean curvature immersions.
The functioné in (1) plays the role of the mean curvature of the surfaga:, b)(£2).
Whenu = (a, b) € HX(£2,R?), it is proved in [5,12,13] thai/, the solution of (2), is in
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L>®(£2). In particular, this provides control &y in L2($2) and continuity ofy: by simple
arguments. We also have

1¥lloo + IV ll2 < Co($2) | Vall2l VD2 3)
Denote by
Coo(2)= sup Wl (4)

va,vb20 IVall2llVb|l2
and

IVill2
Co(2)= sup ————.
Vv IVal2IVblz
It is proved in [1,11,13] thaCu (£2) = 1/(27) and in [9] thatC2(£2) = /3/(167) (see
also [10]).
In [2], we give a generalization of problem (2) in Higher dimensions. We suppose that
u € Wh(R", R") and we replace the operatera in (2) by (—A)"/2. We proved thaiy
is in L R"), for 1< k <n/2, VEy is in L *(R™) and we also

¥ lloo + IV* Y llnyx < ClIVully.

Moreover, we give the best constant involving th& norm. We can imagine another
generalization of problem (2) by using for example the nonlinear operattyyr =
—div(|Vy|"2Vy) which is conformally invariant, that is why we are interested in this
problem. We will give in the appendix a negative answer to this problem. Finally, in [3] we
always deal with problem (2) dR?, but we suppose that the functiomaindb (like in [6])
belong to some radial weighted Sobolev spaces. We prove some similar results depending
on the value of the weight on zero.

Bethuel and Ghidaglia, also Chanillo and Li have showed in [4] and [7], that if we
consider the problem

- Z§j=l 3i(aij0jP) = ax,bx, — ax,bx; N £2, (6)
¢=0 onas2,
wherea;; = a;; € L*°(£2) and for some. > 0, we have the ellipticity condition
2
AHEP S Y aj(EE <MEP
i,j=1

theng € C(2) N H}(£2) and

l$llco + IVOIl2 < C1lIVall2llVDIl2,

where(C1 is independent of2.

Note that (1) is invariant by conformal transformations. More precisely, le? — 2’
be a conformal transformation, if we denotedy=a o T, b=boT, & =a o T, and
€ =& o T, then the solutior of (1) if we replaces by a, b by b, « by @ andé by € is
(Z) =@o T.

In the following, we will suppose tha® = B; the unit disc ofR?. We say thatr and&
satisfy (A) if

(5)
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(A1) «a and¢ are aradial functions (i.ex(x) = B(r) andé(x) = ¢ (r), wherer = |x]|). We
suppose also thgt > 0in (0, 1] andB, ¢ in C3((0, 1]).

We need to introduce some assumptions. We suppose tradé satisfy (A). We say
thata andé& satisfy (A)—(A4) if we have

1 1
(o) limepo) [0 S = i [0S =0

1
d
(A3) w(x) =w(a,§)(x) = —ro, [C(V)/ﬂl(t) Tt}

is a positive function ori0, 1];
(Az) We havew € C2((0, 1]) by (A1), we assume that (/w) > 00n (0, 1].

Remark 1. (1) In the case of the classical Wente problem (xes & = const), the quantity

w=1.
(2) Under assumptions ghand (A1), we have

1 1
he(x) = |x|2(§Aw _ ZIlezwl)a)l >0.

(3) If we denote byG the Green function associated to the operatdiv(eV-) on By,
ie.,

{ —div(@VG) =8y in B, e
G=0 onodBj.
Under hypothesis (f) and (4), we have
1
G(x)=G(r>=%/ﬂ—1(t)?. (8)
Let w # 0 be a non-negative function and we supposecthatLﬁ)C(Bl). Define

/ 1/2
||f||2,w=< |f|2wdx> : )
B

We then define the spaég, (B1) which is the closure oD(B1) endowed with the norm
IV - ll2.0. HereD(B1) is the space of *°, compact supported functions. Denote by

V ={(a,b) € H,(B1) x Hy,(B1) such thau # const and # cons}. (10)

Ouir first result is the following
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Theorem 1. Let ¢ be the solution of1). Suppose that and ¢ satisfy(A1)—(A3) and w
defined in(A3) is in C([0, 1]) with w(0) > 0; then
lp(0)] 1

—_ = (11)
@pev IVallzulVbl2e 27

As a consequence of the proof of Theorem 1, we have

Corollary 1. Let ¢ be the solution o{1); then for every non-negative functianand for
every functiort (theses functions are not necessarily radially symmgtvi@ denote by
w(x) =—-27rd,(£(x)G(x)). Suppose thab is a non-negative function, and there exists
x% e By such thaiw is continuous and positive in a neighborhood8f then we have

loloe 1

T (12)
@bev IVallzwllVbll2,e = 27
Consider the space
D, (B1) = { f € D(By) such that limve/ () f2(x) = o} (13)

and define the spacH,(B1) which is the closure o, (B1) endowed with the norm
IV - ll2.0. Suppose that (8 holds; we introduce the space

V ={a, b e H,(By) such that # const and # consj. (14)

We prove

Theorem 2. Let ¢ be the solution of1). If « and& satisfy(A1)—(A4), then

b 1 1 as)

; = 1/2
@bev IVal20lVbl2w 27 (1+infhw) /
B
We now consider the symmetry case. Let
V, ={(a,b) eV, (a,b)(x) =~ 2(x)g(Ix])x}, (16)

whereg : B — R is some regular function. We still suppose thandé satisfy (A), we
say thatr andé¢ satisfy (As)—(A7), if

(As) |im0r3w’(r)w—1(r) =0;

(A6) Iimor,B(r) = |im0r2w*1(r)g(r) =0
(A7) Vr € (0, 1], we haver (r) > 0.

We have

Theorem 3. Suppose that and¢ satisfy(A1)—(As), hy € L°°(B1), and(a,b) € V,. If ¢
is the solution of(1), then
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1 1 l@(0)] 1 1
m———< < <5o . (17)
2m (1+ suphw) @bev, IVallzolVblze — 27 (1+ inf hw)
By By

Moreover, if we assume thatandé satisfy(Ag) and (A7), theng € L°°(B1) and we have

max{ 1, sBulp(é / (aa)))}

1
loloe L . a8)

@bev, IVal2oll Vb2, — 27 <1+infhw>
By

Remark 2. (1) A family of examplesr andé¢ satisfying (A)—(A7) is
a(x)=&Ex)= x| withs > —1.

In this case, we have

2
o) =[x and hwz%

(2) When we study the classical Wente problem, we note that the supremum of
lelloo

Vall2llVDll2
is the same orV andV,, but here using Theorem 3 and Corollary 1, we observe a gap
phenomenon. In particular, for the caséx) = £(x) = |x|*, thenw(x) = |x|* and—1 <
s <0,we getby (17) and (18),

lelloo _ i 1
@pev, IVal2.olVbl2w 27 14 s2/4

(3) We can prove some similar result to (18) without supposing assumptign I(A
deed, following the proof of Theorem 3 and using (29) and (30), we have

Il y (1 suler/e)

< 19
@bev, IVall2ulVbl2e = 27 <1+ infhw> 49
B
Corollary 2. There existr and¢ satisfying(A1)—(A7) such that
l¢lloo l¢lloo (20)

(a,b)eV, Va ||2,w|| Vb”Z,w (a,b)eV Va ||2,w ”Vb”Z,w .

2. Proofsof results
2.1. Proofs of Theorem 1 and Corollary 1
We will suppose thatt andb belong toD(B1). The general case can be obtained by

approximating: andb by C* functions with compact support. The proof of (11) follows
similar arguments used in [1,11,13]. In fact, we have
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¢(0)=/G(X)§(x)(ax1b;c2—abexl)dx=//G(F)C(V)(arb9 —agby)dodr

B
1 27 1 27
//G(r){(r)[(abg)r — (ab, )9 d9 dr = %// %a)(r)(a —a)bgdo dr,
00

where we have used
21

o) = —27tr8r(G(r)§(r)) and a(r)= %/a(rei“)dcr.
0

Using
2n 2n
/la —al?de < /agde,
0 0
we have
1 2 1/2 , 2n 1/2
lp(0)] < o | aydo bjdf | wdr
0 0

1
S oo 1VallzolVEl2e-

The second inequality is valid by ¢ghand (Ag). So we get

p©@I 1 21)
@pev IVall2wllVbl2,w = 27

Now we turn to prove the inverse inequality of (21) which gives also the proof of Corol-
lary 1. Here we do not need to suppose YAFirst, we mention that by the conformal
transformations, we can suppose thét= 0. Let ¢ be a function defined K0, co) such
that IirTg)r logrg(r) =0,g(r)=01if r > 1 and(a, b)(x) =g(Jx)x € V.

Let p > 0, denote bya”, b*)(x) = (a, b)(x/p) = g(r/p)(x/p) ande” the solution of
(1) corresponding ta® andb”. Sincex andé are not supposed symmetric, then we define
wbyowkx)=w(a, &) (x) =—-27rd,(§(x)G(x)). Throughout, we will omit the variable
of radial functionsg, g’ for the simplicity. Note that

G(x)E(x) = —Q logr(1+ o,(1)).
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As in [1], we have after a change of variables
27 1

0” (0) = //rw(px)g ydrdo "0 2L )/rg ) dr.

Furthermore,
27 1
Va3, =// rg®+r3g'2cof 6 + r2(g?)’ cog 8w (px) dr db.
Then we have
0
Iva?|2, = rra)(O)/r3g'2dr.
In the same way, we prove that

0
Ivo)3,, = ﬂa)(O)/r?’g/zdr.

Finally choosingg, (r) = r/2~1 — 1 with ¢ > 0, we have

lim o2 = 22 9 (14 0.1))
and
lim | Va3, = lim | V53, = 00 (14 0,0
We deduce that
ol 1

p=0 |Valll2wlVbE 20 27
2.2. Proof of Theorem 2

Here also, we suppose thatindb belong toD,, (B1). The proof of (15) follows similar
arguments used in [3]. Denote Byx) = w(x)Y2a(x) andb(x) = w(x)¥2b(x); then we
have

00 = [ GOED @ubas ~ anbu) () dx.
By
By an easy computation, we have
~ ~ a)_z ~ ~ ~
detVu = o Y (ay, by, — dx,byy) — 7 [@(wx1bx, — @xybr;) — D@3y, — Wxpidny) ]
-1
= wT(flrl;e —agh,) — wz—[ (0rbg — wyby) — b(wrdp — wpay)).
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Using (A2) and (8), we have Iigmg(r)G(r) =0.So

1 2

0(0) = / G () / GrBo — dgby) dO dr

0
%/G(r)w_z(r)w (r)i(r)/b2< ) dodr
0
1

=/G(r)afl(r)§(r)/(5rl;9 — Ggby)do dr
0 0
1

— / G 2(re (e (r) / aby dO dr
0

2

0
1
/((G(r)w—l(r)g(r)) + G %) (r)g(r))/5159 do dr
0 0

1 2
/a) (r) {,’(r)G(r) /abgd@dr
0 0

1 27
_1 1(~ a)bp do d
—Z ; a a)bg r,
00

where
2
é_l(r)=—/c~l(re’”)dcr
0
We have then
127 12 , 12n 12
1. 1,
0 (0] < Zla—al2dodr “p2dedr| .
r r
0 00
Next, we will evaluat3|Va||2,w. We have
=2
IVall3,, = |V[w_1/25]|2de=f%w‘zlvwlz—aw—lva-va)+|va|2dx.

B1 By
We have
2

zfglw—lvg, Vwdx = /&2(|Va)|2w_1 — Aa))a)_ldx + /[rw'(r)az](l)de.

By By 0
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Sincea € D, (B1), then

1 27 1
2 1 ~2
IVal3, = “hoa®df dr +
00 0

In the same way, we prove that

(ra + )d@dr. (22)

1 27
Vo3, = // ~h b2d9dr+//(rb2 )d@dr (23)

where the functiork,, is that given in Remark 1. Since

/~2d9 /|a—a| d9 and /gde /Ia—al de,

and using condition (4), we deduce that

1 27
||Va||2w/ 1+|nfh —la—al“dédr
r
0 0

and

Finally, we get

1 1
l90)| < 5= ———5IVal2wlVbl2e. O
. /2 ’ >
2 (1+|nfhw)
By

2.3. Proof of Theorem 3

Let (a, b) € V,, sincew satisfies (&), thenV, C V. Next, we will prove (17). In this
case

1

1
0(0) = —/rgzdr.
2
0
According to (22) and (23) it is easy to see that

1
IVal3,, = ||Vb||%)w=n(/rhwg dr—i—/ g’zdr> (24)
0
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and
1 1 1
/r3g/2dr=/rg2dr+/r(rg)/2dr. (25)
0 0 0
We deduce by (24) and (25) that
1
IVall2wllVbll2e > n(1+ iglfhw)/rgzdr (26)
0
and then
lp(0)] <1 1

@bev, IVal2oll Vb2, — 27 (]__|_infhw).
By

Also, by (24), we have

1
/rgzdr
lp(0)| 1 0

— > . (27)
IVall2ollVbll2e = 27 1

1
Suphw/rgzdr+/r3g'2dr
0

B

Taking g. (r) = r*~1, with & > 0, then we can check tha,, b,) (x) = @~ 2 g, (|x|)x is
in V,., since we can approagh by regular functions of compact support. Using approxi-
mation argument, (27) holds fgg. So, we obtain

lpe (0] S 1 1

IVaell2.0llVbell2.0 ~ 27 (€ — 1)2 + Suphy,’
By

Let ¢ tends to O; then

bOl 1 1
(a,b)eV, IVall2,ull Vb2, T 2n (1+Suphw>
B

and the proof of (17) is completed.

Next, we turn to prove (18). By (1), we have
Ldf o de] (0 d oo
r dr |:r,3(r) dri| T 2r dr (r w (g (r))
_14
C2r dr
By (As) and (Ag), we have

1
(r2c (o) g%(r) — Erwfl(r)c’mgz(r).
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1 1

t

_1 1 1 2 _}/i/ 2,1 1, .2
p(r)= 2/t§(f)/3 B " (1)g" () dt 2] B0 0t (0)w " (0)g (o) dodt
0

r r

1 r

= %/tgz(t)dt—n'G(r)/tzf’(t)afl(t)gz(t)dt
0

1 r
N / _ _ LD 1,2
= Z/tg (t)dt—i—/t[ﬂt{ 0 (G@t) —G(1r)) 2ﬂ(r)}" (1) g°(t) dt.
0 0
Using (Ag), we get
/ ()
wre' (1) < 72,3(t)G(t) forallr € (0, 1), (28)
and the following estimates hold:
17 1] OGr)
/.2 1 —1,,, 506G 5
p(r) < zftg (t)dt 2/“” (t),B(t)G(t)g (t)dt, (29)
0 0
1] 1] OG)
4 2 4 ~1,,.8@0GI) ,
p(r) > Z/tg (t)dt 2/”" (t),B(t)G(t)g (t)dt (30)
r 0
We deduce by (4 that
L 1
lolloo < —max{l, supi}/tgz(t) dt. (31)
2 B, QW
Using (26), we have
maxi 1, sup &/ (aw)
¢l 1 { Blp( )}
IValzolVblzw 27 (1+infh,)
B
The proof of Theorem 3 is completedn
Appendix A
LemmaA.l Letu € WL (R", R"), consider the following problem
—Ap¥ = —div(|Vy["2Vy) =detVu  inR",
: im_ () =0, (A1)
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Then, we have
lyliast

vuzo Vull;

(A.2)

A.1. Proof of LemmaA.1

The operator A4, is nonlinear, then we cannot give an integral representation formula
of the solutionyr. But we hope that/ is in L°(R") since the right-hand side of problem
(A.1) is in the Hardy spac&(R"). Also, for the operator A, there exists some function
which plays the “same” role as a Green function

G(x)=—

log|x]|
ot

(we have—A, G = §g in D'(R")). Moreover the function log is in BMO which is the
dual of H1(R™). For all these reasons, we could think to prove some inequality of the type

It < CIVul?.

The power ¢ — 1) is due to some homogeneity considerations (if we repldzgiu then
the solution of (A.1) isv/ *—Dy,). Unfortunately, the best constantisx. Indeed, if we
choosar, (x) = g¢ (r)x with g¢(r) = r¢~Le= =D/ with ¢ > 0, then

1 d
detVug = m Z(rng;’(r))

Problem (A.1) is equivalent to

1 d[ ,qfdve\""] 1 d,,,
‘rn—la[r (d—) = a1 gy U8 ):

We have then

1
Ve () = —76—5 /tl/("‘l)g;’/("—1>(t)dt.

r

So

n
Ve lloo = M(lﬁ-%(l))'

By an easy computation, we halu.|? = ng?(r) + 2rg. (r)gL.(r) +r2g.?(r) and then

on(n — 1)"/2
IVuelly = ————"— ——(L+0:().

We easily see that

n—1
jim Weloe oo
e—0 ||Vug||Z
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