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‘Consider arrangements of N elements of two kinds, 4 and B, such that any
segment of length m contains at least k type 4 elements. We evaluate the number
of such arrangements.

1. INTRODUCTION AND SUMMARY

The purpose of this paper is to illustrate the use of Karlin-McGregor’s
Theorem [6}, on coincidence probabilities, to an enumeration problem with N
elements of two kinds.

Suppose we have M, type A elements and M, type B elements, M, + M, =
N. Consider arrangements that have at least k A elements in any segment of
length m, where by a segment of length m we mean a consecutive string of m
elements. In the next section we evaluate the number of such arrangements.

Karlin and McGregor’s result has been applied to solve various probabilistic
problems: L-candidate ballot problems—Barton and Mallows [1] and Naus
[8]; generalized birthday probabilities—Huntington [3], Naus [8], and
Saperstein [9], [10]; clustering probabilities—Huntington and Naus [7],
Wallenstein and Naus [11], [12]; multiple coverage probabilities—Glaz and
Naus [2].

It is our hope that this method could be applied to other enumeration
problems.

2. THE MAIN RESULT

Represent each of the (L’,Vl) possible arrangements of the N given elements
by a vector x = (x; , X5 ,..., xy), where x,; = 1 (respectively, x; = 0) if the
ith element in the arrangement is an A (respectively, B). Let S ., (respectively,
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T.m) be the set of all arrangements in which any segment of length m contains
at least k (respectively, at most k) 4 (respectively, B) elemeats. Then,

a+m—1
Se.m = {X; inf Y x> k; 1))
1ISaSN-m+1  j—p
and
n+m—1
Th,m = 1X; sup Z (1 — x,') < h%. (2)
1<REN=-M+1  j=p

LeMMA 1. For | <k <<m < N integers, Sy.m = Tn_tom -

Proof. Follows from Egs. (1) and (2).

Let 0y, and 7, denote the cardinalities of the sets S, ,, and Ty,
respectively. It follows from Lemma 1 that 9, ,, = % _p.m -

Let b = N — Lm, where L is the largest integer in N/m. Subdivide the N
positions in the arrangements into L + 1 parts, I;, i=1,., L+ 1:
L={(—1m+1, (i—Um+2,..,im}, for i=1, 2,..,L; and [, =
{Lm + 1, Lm + 2,..., Lm 4+ b = N}. Let n; denote the number of B elements
in the ith part.

THEOREM 1. For | <k <m and M, = kL + max(0, k + b — m) inte-
gers,

Orm = Z det(c;,), 3)
P1
where for | <i <L+ 1
& b \ym—b
Cij == , ] = 1,..., L
’ t=ﬂ§1+1 (t — ai)(ﬂj — t)
b

— s j == L 1, 4
(/SL+1 — 0‘1') / + @

and

L
wu=L+1—Dm—k+1)—3% n, i=1..,L

B, — o, + ny, j=lLe,L+1 (6

P1 is the set of all partitions of My into L + | integers n; satisfyingn, <m — k,
fori=1,2.., L;and n,,, < min(b, m — k).

Proof.- Let n; be the number of B elements in [, for i = 1,..., L 4+ 1 and
{ny 5., By} € P1. Following Huntington [3], Naus [8], and Saperstein [10]
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associate L + 1 paths that start at (0, o;) and end at (m;, B;) and have n;
moves up and m; — n; horizontal moves, where «; and B; are given by
equations (5) and (6), respectively; m; =m for i =1,..., L and my, = b.
Then 7y, is equal to the number of realizations of the L + 1 paths
defined above, such that none of the paths ever coincide. Saperstein [10]
shows that this is equal to the det(c;;), where c;; is given by Eq. (4). It follows
from Lemma 1, that for fixed {n, ,..., #,,,} € P1, &;,,, = det(c;;). Summing
over all possible {n, ,..., n.,,} € P1 we obtain the result given by Eq. (3).

For the case M/m = L, L > 2 an integer it follows from Naus [8] and
Lemma 1,

THEOREM 2. For 2 <k, M/m = L, L an integer, L > 2

O = (MOEY det[1/d;;! (m — dip)!),
P2
where

i=i
dy=(G—m—k+1)~Yn-+n, for 1<i<j<IL,
t=1

=G—dm—k+ 1)+ n, for 1 <j<i<L.

t=j

P2 is the set of all partitions of M, into L integers n; satisfying n, <m — k,
i=1,.,L

Further simplification is obtained from Naus [8] for the special case of
N/m = L, L an integer greater than one, and M; > N — 2(m — k).

THEOREM 3. Fork 22, Nm =L, L >2and M; =2 N —2m — k + 1)
integers,

e =) =2 % (0 ")

t=m—k-+1
L=k D =M1 (, )y, S el
)
Proof. It follows from Naus [8, Corollary 2] that for M, < 24
_(Ny_, & myN—m
= (ag) =2 2 (7)o, )
Fleksn == )G 5 ) ®

Using the identity &, ,, = 9y_x.» and Eq. (8), we obtain the result given by
Eq. (7).
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