Note
 The Number of Dense Arrangements

J. Glaz
Department of Mathematics and Statistics, Case Western Reserve University, Cleveland, Ohio 44106
Communicated by Gian-Carlo Rota

Received March 1, 1979

Consider arrangements of N elements of two kinds, A and B, such that any segment of length m contains at least k type A elements. We evaluate the number of such arrangements.

1. Introduction and Summary

The purpose of this paper is to illustrate the use of Karlin-McGregor's Theorem [6], on coincidence probabilities, to an enumeration problem with N elements of two kinds.

Suppose we have M_{1} type A elements and M_{2} type B elements, $M_{1}+M_{2}=$ N. Consider arrangements that have at least $k A$ elements in any segment of length m, where by a segment of length m we mean a consecutive string of m elements. In the next section we evaluate the number of such arrangements.

Karlin and McGregor's result has been applied to solve various probabilistic problems: L-candidate ballot problems-Barton and Mallows [1] and Naus [8]; generalized birthday probabilities-Huntington [3], Naus [8], and Saperstein [9], [10]; clustering probabilities-Huntington and Naus [7], Wallenstein and Naus [11], [12]; multiple coverage probabilities-Glaz and Naus [2].

It is our hope that this method could be applied to other enumeration problems.

2. The Main Result

Represent each of the $\binom{N}{M_{1}}$ possible arrangements of the N given elements by a vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{N}\right)$, where $x_{i}=1$ (respectively, $\left.x_{i}=0\right)$ if the i th element in the arrangement is an A (respectively, B). Let $S_{k, m}$ (respectively,
$T_{h, m}$) be the set of all arrangements in which any segment of length m contains at least k (respectively, at most h) A (respectively, B) elements. Then,

$$
\begin{equation*}
S_{k, m}=\left\{\mathbf{x} ; \inf _{1 \leqslant n \leqslant N-m+1} \sum_{i=n}^{n+m-1} x_{i} \geqslant k\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{h, m}=\left\{\mathbf{x} ; \sup _{1 \leqslant n \leqslant N-m+1} \sum_{i-n}^{n+m-1}\left(1-x_{i}\right) \leqslant h\right\} . \tag{2}
\end{equation*}
$$

Lemma 1. For $1 \leqslant k \leqslant m \leqslant N$ integers, $S_{k, m}=T_{m-k, m}$.
Proof. Follows from Eqs. (1) and (2).
Let $\partial_{k, m}$ and $\eta_{k, m}$ denote the cardinalities of the sets $S_{k, m}$ and $T_{k, m}$, respectively. It follows from Lemma 1 that $\partial_{k, m}=\eta_{m-k, m}$.

Let $b=N-L m$, where L is the largest integer in N / m. Subdivide the N positions in the arrangements into $L+1$ parts, $I_{i}, i=1, \ldots, L+1$: $I_{i}=\{(i-1) m+1,(i-1) m+2, \ldots, i m\}$, for $i=1,2, \ldots, L ;$ and $I_{i+1}=$ $\{L m+1, L m+2, \ldots, L m+b=N\}$. Let n_{i} denote the number of B elements in the i th part.

Theorem 1. For $1 \leqslant k \leqslant m$ and $M_{1} \geqslant k L+\max (0, k+b-m)$ integers,

$$
\begin{equation*}
\partial_{k, m}=\sum_{P 1} \operatorname{det}\left(c_{i j}\right) \tag{3}
\end{equation*}
$$

where for $1 \leqslant i \leqslant L+1$

$$
\begin{align*}
c_{i j} & =\sum_{t=\beta_{L+1}+1}^{\beta_{j}}\binom{b}{t-\alpha_{i}}\binom{m-b}{\beta_{j}-t}, & j=1, \ldots, L \\
& =\binom{b}{\beta_{L+1}-\alpha_{i}}, & j=L+1, \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
\alpha_{i} & =(L+1-i)(m-k+1)-\sum_{r=i}^{L} n_{r}, & & i=1, \ldots, L \\
& =0, & & i=L+1, \tag{5}\\
\beta_{j} & =\alpha_{j}+n_{j}, & & j=1, \ldots, L+1 .
\end{align*}
$$

$P 1$ is the set of all partitions of M_{2} into $L+1$ integers n_{i} satisfying $n_{i} \leqslant m-k$, for $i=1,2, \ldots, L ;$ and $n_{L+1} \leqslant \min (b, m-k)$.

Proof. Let n_{i} be the number of B elements in I_{i} for $i=1, \ldots, L+1$ and $\left\{n_{1}, \ldots, n_{L+1}\right\} \in P 1$. Following Huntington [3], Naus [8], and Saperstein [10]
associate $L \mid 1$ paths that start at $\left(0, \alpha_{i}\right)$ and end at $\left(m_{i}, \beta_{i}\right)$ and have n_{i} moves up and $m_{i}-n_{i}$ horizontal moves, where α_{i} and β_{i} are given by equations (5) and (6), respectively; $m_{i}=m$ for $i=1, \ldots, L$ and $m_{L+1}=b$. Then $\eta_{m-k, m}$ is equal to the number of realizations of the $L+1$ paths defined above, such that none of the paths ever coincide. Saperstein [10] shows that this is equal to the $\operatorname{det}\left(c_{i j}\right)$, where $c_{i j}$ is given by Eq. (4). It follows from Lemma 1, that for fixed $\left\{n_{1}, \ldots, n_{L+1}\right\} \in P 1, \partial_{k, m}=\operatorname{det}\left(c_{i j}\right)$. Summing over all possible $\left\{n_{1}, \ldots, n_{L+1}\right\} \in P 1$ we obtain the result given by Eq. (3).

For the case $M / m=L, L \geqslant 2$ an integer it follows from Naus [8] and Lemma 1,

Theorem 2. For $2 \leqslant k, M / m=L, L$ an integer, $L \geqslant 2$

$$
\partial_{k, m}=(m!)^{L} \sum_{P 2} \operatorname{det}\left[1 / d_{i j}!\left(m-d_{i j}\right)!\right],
$$

where

$$
\begin{aligned}
d_{i j} & =(j-i)(m-k+1)-\sum_{i=i}^{j-i} n_{t}+n_{i}, & & \text { for } \quad 1 \leqslant i<j \leqslant L \\
& =(j-i)(m-k+1)+\sum_{t=j}^{i} n_{t}, & & \text { for } \quad 1 \leqslant j \leqslant i \leqslant L
\end{aligned}
$$

$P 2$ is the set of all partitions of M_{2} into L integers n_{i} satisfying $n_{i} \leqslant m-k$, $i=1, \ldots, L$.

Further simplification is obtained from Naus [8] for the special case of $N / m=L, L$ an integer greater than one, and $M_{1}>N-2(m-k)$.

Theorem 3. For $k \geqslant 2, N / m=L, L \geqslant 2$ and $M_{1} \geqslant N-2(m-k+1)$ integers,

$$
\begin{align*}
\partial_{k, m}= & \binom{N}{M_{2}}-2 \sum_{t=m-k+1}^{M_{2}}\binom{m}{t}\binom{N-m}{M_{2}-t} \\
& +\left[L(m-k+1)-M_{2}-1\right]\binom{m}{m-k+1}\binom{N-m}{M_{2}-m-k-1} \tag{7}
\end{align*}
$$

Proof. It follows from Naus [8, Corollary 2] that for $M_{2}<2 h$

$$
\begin{align*}
\eta_{h, m}= & \binom{N}{M_{2}}-2 \sum_{t=k+1}^{M_{-}}\binom{m}{t}\binom{N-m}{M_{2}-t} \\
& +\left[L(k+1)-M_{2}-1\right]\binom{m}{k+1}\binom{N-m}{M_{2}-k-1} \tag{8}
\end{align*}
$$

Using the identity $\partial_{k, m}=\eta_{m-k, m}$ and Eq. (8), we obtain the result given by Eq. (7).

References

1. D. E. Barton and C. L. Mallows, Some aspects of the random sequence, Ann. Math. Statist. 36 (1965), 236-260.
2. J. Glaz and J. Naus, Multiple coverage of the line, Ann. Probability 7 (1979), in press.
3. R. J. Huntington, "Distributions and expectations for clusters in continuous and discrete cases, with Applications," Ph.D. thesis, Rutgers University, 1974.
4. R. J. Huntington and J. I. Naus, A simpler expression for k-th nearest neighbour coincidence probabilities, Ann. Probability 3 (1975), 894-896.
5. F. K. Hwang, A generalization of the Karlin-McGregor theorem on coincidence probabilities and an application to clustering, Ann. Probability 5 (1977), 814-817.
6. S. Karlin and G. McGregor, Coincidence probabilities, Pacific J. Math. 9 (1959), 1141-1164.
7. J. I. Naus, The distribution of the size of the maximum cluster of points on a line, J. Amer. Statist. Assoc. 60 (1965), 532-538.
8. J. I. Naus, Probabilities for the generalized birthday problem, J. Amer. Statist. Assoc. 69 (1974), 810-815.
9. B. Saperstein, The generalized birthday problem, J. Amer. Statist. Assoc. 67 (1972), 425-428.
10. B. Saperstein, Note on a clustering problem, J. Appl. Probability 12 (1975), 629-632.
11. S. R. Wallenstein and J. I. Naus, Probabilities for a k-th nearest neighbour problem on the line, Ann. Probability 1 (1973), 188-190.
12. S. R. Wallenstein and J. I. Naus, Probabilities for the size of largest clusters and smallest intervals, J. Amer. Statist. Assoc. 69 (1974), 690-697.
