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Consider arrangements of N elements of two kinds, A and B, such that any 
segment of length m contains at least k type A elements. We evaluate the number 
of such arrangements. 

1. INTRODUCTION AND SUMMARY 

The purpose of this paper is to illustrate the use of Karlin-McGregor’s 
Theorem [6], on coincidence probabilities, to an enumeration problem with N 
elements of two kinds. 

Suppose we have Ml type A elements and M, type B elements, M1 + M, = 
N. Consider arrangements that have at least k A elements in any segment of 
length m, where by a segment of length m we mean a consecutive string of m 
elements. In the next section we evaluate the number of such arrangements. 

Karlin and McGregor’s result has been applied to solve various probabilistic 
problems: L-candidate ballot problems-Barton and Mallows [l] and Naus 
[8]; generalized birthday probabilities-Huntington [3], Naus [8], and 
Saperstein [9], [lo]; clustering probabilities-Huntington and Naus [7], 
Wallenstein and Naus [l 11, [12]; multiple coverage probabilities-Glaz and 
Naus [2]. 

It is our hope that this method could be applied to other enumeration 
problems. 

2. THE MAIN RFSJLT 

Represent each of the (zl) possible arrangements of the N given elements 
by a vector x = (x1, xp ,..., xN), where xi = 1 (respectively, xi = 0) if the 
ith element in the arrangement is an A (respectively, B). Let Sk,,,, (respectively, 
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T&,,,J be the set of all arrangements in which any segment of length m contains 
at least k (respectively, at most h) A (respectively, B) elements. Then, 

S k,m = 
I 

x; inf n+fM1 xi > k[ 
l<nGN--m+l izn 

and 

I 
ntna-1 

T h,na = x; sup c (1 - xi) 6 h 
lSn<N-m-t1 i=n 

(2) 

LEMMA 1. For 1 < k < m < N integers, Sk,, = T,,-kvna . 

ProoJ: Follows from Eqs. (1) and (2). 
Let aksm and 7k.m denote the cardinalities of the sets Sk., and Tkenl, 

respectively. It follows from Lemma 1 that &m = +,--lc,m . 
Let b = N - Lm, where L is the largest integer in N/m. Subdivide the N 

positions in the arrangements into L + 1 parts, Zi , i = I,..., L + 1: 
Zi = {(i - 1)m + 1, (i - 1)m + 2 ,..., im}, for i = 1, 2 ,..., L; and Zi+l = 
(Lm + 1, Lm + 2,..., Lm + b = N). Let n, denote the number of B elements 
in the ith part. 

THEOREM 1. For 1 < k < m and Ml 3 kL + max(0, k + b - m) inte- 
gers, 

ak.m = z det(c,h (3) 

whereforl <i<Z+l 

( 

b = 
B L+l - L-ii 1 ’ 

and 

01~ = (L + 1 - i)(m - k + 1) 

= 0, 

fij = aj + flj 9 

(4) 

j = l,..., L 

j=L+l, 

i = I,..., L 

i=L+l, (5) 

j=l )..., L + I. (6) 

P 1 is the set of allpartitions of Mz into L + 1 integers ni satisfying ni < m - k, 
for i = 1, 2 ,..., L; and n,,, < min(b, m - k). 

Proof. Let ni be the number of B elements in Zi for i = l,..., L + 1 and 
{nl ,..., nLtl ) E Pl. Following Huntington [3], Naus [8], and Saperstein [IO] 
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associate L + 1 paths that start at (0, CQ) and end at (mi , /$) and have ni 
moves up and mi - ni horizontal moves, where CX~ and & are given by 
equations (5) and (6), respectively; mi = m for i = l,..., L and m,,, = b. 
Then ~,-k,~ is equal to the number of realizations of the L + 1 paths 
defined above, such that none of the paths ever coincide. Saperstein [lo] 
shows that this is equal to the det(cJ, where cij is given by Eq. (4). It follows 
from Lemma 1, that for fixed (n, ,..., TZ~+~} E Pl, aksrn = det(c,&. Summing 
over all possible (n, ,..., nL+i} E PI we obtain the result given by Eq. (3). 

For the case M/m = L, L > 2 an integer it follows from Naus [8] and 
Lemma 1, 

THEOREM 2. For 2 < k, M/m = L, L an integer, L 3 2 

ak,m = (m!)L C det[l/d,,! (m - d,J!], 
P2 

where 
j-i 

dij = (j - i)(m - k + 1) - 1 nt + ni , for 1 ,<i<j<L, 
t=i 

= (j - i)(m - k + 1) + i n, , for 1 <j<i<L. 
t=j 

P2 is the set of all partitions of M, into L integers n, satisfying ni < m - k, 
i=l L. ,.-a, 

Further simplification is obtained from Naus [8] for the special case of 
N/m = L, L an integer greater than one, and Ml > N - 2(m - k). 

THEOREM 3. For k > 2, N/m = L, L > 2 and Ml > N - 2(m - k + 1) 
integers, 

a k,m = 

+ [Lb - k + 1) - M2 - 11 (, -“k + ,)(M, -“,--“k _ 1). 

(7) 
Proof, It follows from Naus [8, Corollary 21 that for M2 < 2h 

rlh*m = (izj - 2 Jgl cG2--?7 

+ Mk + l) - M2 - ll (k ;1 ,)(,:2Ny-k” 1)* (8) 

Using the identity &m = ?I,,-~,~ and Eq. (8) we obtain the result given by 
Eq. (7). 
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