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Abstract

Consider an infrastructure-based multi-band cognitive radio network (CRN) where secondary users (SUs)
opportunistically access a set of sub-carriers when sensed as idle. The carrier sensing threshold which affects the access
opportunities of SUs is conventionally regarded as static and treated independently from the resource allocation in the
model. In this article, we study jointly the optimization of detection threshold and resource allocation with the goal of
maximizing the total downlink capacity of SUs in such CRNs. The optimization problem is formulated considering
three sets of variables, i.e., detection threshold, sub-carrier assignment and power allocation, with constraints on the
PUs’ rate loss and the power budget of the CR base station. Two schemes, referred to as offline and online algorithms
respectively, are proposed to solve the optimization problem. While the offline algorithm finds the global optimal
solution with high complexity, the online algorithm provides a close-to-optimal solution with much lower complexity
and realtime capability. The performance of the proposed schemes is evaluated by extensive simulations and
compared with the conventional static threshold selection algorithm specified in the IEEE 802.22 standard.

1 Introduction
The rapid development of new wireless devices and ser-
vices has lead to a growing demand for radio spectrum,
making the problem of spectrum shortage more seri-
ous. Indeed, the problem of spectrum scarcity is the
result of, or is exacerbated by, the traditional static spec-
trum allocation policies, which assign spectrum bands to
license holders on a long-term basis over large geograph-
ical regions [1-3]. Consequently, the concept of cognitive
radio (CR) has emerged as a promising technology to real-
ize dynamic spectrum access and solve the problem of
spectrum scarcity.
In a CR network (CRN), secondary (unlicensed) users

(SUs) may coexist with primary (licensed) users (PUs)
of a primary radio network (PRN) in two ways: spec-
trum underlay which means that SUs may operate under
the noise floor of PUs, or spectrum overlay which allows
SUs operate only when the spectrum allocated to PUs
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is sensed as idle [4]. The PRN that we are interested in
uses a set of licensed non-overlapping orthogonal fre-
quency sub-carriers for communication between primary
base stations (P-BS) and PUs. We envisage that the PRN
is underutilized and more revenue can be obtained by
deploying CRNs, which opportunistically utilize the tem-
porarily underutilized frequency sub-carriers available at
the PRN and provide service to SUs. In this article, we
focus on spectrum overlay and consider an infrastructure-
based CRN, in which there exists a central entity or CR
base station (CR-BS) that controls and coordinates the
spectrum allocation and access of SUs [1,5].
Resource allocation in CRN is an important issue for

improving the SUs’ performance and has been widely
investigated (see for example[6-8] and the references
therein). However, these studies focus solely on capacity
optimization for SUs based on the assumption of perfect
spectrum sensing of the PUs’ activities. How the choice
of spectrum sensing techniques and sensing parameters,
such as detection threshold and sensing time, may affect
the performance of SUs remains as an open question.
Spectrum sensing is of significant importance for CR

systems. Among various spectrum sensing techniques,
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energy detection is the most common approach due to
its simplicity and low latency (in the order of several tens
of microseconds [9]). A decision on whether a specific
spectrum band is occupied by a PU or not can be taken
by comparing the received energy with a pre-determined
detection threshold. The detection thresholds for some
primary systems have been specified by the IEEE 802.22
standard [10]. However, these fixed and identical detec-
tion thresholds are not adequate for multi-band CRNs,
since different sub-carriers may suffer from different fad-
ing. Thus, the precise operation of the energy detec-
tion technique may require distinct detection thresholds
on each sub-carrier in order to accurately detect PUs’
activities.
Moreover, due to imperfect spectrum sensing, the selec-

tion of detection threshold may affect two parameters
associated with energy detection: missed-detection prob-
ability (MDP) and false alarm probability (FAP) [11,12].
More specifically, as the detection threshold decreases,
the MDP decreases while the FAP increases. From the
perspective of PUs, the lower the MDP is, the better the
PUs are protected. However, from the SUs’ perspective,
the higher the FAP, the lower the achievable capacity,
because fewer sub-carriers are detected as idle and can be
utilized by SUs. On the other hand, the capacity of SUs
also depends closely on the resource allocation scheme
deployed, typically in the form of a sub-carrier assignment
and power allocation (SAPA) scheme. Therefore, in order
to maximize the capacity of SUs while adequately pro-
tecting PUs’ activities, it is crucial to jointly consider the
selection of the detection threshold and the SAPA scheme.
In this article, we study the joint optimization of detec-

tion threshold and SAPA scheme with the goal of max-
imizing the total downlink capacity of SUs in such an
infrastructure-based CRN. The optimization problem is
formulated considering three sets of variables, i.e., detec-
tion threshold, SAPA, with constraints on PUs’ rate loss
and the power budget of the CR-BS.We propose two algo-
rithms, referred to as offline and online respectively to
solve this problem. Extensive simulation results demon-
strate that our proposed algorithms outperform the con-
ventional uniform detection threshold (UDT) selection
algorithms significantly. In brief, the contributions of this
article are twofold.

(1) We formulate the joint optimization problem with
three sets of variables, including detection threshold,
SAPA, with the objective of maximizing the total
capacity of SUs, subject to the constraints on the PUs’
rate loss and the power budget of the CR-BS.
Different from the conventional way of using
interference power as the constraint to protect PUs,
our scheme instead bounds the PUs’ rate loss caused
by SUs’ activities due to a non-zero MDP.

(2) We propose two algorithms, one offline and another
online, to solve the optimization problem. The offline
algorithm finds the global optimal solution with high
computation complexity, but it is difficult to
implement in practice. The online algorithm
iteratively optimizes the detection threshold and
SAPA with sub-optimal performance, with much
lower computation complexity.

The remainder of this article is organized as follows.
In Section 2, we review some studies that are related to
this article. The system model is described in Section 3.
Section 4 formulates the joint optimization problem.
Then the offline and online algorithms are proposed in
Sections 5 and 6, respectively. The computation complex-
ity is analyzed in Section 7, followed by the simulation
results and discussions in Section 8. Finally the article is
concluded in Section 9.

2 Related work
Previous studies on joint optimization of detection thresh-
old and resource allocation mainly concentrate on evalu-
ating the impact of sensing time or detection threshold on
SUs’ performance, without considering the design of the
SAPA scheme. In [13], a sensing-throughput tradeoff is
achieved by searching the optimal sensing time that max-
imizes SUs’ throughput. In [14], an optimization problem
is formulated to maximize the ergodic capacity of SUs
over transmission power and sensing time, by assuming a
constant detection threshold.
To obtain optimized detection threshold, most of the

related studies focus on the performance of the energy
detector. For instance, they aim at minimizing the MDP
and the FAP, but the performance of SUs is barely con-
sidered. In [15], the trade-off between transmission power
and detection threshold is studied. However, the focus of
their work is on how to reduce interference caused to PUs
rather than on the optimization of SUs’ capacity. In [16],
an adaptive detection threshold algorithm is proposed to
minimize the impairments caused by wireless channel and
non-stationary noise. The detection performance is eval-
uated in multi-channel CRNs that perform opportunistic
access.
So far, little work has been done on joint optimization of

detection threshold and resource allocation in multi-band
CRNs. In [17], a joint optimal power allocation (OPA)
and detection threshold scheme is proposed to maxi-
mize SUs’ capacity in spectrum sharing CRNs. In [18],
the sensing threshold is determined to optimize two dif-
ferent sensing objectives: weighted network total capacity
and the more traditional Bayesian cost, by exploiting loca-
tion information. However, these two schemes are not
designed for multi-band CRNs. In [19], a joint cross-layer
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scheduling and sensing framework is designed to optimize
average weighted SUs’ capacity, by adapting SAPA across
SUs (under a constraint on average interference to PUs).
However, this framework assumes fixed sensing parame-
ters such as the MDP and the FAP when optimizing SUs’
capacity.

3 Systemmodel
We consider the downlink transmission of an
infrastructure-based CRN, where a CR-BS co-exists in
the vicinity of a P-BS and there are a number of SUs and
PUs covered by both of them. The CR-BS is regarded as
the control center for the secondary system. The available
band of the primary system is divided into N orthogonal
sub-carriers, for which we assume frequency flat fading.
There are K SUs which utilize the sub-carriers in an
overlay way, e.g., either when PUs are absent and no false
alarm is generated, or when PUs are present but they are
not detected.
The CR-BS downlink is partitioned into time slots and

each slot consists of a sensing period and a data transmis-
sion period [13]. The uninterrupted activity periods of the
PUs are much longer than a single SU time slot. During
the sensing period, each SU performs spectrum sensing
and reports a set of pre-processed energy measurements
to the CR-BS. The reporting to the CR-BS may be done,
for example, via a control channel. Based on the sensing
information received from the involved SUs, the CR-BS
can make a decision on whether a sub-carrier is occu-
pied by a PU or not. Note that the sensing results are not
always reliable due to channel fading and imprecise energy
detection.
For downlink transmission shown in Figure 1, four types

of instantaneous channel fading gains are considered in
our scenario: (i) between the P-BS and a PU for sub-
carrier n, denoted as hpun ; (ii) between the P-BS and SU
k for sub-carrier n, denoted as hpsk,n; (iii) between the CR-
BS and a PU, denoted as hcpn and (iv) between the CR-BS
and SU k, denoted as hcsk,n. We model the channel gains
as independent, identically distributed Rayleigh random
variables and assume that they are known at the CR-BS
[13,19,20]. It is further assumed that the instantaneous
channel fading gains of all links change so slowly that
they can be regarded as constant during each transmis-
sion slot. In practice, hcsk,n and hpsk,n can be obtained by SU
k. The SU can estimate the channel gain and then send
feedback to the CR-BS using existing channel estimation
and feedback mechanisms. Similarly, hpun and hcpk,n can be
obtained by each PU. However, in this case, cooperation
between the primary and secondary systems is required,
so that hpun and hcpk,n are made available to the CR-BS, for
instance through a signaling link between the P-BS and
the CR-BS. Alternatively, as suggested in [20], certain type

Figure 1 Systemmodel for infrastructure-based CRNs. It shows
the system model, to make readers better understand the downlink
system of infrastructure-based CRNs.

of dedicated measurement devices may be employed, like
cooperative sensors deployed in the vicinity of the PUs
which report required information to the CR-BS.
Based on the instantaneous channel power gains and

sensing results, the CR-BS makes a decision on the chan-
nel occupancy status of each sub-carrier and SAPA. The
decisions are broadcast to the SUs through the downlink
control channel. Note that in this article, we focus on the
design of detection threshold and SAPA, and the sensing
time is set as fixed through all slots. Thus, the data trans-
mission period is considered only when formulating the
optimization problem for the sake of simplicity.

3.1 Energy detection based spectrum sensing
The simultaneous spectrum sensing over multiple sub-
carriers is performed by using a set of multi-band joint
detectors, as proposed in [21]. At each SU, N signal sam-
ples corresponding toN sub-carriers are obtained usingN
independent energy detectors.
Let us assume that the received signal for SU k on sub-

carrier n has the following form:

yk,n(l) = hpsk,nsn(l) + zk,n(l), (1)

where sn(l) is the sample of the PUs’ signal transmitted on
sub-carrier n, which is assumed to be randomly and inde-
pendently drawn from phase shift keying (PSK) constella-
tions. Note that sn(l) = 0 when there is no transmission by
PUs. zk,n(l) is the additive white gaussian noise (AWGN)
sample with variance δ2. l is the sample index. For sub-
carrier n, each SU computes first the test statistic as the
average energy of the received signal using L consecutive
samples, denoted by Tk,n(yk,n) = 1

L
∑L−1

l=0 |yk,n(l)|2. Then,
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the pre-processed sensing statistics are reported to the
CR-BS from all SUs. The decision metric for sub-carrier n
at the CR-BS can be written as:

TG
n = 1

K

K∑
k=1

Tk,n(yk,n). (2)

Denote by λ =[ λ1, λ2 . . . , λN ] the detection threshold
vector on all sub-carriers. The decision on the occupancy
of sub-carrier n can be obtained by comparing the deci-
sion metric TG

n against the detection threshold λn. This
is equivalent to distinguishing between the following two
hypotheses:

H0 : yk,n(l) = zk,n(l), l = 1, 2, . . . , L,
H1 : yk,n(l) = hpsk,nsn(l) + zk,n(l), l = 1, 2, . . . , L.

(3)

Specifically, if TG
n > λn, then hypothesisH1 is true; oth-

erwise hypothesis H0 holds. Denote by Pfan and Pmd
n the

FAP and the MDP on sub-carrier n, respectively. Accord-
ing to the central limit theorem, for a large number of
samples L, TG

n is approximately normally distributed. The
FAP and the MDP on sub-carrier n can then be expressed
as follows, respectively [17]:

Pfan = Pr
(
TG
n > λn|H0

)
= Q

((
λn
δ2

− 1
)√

KL
)
, (4)

Pmd
n = 1 − Pr

(
TG
n > λn|H1

)

= 1 − Q
((

λn
δ2

− 1 − γn

) √
KL

1 + 2γn

)
, (5)

where Q(.) is the complementary distribution
of a standard Gaussian random variable and
γn = γ̂n

∑K
k=1 |hpsk,n|2/K . γ̂n = ppu/δ2 denotes the average

signal to noise ratio (SNR) of PUs on sub-carrier n, where
ppu is the transmission power of PU on sub-carrier n.
As mentioned earlier, the SUs will utilize sub-carrier n

under two possible circumstances: when the sub-carrier
is idle and no false alarm is generated, or when the sub-
carrier is occupied but the occupancy is not detected.
Similar to what is widely used in the literature [22,23],
we assume that the sub-carriers are occupied by the PUs
according to an ON/OFF model. Let us denote by π0 the
prior probability that PUs are absent on a specific sub-
carrier and by π1 = 1 − π0 the prior probability that
they are active. Then, the two circumstances described
above happen with probabilities (1 − Pfan )π0 and Pmd

n π1,
respectively.

4 Optimization problem formulation
Define, respectively a power allocation matrix by P =
{pk,n ≥ 0|k ∈ {1, 2, . . . ,K}, n ∈ {1, 2, . . . ,N}} and a sub-
carrier assignment matrix by ρ = {ρk,n ∈ {0, 1}|k ∈
{1, 2, . . . ,K}, n ∈ {1, 2, . . . ,N}}. For simplicity, we assume
that each sub-carrier can only be assigned to one SU.
Then, we have ρk,n = 1 when sub-carrier n has been
assigned to SU k, and ρk,n = 0 otherwise. Let R0

k,n =
C

(
pk,n|hcsk,n|2, 0

)
be the data rate of SU k on sub-carrier n

when PUs are absent, where pk,n is the transmission power
of SU k on sub-carrier n. Note that

C
(
x, y

) = log2
(
1 + x

y + δ2

)
, (6)

where δ2 denotes the AWGN noise variance. Throughout
the context we use (6) as a normalized capacity expression
to represent both the theoretical Shannon capacity and
the achieved data rate, i.e., protocol overhead is ignored.
Similarly, we use R1

k,n = C
(
pk,n|hcsk,n|2, ppu|hpsk,n|2

)
to rep-

resent the data rate of SU k on sub-carrier n when PUs are
present, where ppu|hpsk,n|2 is the interference power of the
P-BS measured at SU k.
Denote by R(λ,P, ρ) the total capacity for all SUs. Then

we have,

R(λ,P, ρ) =
K∑

k=1

N∑
n=1

ρk,n
(
1 − Pfan

)
π0R0

k,n

+
K∑

k=1

N∑
n=1

ρk,nPmd
n π1R1

k,n. (7)

In order to formulate the joint detection threshold and
resource allocation problem, the following system con-
straints must be taken into consideration:

• CR-BS power budget constraint: Let PT denote the
maximum transmission power of the CR-BS, the total
power allocated on all sub-carriers must be less than
or equal to PT . That is:

K∑
k=1

N∑
n=1

ρk,npk,n ≤ PT . (8)

• PUs’ rate loss constraint: Similar to [20], in order to
protect the transmission of the PUs, we impose an
upper bound on PUs’ rate loss,a which is caused by
unexpected SU transmissions. Let
Rmax
pu,n = C

(
ppu|hpun |2, 0) be the maximum data rate
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that the PUs can achieve on sub-carrier n. Denote by
Rmd
pu,n = C

(
ppu|hpun |2, pk,n|hcpk,n|2

)
the achievable data

rate of the PUs on sub-carrier n when SU k is also
transmitting. Let �R be the maximum rate loss that
the PUs can tolerate on each sub-carrier. Then, the
SU transmission on sub-carrier n is allowed only
when the following constraint is satisfied:

Pmd
n

(
Rmax
pu,n − Rmd

pu,n

)
≤ �R, n = 1, 2, . . . ,N .

(9)

The goal of our system design is to maximize the total
downlink capacity of SUs as defined in (7) while satisfy-
ing the constraints discussed above. More precisely, the
optimization problem, referred to hereafter as (P1), is
formulated as follows:

P1: max{λ,P,ρ} R(λ,P, ρ), (10)

s.t. C1:
K∑

k=1

N∑
n=1

ρk,npk,n ≤ PT ,

C2: Pmd
n

(
Rmax
pu,n − Rmd

pu,n

)
≤ �R,∀n,

C3: pk,n ≥ 0,∀k, n,
C4: ρk,n ∈ {0, 1},∀k, n,

C5:
K∑

k=1
ρk,n = 1,∀n,

where constraints C4 and C5 take into account the fact
that each sub-carrier can only be assigned to one SU.
However, (P1) is a mixed integer programming problem

including three sets of variables (λ,P, ρ) to be optimized,
and it is computationally complex to solve. Moreover,
Constraint C2 is non-convex, making (P1) non-convex.
In the following, we propose two algorithms named as
the offline and online algorithms to solve (P1). In the
offline algorithm, an exhaustive search based on a large
number of detection thresholds is done to optimize the
SAPA. Then, the optimal solution is found among the
candidate detection thresholds. In the online algorithm, a
sub-optimal solution is obtained iteratively. We show later
that this algorithm converges after a few iterations.

5 The offline algorithm to solve (P1)
The main idea of the offline algorithm is to solve (P1) by
fixing one of the three variables, λ, with a set of known val-
ues. This is based on the observation that if the detection
threshold vector λ is given, then Pfan and Pmd

n can be easily
calculated by (4) and (5), respectively. Thus (P1) is shrunk
to a SAPA optimization problem with only two variables,
P and ρ, for any given λ. We can then obtain the global
optimal solution by selecting the best λ value.

Denote by Pfan (λn) and Pmd
n (λn) the MDP and the FAP

for a given λ, respectively. (P1) can be re-formulated as
a SAPA optimization problem, referred to as (P2), as
follows:

P2: max{P,ρ}

K∑
k=1

N∑
n=1

ρk,n
(
1 − Pfan (λn)

)
π0R0

k,n

+
K∑

k=1

N∑
n=1

ρk,nPmd
n (λn)π1R1

k,n, (11)

s.t. C1:
K∑

k=1

N∑
n=1

ρk,npk,n ≤ PT ,

C2: Pmd
n (λn)

(
Rmax
pu,n − Rmd

pu,n

)
≤ �R,∀n,

C3: pk,n ≥ 0,∀k, n,
C4: ρk,n ∈ {0, 1},∀k, n,

C5:
K∑

k=1
ρk,n = 1,∀n.

In the rest of this section, we propose two algorithms,
one optimal and another sub-optimal, to solve the SAPA
optimization problem, (P2).

5.1 The optimal algorithm to solve the SAPA problem
According to [24], the duality gap of the SAPA problem in
multi-band networks is nearly zero when the number of
sub-carriers is sufficiently large. Thus, the dual decompo-
sition method can be used to solve (P2) when λ is given. In
order to make (P2) tractable, we first transform constraint
C2 of (P2) into a convex form. Redefine �R = ηRmax

pu,n,
where 0 ≤ η ≤ 1. η can be interpreted as the fraction
of PUs’ rate loss. Using the following proposition, we can
transform the PUs’ rate loss constraint into a maximum
power allocation constraint.

Proposition 1. For a given set of detection thresholds
λ, if η < Pmd

n (λn), the PUs’ rate loss constraint on each
sub-carrier is equivalent to a maximum power allocation
constraint on each sub-carrier. The power budget on each
sub-carrier is given by:

Pmax
n =

(
ppu|hpun |2

2(1−η/Pmd
n (λn))Rmax

pu,n − 1
− δ2

)
1

|hcpk,n|2
.

Hence, constraint C2 of (P2) is satisfied if∑K
k=1 ρk,npk,n < Pmax

n , ∀n. If η ≥ Pmd
n (λn), the PUs’ rate loss

constraint is equivalent to
∑K

k=1 ρk,npk,n ≥ 0, ∀n.
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Proof. Please refer to Appendix 1.
Using Proposition 1, the Lagrangian function of (P2)

becomes:

L(P,μ,β) =
K∑

k=1

N∑
n=1

(
1 − Pfan (λn)

)
π0R0

k,n

+
K∑

k=1

N∑
n=1

Pmd
n (λn)π1R1

k,n

+ μ

(
PT −

K∑
k=1

N∑
n=1

pk,n

)

+
N∑

n=1
βn

(
Pmax
n −

K∑
k=1

pk,n

)
, (12)

whereμ and β =[β1, . . . ,βN ] are the Lagrangemultipliers
corresponding to constraints C1 and C2 in (P2). Note that
constraints C3, C4 and C5 are not taken into account in
the Lagrangian function. However, these constraints will
be satisfied in the dual domain when solving the problem,
as shown later.

The Lagrangian dual function corresponding to (P2) is
defined by:

g(μ,β) = max
P

L(P,μ,β). (13)

Therefore, the dual optimization problem correspond-
ing to (P2) is given by:

min
{μ,β}

g(μ,β)

s.t. μ ≥ 0, βn ≥ 0,∀n.
(14)

Note that the Lagrangian function, L(P,μ,β), is linear
in (μ,β) for a fixed P, and g(μ,β) is the maximum one
of these linear functions. Therefore, the dual optimization
problem (14) is convex. Furthermore, the Lagrangian dual
function is decomposed into N independent optimization
problems, which is:

g(μ,β) =
N∑

n=1
Kn(μ,β) + μPT , (15)

where:

Kn(μ,β) =max
P

{ K∑
k=1

(
1 − Pfan (λn)

)
π0R0

k,n

+
K∑

k=1
Pmd
n (λn)π1R1

k,n − μ

K∑
k=1

pk,n

+βn

(
Pmax
n −

K∑
k=1

pk,n

)}
. (16)

Since each sub-carrier can be assigned to only one SU,
(16) actually indicates a rule for allocating sub-carriers,
which is to search the SU that maximizes (16) for a spe-
cific sub-carrier. To solve (P2), a two step iterative process
is needed. First, each sub-carrier is allocated to the cor-
responding SU according to (16). Second, the Lagrangian
multipliers are updated. The iterative process continues
until convergence is achieved.
Let p̂k,n be the OPA for sub-carrier n and SU k. For given

(μ,β), the values of p̂k,n that solve (P2) can be obtained
using the Karush–Kuhn–Tucker (KKT) condition [25],

∂L(P,μ,β)

∂pk,n
|pk,n=p̂k,n

⎧⎪⎨
⎪⎩

<0 pk,n = 0

=0 pk,n > 0
∀k, n . (17)

Therefore, we can get:

p̂k,n =
[
1 − Pfan (λn) + Pmd

n (λn)

(μ + βn) ln 2 − f1(p̂k,n)
− 1

αk,n

]†

, (18)

where [ x]† = max{0, x}, αk,n = |hcsk,n|2/(ppu|hpsk,n|2 + δ2)
and

f1(p̂k,n) = (1 − Pfan (λn))ppu|hpsk,n|2|hcsk,n|2
(δ2 + p̂k,n|hcsk,n|2)(δ2 + p̂k,n|hcsk,n|2 + ppu|hpsk,n|2)

.

Proposition 2. Given μ,β , if

1
αk,n

<
1 − Pfan (λn) + Pmd

n (λn)

(μ + βn) ln 2 − f1(0)
,

then the OPA p̂k,n is the unique positive root of the cubic
equation:

p̂k,n + 1
αk,n

= 1 − Pfan (λn) + Pmd
n (λn)

(μ + βn) ln 2 − f1(p̂k,n)
,

otherwise p̂k,n = 0.

Proof. Please refer to Appendix 2.

Based on the discussions above, the OPA p̂k,n, now
denoted as p̂k,n(μ,β), can be obtained using Proposition
2 for given (μ,β). Then, substituting it into (16),Kn(μ,β)

can be determined.
In order to minimize the Lagrangian dual function

g(μ,β), both sub-gradient and ellipsoid methods [25] can
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be used to update the Lagrangianmultipliers (μ,β). With-
out loss of generality, the sub-gradient method is adopted
in this article.

Lemma 1. The sub-gradient of g(μ,β) is calculated as
follows:

�μ = PT −
K∑

k=1

N∑
n=1

p̂k,n(μ,β),

�βn = Pmax
n −

K∑
k=1

p̂k,n(μ,β).

(19)

Proof. Please refer to Appendix 3.

Using Lemma 1, the Lagrangian multipliers are updated
as follows:

μj+1 =
[
μj − ξ

j
μ

(
PT −

K∑
k=1

N∑
n=1

p̂k,n(μ,β)

)]†

,

β
j+1
n =

[
β
j
n − ξ

j
βn

(
Pmax
n −

K∑
k=1

p̂k,n(μ,β)

)]†

,

(20)

where ξ
j
μ and ξ

j
βn

are the appropriate positive step-size

sequences, and j is the iteration index.
Before updating the Lagrangian multipliers, the suit-

able initial values of these parameters should be specified.
For the dual decomposition problem (14), the optimal
Lagrangianmultipliers (μ∗,β∗)must satisfy the KKT con-
dition. So, taking the partial derivative of Lagrangian
function (12) with respect to pk,n results in:

μ = (1 − Pfan (λn))π0
1
ln 2

|hcsk,n|2/δ2
1 + pk,n|hcsk,n|2/δ2

+ Pmd
n (λn)π1

1
ln 2

|hcsk,n|2/
(
ppu|hpsk,n|2+δ2

)
1+pk,n|hcsk,n|2/

(
ppu|hpsk,n|2+δ2

) −βn,

(21)

βn = (1 − Pfan (λn))π0
1
ln 2

|hcsk,n|2/δ2
1 + pk,n|hcsk,n|2/δ2

+ Pmd
n (λn)π1

1
ln 2

|hcsk,n|2/
(
ppu|hpsk,n|2 + δ2

)
1 + pk,n|hcsk,n|2/

(
ppu|hpsk,n|2 + δ2

)
− μ, n =[ 1, 2, . . . ,N] .

(22)

Since pk,n must always satisfy 0 ≤ pk,n ≤ min(PT ,Pmax
n ),

we can obtain the upper bound of μ and βn by letting
pk,n = 0, that is:

0 ≤ μ ≤ (1 − Pfan (λn))π0
1
ln 2

|hcsk,n|2
δ2

+ Pmd
n (λn)π1

1
ln 2

|hcsk,n|2(
ppu|hpsk,n|2 + δ2

) , (23)

0 ≤ βn ≤ (1 − Pfan (λn))π0
1
ln 2

|hcsk,n|2
δ2

+ Pmd
n (λn)π1

1
ln 2

|hcsk,n|2(
ppu|hpsk,n|2 + δ2

) ,
n =[ 1, 2, . . . ,N] . (24)

The initial value of (μ,β) could therefore be selected from
these areas shown above.
After obtaining the optimal Lagrangian multipliers,

denoted as (μ∗,β∗), the OPA can be obtained as p∗
k,n =

p̂k,n(μ∗,β∗). Then, using (16), the optimal sub-carrier
assignment is determined. The pseudo-code for the opti-
mal SAPA algorithm is described in Algorithm 1.

5.2 Algorithm 1 Optimal SAPA (OSAPA)
1. Sub-carrier set: N = {1, 2, . . . ,N}, SU set: K =
{1, 2, . . . ,K}
2. Calculate optimal Lagrangian multipliers
3. Initialization: (μ(0),β(0))
4. while stopping rule is not satisfied
5. 1) Compute p̂k,n(μ(0),β(0)) using (18) and Proposi-

tion 2;
6. 2) Compute Kn(μ(0),β(0)), ∀n ∈ N using (16);
7. 3) Compute g(μ(0),β(0)) using (15);
8. 4) Update (μ(0),β(0)) using (20);
9. end while
10. Sub-carrier assignment and power allocation
11. while(N �= ∅) do
12. 1) Compute optimal p∗

k,n = p̂k,n(μ∗,β∗) using (18)
and Proposition 2, ∀k ∈ K, ∀n ∈ N ;

13. 2)Find a pair of (n∗, k∗) such that (16) is maximum;
14. 3)Assgin sub-carrier n∗ to SU k∗, and update

ρk∗,n∗ = 1;
15. 4) Set pk,n = p∗

k,n, k = k∗ and pk,n = 0, ∀k �= k∗;
16. 5)N = N − {n∗};
17. end while

5.3 Sub-optimal SAPA algorithm
The optimal SAPA algorithm presented above jointly opti-
mizes the SAPA, but it is computationally costly (its com-
plexity is analyzed in Section 7). Generalizing the proof
given in [26] for multi-band CRN, the maximum capacity
in the downlink can be obtained when each sub-carrier
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is assigned to the user that has the best channel gain.
However, this sub-carrier assignment is not optimal in
the CRN, as we need to consider the constraint on PUs’
rate loss for each sub-carrier. Based on this considera-
tion, a low-complexity but yet effective sub-optimal SAPA
scheme is proposed here.
More specifically, the optimization problem (P2) is

divided into two parts, which are sub-optimal sub-carrier
assignment (SSA) and OPA. Once sub-carriers have been
assigned to users, the OPA can be obtained using (18) and
(20). The details of the sub-optimal SAPA are given in
Algorithm 2.

5.4 Algorithm 2 Sub-optimal SAPA (SSAPA)
1 : Sub-carrier set: N = {1, 2, . . . ,N}, SU set: K =
{1, 2, . . . ,K}
2 : Sub-optimal sub-carrier Assignment
3 : for k = 1 to K do
4 : 1) Compute |hcsk,n|2

δ2
, search n∗ = argmax

n∈N
|hcsk,n|2

δ2
;

5 : 2) Set ρk,n∗ = 1;
6 : 3)N = N − {n∗};
7 : end for
8 : WHILE(N �= ∅) do
9 : 1) Find a pair of (n∗, k∗) such that:

(n∗, k∗) = argmax
n,k

|hcsk,n|2
δ2

;

10 : 2) Assign sub-carrier n∗ to SU k∗, ρk∗,n∗ = 1;
11 : 3)N = N − {n∗};
12 : end while
13 : Optimal Power Allocation
14 : Compute Lagrangian multipliers (μ∗,β∗) similar to
Algorithm 1;
15 : Compute optimal {p∗

k,n}, using ρk∗,n∗ and (18);

6 The online algorithm to solve (P1)
The computational cost of the offline solution presented
in Section 5 is quite high as an exhaustive search over a
large number of candidate detection thresholds λ must
be done, which makes it unfeasible for online deploy-
ment. Note that the number of λ is also a function of
granularity between any two consecutive λ values. In this
section, we propose a new algorithm named as itera-
tive optimization of detection threshold and throughput
(IODTT) to solve (P1). Unlike the offline algorithm, the
IODTT algorithm finds the sub-optimal detection thresh-
olds (SDTs) and SAPA iteratively, thus it can be used
online. In Section 8, we show through simulations that the
algorithm converges after a small number of iterations.
The core idea of the IODTT algorithm is to divide

(P1) into two sub-problems, and then solve the two sub-
problems iteratively. At the ith iteration, the SDTs, λ(i),
are obtained by solving the first sub-problem. Using λ(i),

the second sub-problem SAPA {P(i), ρ(i)} is solved using
either the optimal SAPA algorithm or the sub-optimal
SAPA algorithm proposed in Section 5. The iteration
process stops once convergence is achieved.

6.1 Sub-optimal detection threshold determination
Given an initial value for the sub-carrier and power alloca-
tions (P(0), ρ(0)), the optimization problem to determine
SDTs is formulated as the maximization of the average
total SU capacity while keeping the PUs’ rate loss upper
bounded. The first sub-problem, denoted by (P3), can
then be formulated as:

P3: max
λ

N∑
n=1

(
1 − Pfan (λn)

)
π0R0

n(P
(0), ρ(0))

+
N∑

n=1
Pmd
n (λn)π1R1

n(P
(0), ρ(0)),

s.t. Pmd
n (λn)

(
Rmax
pu,n − Rmd

pu,n

)
≤ �R,∀n.

(25)

where R0
n(P(0), ρ(0)) = ∑K

k=1 ρ
(0)
k,nC

(
p(0)
k,n|hcsk,n|2, 0

)
and

R1
n(P(0), ρ(0)) = ∑K

k=1 ρ
(0)
k,nC

(
p(0)
k,n|hcsk,n|2, ppu|hpsk,n|2

)
are

the total data rates on sub-carrier n given (P(0), ρ(0)),
when the PUs are absent and present, respectively.
Furthermore, since Q(x) is a monotonically decreas-

ing function of x, we can transform (P3) into a linear
programming problem, which is expressed as:

max
λ

N∑
n=1

√
KL

(
λn
δ2

− 1
)

π0R0
n

(
P(0), ρ(0)

)

+
N∑

n=1

√
KL

1 + 2γn

(
λn
δ2

− 1 − γn

)
π1R1

n

(
P(0), ρ(0)

)
,

s.t. λn ≤ λmax
n ,∀n.

(26)

where
λmax
n = δ2 (1 + γn)

+ δ2
√
1 + 2γn
KL

Q−1

⎛
⎝1 − η(

1 − Rmd
pu,n/Rmax

pu,n

)
⎞
⎠ .

Now the optimization problem is translated into a lin-
ear problem, as shown in (26) and it can be solved
using the interior-point method or other numerical search
algorithms.

6.2 The IODTT algorithm
Given the SDTs, λ(i), obtained at the ith iteration of (P3),
(P1) is equivalent to (P2). Then, it can be correspondingly
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solved using either the optimal or the sub-optimal SAPA
algorithms presented in Section 5. In other words, (P1) is
split into a set of (P2)s and it can be iteratively solved using
the results from (P3). However, the solution obtained may
not always be globally optimum.
To give more details, we outline the IODTT algorithm

in Algorithm 3. In our execution of the algorithm, a typ-
ical value for the convergence condition φ is configured
as φ = 0.01. But it can also be configured as other val-
ues, depending on the execution time requirement of the
system. Given that the objective function shown in (10) is
non-decreasing at each iteration, we can obtain that:

R
(
λ(i),P(i), ρ(i)

)
≤ R

(
λ(i+1),P(i), ρ(i)

)
≤ R

(
λ(i+1),P(i+1), ρ(i+1)

)
, (27)

where i means the index of iteration. Since P and λ are
upper bounded, convergence is guaranteed. An important
property of the IODTT algorithm is its insensitivity to
the initial value P(0) and ρ(0), as shown by the simulation
results presented in Section 8.

6.3 Algorithm 3 IODTT
1 : Initialization: P(0), ρ(0) and i=0;
2 : while‖p(i+1)

k,n − p(i)
k,n‖ > φ and ‖λ(i+1)

n − λ
(i)
n ‖ > φ

3 : 1) Compute λopt by solving (P2), using P(i), ρ(i);
4 : 2) λ(i+1) = λopt ;
5 : 3) Compute Popt , ρopt by optimal or sub-optimal
SAPA, using λ(i+1);
6 : 4) P(i+1) = Popt , ρ(i+1) = ρopt and i = i + 1;
7 : end while
8 : Output P(i+1), ρ(i+1);

7 Complexity analysis
For the offline solution, the complexity depends on the
size of the region where possible detection thresholds are
sought, the calculation of the SAPA, and the granular-
ity of the thresholds. For the optimal SAPA, the number
of iterations required to obtain the ε-optimal Lagrangian
multipliers (μ∗,β∗), i.e., g(μ,β) − g(μ∗,β∗) < ε, is in
the order of O

(
1
ε2

)
[25]. In each iteration, the computa-

tion of (16) requires K comparisons for each of N sub-
carriers. Thus the total complexity of the optimal SAPA is
O

(
NK
ε2

)
. For the sub-optimal SAPA algorithm, the com-

plexity of the SSA is O
(
4NK+K−3K2

2

)
, thus the total com-

plexity of the sub-optimal SAPA isO
(
4(N+1)K−3K2

2 + 1
ε2

)
.

The complexity of the sub-optimal SAPA is much lower
than that of the optimal SAPA when the number of
the SUs is large and ε is small. Assuming that for each
sub-carrier the same detection threshold value is used,
and there are m possible detection thresholds to search,

then the total computation complexity of the offline solu-
tion is O

(
mNK

ε2

)
when using the optimal SAPA and

O
(
m

(
4(N+1)K−3K2

2 + 1
ε2

))
when using the sub-optimal

SAPA. If sub-carriers have different detection thresholds,
the computation complexity will be prohibitively high in
both cases.
The computation complexity of the IODTT algorithm

is related to the number of iterations and the calculation
of the detection threshold and SAPA. Since (26) is a lin-
ear programming problem, the computation complexity
required to determine the detection thresholds is in the
order of O(N1.5) [27], where N is the total number of sub-
carriers. Denote the number of iterations required for the
convergence as r. The total computation complexity of the
IODTT algorithm is O

(
r
(
4(N+1)K−3K2

2 + 1
ε2

+ N1.5
))

when the sub-optimal SAPA is employed. With our
parameter configuration presented below in Section 8, the
average number of iterations required for convergence is
found to be 4 < E[ r]< 6.

8 Numerical evaluation
To evaluate the performance of the proposed algorithms,
we perform extensive simulations using a custom-built
MATLAB simulator. For simplicity, we consider a multi-
band CRN with K = 2 SUs and 2 PUs, and the variance
of the AWGN is normalized to 1. We assume that the
channel gains, e.g., hpun , hcsk,n, h

ps
k,n and hcpk,n, are indepen-

dent, identically distributed Rayleigh random variables
with average channel power gains equaling to 0.4, 0.4, 0.1
and 0.1 respectively. The number of sub-carriers is N = 8
and the number of samples is L = 100. The PUs activity
factor is assumed to be small, as π1 = 0.3. Note that the
proposed algorithms also apply to more realistic scenar-
ios with larger numbers of SUs/PUs and sub-carriers. The
reason that we configure the system with these compara-
tively small values is to run our simulations faster accord-
ing to the complexity analysis in Section 7. Meanwhile,
these values are also very representative when evaluating
the proposed algorithms according to [21].
To run the offline and online algorithms, the initial value

of detection threshold should be properly selected. For the
offline algorithm, in order to determine the initial detec-
tion threshold vector λ, we set a set of candidates for FAP
or MDP, e.g. FAP ∈[ 10−6, 10−5, . . . , 100]. Once the val-
ues of FAP or MDP are determined, the initial detection
threshold is determined. Thismethod for selecting the ini-
tial detection threshold has been widely used in [13,15,28].
For the online algorithm, since we iteratively find the best
values of λ and (P, ρ), the sub-carrier assignment ρ and
power allocation P are determined by random sub-carrier
assignment and equal power allocation. The initial λ value
can be obtained according to (26).
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Figure 2Offline search λ∗ using theOSAPA algorithm for differentPT under η = 0.1%. The SUs’ average total capacity with different detection
threshold using the OSAPA algorithm for different power budget of CR-BS. Legend of curves from top to bottom: PT = 18; PT = 14; PT = 10; PT = 6.

The performance of the offline and online IODTT
algorithms is compared with the performance of two
benchmark schemes [10,19]. The first scheme [10] max-
imizes the average total capacity of the SUs based on
both the optimal and sub-optimal SAPA algorithms, using
a UDT, and it is similar to the approach specified in
the 802.22 standard. The computation complexity of this
scheme is very low, since no iterations are required to
determine the capacity of the CRN. However, its solu-
tion is not optimal. As another benchmark reference to
the IODTT algorithm, the second scheme [19] selects
an average detection threshold (ADT) by taking the lin-
ear average among all SDTs. Using the single ADT, the
MDP and the FAP can be obtained on each sub-carrier,
and then both the optimal SAPA and the sub-optimal

SAPA algorithms are used to solve it. The complexity of
the second scheme is equal to that of our algorithm. For
comparison convenience, the algorithm configuration and
the corresponding complexity level of all the algorithms
considered in our study are summarized in Table 1. In
the table, OFLO/OFLS stand for offline algorithm with
optimal/suboptimal SAPA, ONLO/ONLS stand for online
algorithm with optimal/suboptimal SAPA, ADTO/ADTS
stand for optimal/suboptimal SAPA with the ADT, and
UDTO/UDTS stand for optimal/suboptimal SAPA with
uniform detection threshold, respectively.
The evolution of the SUs’ average total capacity Rtot =

E [R(λ,P, ρ)] with respect to different parameters are
investigated. Each value in the curves corresponds to an
average of 500 independent channel realizations. For each

Table 1 Algorithm setup and complexity

Algorithm Offline Online/iterative OSAPA SSAPA SDT ADT UDT Complexity

OFLO � � O
(
m( NK

ε2
)
)

OFLS � � O
(
m( 4NK+K−3K2

2 + 1
ε2

)
)

ONLO � � � O
(
r( NK

ε2
+ N1.5)

)
ONLS � � � O

(
r( 4NK+K−3K2

2 + 1
ε2

+ N1.5)
)

ADTO � � � O
(
r( NK

ε2
+ N1.5)

)
ADTS � � � O

(
r( 4NK+K−3K2

2 + 1
ε2

+ N1.5)
)

UDTO � � O
(
NK
ε2

)
UDTO � � O

(
4NK+K−3K2

2 + 1
ε2

)
This table lists the algorithm configuration and the corresponding complexity level of all algorithms.
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value, we have also determined the confident interval with
a confidence level of 95%. As these intervals are very small,
they are displayed for illustration purpose only in Figures
2 and 3.
Let us first analyze the optimality of total capacity using

the offline algorithm. Figures 2, 3, 4 and 5 show that
an optimal detection threshold λ∗ that maximizes Rtot
exists indeed for optimization problem (P2), no matter
whether the optimal or the sub-optimal SAPA algorithm
is employed. To keep the computational complexity in the
offline algorithmmanageable, we used the same detection
threshold value for all sub-carriers.
Figures 2 and 4 further depict the impact of the power

budget, PT of the CR-BS, on the optimal detection thresh-
olds, λ∗, for the optimal and the sub-optimal SAPA
algorithms respectively. Two operating regions for λ are
identified as λ∗ ∈[ 0.9, 1.04] and λ∗ ∈[ 1.05, 1.1].
In the first region, an increase in PT leads to a signifi-

cant increase in Rtot. Clearly, a small value of λ leads to a
high FAP and a low MDP, and consequently the number
of sub-carriers available for SU transmission is small. For a
constant λ, if we increase PT , Rtot increases. On the other
hand, for a constant Rtot, λ increases significantly as PT
decreases. This is because as PT decreases, the PUs will
be less affected by the SUs, and then a higher MDP or a
lower FAP can provide more transmission opportunities
for the SUs. The higher the PT , the more sensitive the Rtot
with respect to λ. To achieve the peak Rtot at a reduced
power level, it is required to increase λ. In the second

region with λ∗ ∈[ 1.05, 1.1], Rtot is insensitive to PT , i.e.,
for a constant λ, different values of PT achieve the same
Rtot. This result is expected, because as λ increases, the
MDP increases, and then the constraint on power budget
becomes insignificant.
In Figures 3 and 5, the impact of the PUs’ rate loss

fraction, η, on the optimal detection threshold, λ∗, is eval-
uated. Similar to the analysis of Figures 2 and 4 above,
two regions for λ are identified. In the first region, e.g.,
[ 0.90, 0.95], Rtot is insensitive to η for a constant λ. Clearly,
for small values of λ, the MDP is small, meaning that all
PU activities will be correctly detected. Then the PUs’
rate loss will be negligible. Consequently, Rtot will not
improve appreciably for different values of the PUs’ rate
loss constraint η. In the second region, e.g., [ 0.96, 1.1], as
λ increases, the MDP increases and the FAP decreases,
and η has higher impact on the perfomathrmance of Rtot.
The reasons for this behavior are twofold. Firstly, for a
constant λ, if we increase η, then Rtot will increase in
approximately the same proportion. This can be explained
because that the higher the PUs’ rate loss we allow, the
more power can be allocated to the SUs’ transmission.
Secondly, for a constant Rtot, if we decrease η, then λ will
decrease in approximately the same proportion. Again,
this is because that by decreasing the PUs’ rate loss, the
MDP must decrease in order to detect the PU activities
more precisely, leading to a reduction of λ.
Nowwe give a performance comparison of various algo-

rithms in Figures 6 and 7. Figure 6 shows the variation of
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Figure 3 Offline search λ∗ using the OSAPA algorithm for different η under PT = 10. The SUs’ average total capacity with different detection
threshold using the OSAPA algorithm for different rate loss ratio of PUs. Legend of curves from top to bottom: η = 0.15%; η = 0.11%; η = 0.07%;
η = 0.05%.
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Figure 4Offline search λ∗ using the SSAPA algorithm for different PT under η = 0.1%. The SUs’ average total capacity with different detection
threshold using the SSAPA algorithm for different power budget of CR-BS. Legend of curves from top to bottom: PT = 18; PT = 14; PT = 10; PT = 6.

Rtot with PT , while keeping η = 0.1%, for the different
algorithms studied. As observed, Rtot increases mono-
tonically for all algorithms as PT increases. Clearly, the
proposed algorithms outperform the conventional UDTO
and UDTS schemes, as the later ones select a relatively

low detection threshold to ensure that the rate loss of the
PUs will not exceed a certain value. Among the evalu-
ated algorithms, OFLO shows the best performance, but
at the same time it requires the highest computational
complexity. On the other hand, the Rtot achieved by the
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Figure 5 Offline search λ∗ using the SSAPA algorithm for different η under PT = 10w. The SUs’ average total capacity with different
detection threshold using the SSAPA algorithm for different rate loss ratio of PUs. Legend of curves from top to bottom: η = 0.15%; η = 0.11%;
η = 0.07%; η = 0.05%.
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Figure 6 Rtot versus PT for different algorithms under η = 0.1%. The SUs’ average total capacity with total power constraint for different
algorithms. Legend of curves from top to bottom: OFLO; OFLS; ONLO; ONLS; ADTO; ADTS; UDTO; UDTS.

online algorithms ONLO and ONLS, is only 8.8 and 21.5%
lower than their online counterparts OFLO and OFLS,
but require a much lower computational complexity. In
addition, this difference diminishes as PT increases, and
when PT is sufficiently high, the ONLO algorithm is able

to achieve the same performance as OFLO does. It can be
also noted that ONLO and ONLO outperform ADTO and
ADTS significantly.
Figure 7 shows the variation of Rtot with η, while keep-

ing PT = 10 W. The performance relationship among
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Figure 7 Rtot versus η for different algorithms under PT = 10W. The SUs’ average total capacity with PUs’ rate loss ratio for different
algorithms. Legend of curves from top to bottom: OFLO; OFLS; ONLO; ONLS; ADTO; ADTS; UDTO; UDTS.
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the different algorithms exhibits the same trend as we
may observe in Figure 6. However, it is worth mention-
ing that the performance difference between OFLO and
ONLO becomes marginal in this case, compared with
that in Figure 6. Again, our proposed algorithms outper-
form UDTO and UDTS. Note that UDTO and UDTS are
insensitive to η as they select a low detection threshold
to achieve a low MDP, which prevents the SUs from shar-
ing the resources with the PUs. In addition, selecting a
low detection threshold leads to a high FAP, which fur-
ther exacerbates the reduction of available resources for
the SUs.
Finally, the convergence of the IODTT algorithm is

analyzed. Figure 8 depicts typical evolutions of the con-
vergence process for four random channel realizations
(ChRe), where the curves show Normi

P and Normi
λ at the

ith iteration, respectively. Note that Normi
P = ‖Pn‖ and

Normi
λ = ‖λ‖ are the Euclidean norms of vectors Pn and

λ. Pn denotes the power allocated on each sub-carrier,
which is calculated by P×ρ. The curves provide heuristic
evidence of the fast convergence of the IODTT algorithm
(4 to 6 iterations).

9 Conclusions
In this article, we study the joint optimization of detec-
tion threshold and resource allocation in infrastructure-
based multi-band CRN. The optimization problem has

been formulated to maximize the total downlink capacity
of SUs, considering three sets of variables, i.e., detec-
tion threshold, SAPA, with constraints on the PUs’ rate
loss and the power budget of the CR-BS. Two schemes,
referred to as offine and online algorithms respectively,
are proposed to solve the optimization problem. The
offline algorithm is able to achieve global optimization
however with prohibitively high computation complex-
ity. The online algorithm, on the other hand, is able to
achieve close-to-optimal performance with realtime oper-
ations. Lastly, we have shown through extensive simula-
tions that by jointly optimizing the detection threshold
together with the SAPA strategies, the downlink capacity
of CRN can be improved significantly, outperforming the
traditional static detection threshold based algorithms.

Appendix 1: proof of proposition 1
With �R = ηRmax

pu,n, the C2 of (P2) can be transformed into

(Pmd
n (λn) − η)Rmax

pu,n ≤ Pmd
n (λn) log2

(
1 + ppu|hpun |2

pk,n|hcpk,n|2+δ2

)
. If

η < Pmd
n (λn), after straightforward mathematical manip-

ulation, the C2 of (P2) is shown to be equivalent to
K∑

k=1
ρk,npk,n < Pmax

n ,∀n; If η ≥ Pmd
n (λ

opt
n ), we have

(Pmd
n (λn) − η)Rmax

pu,n ≤ 0 ≤ Pmd
n (λn)Rmd

pu,n. Thus C2 is
equivalent to

∑K
k=1 ρk,npk,n ≥ 0,∀n.
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Figure 8 Iteration required to update {λn,pk,n, ρk,n} in the IODTT algorithm. The convergence performance of the IODTT algorithm with
iteration index. Legend of curves: ChRe 1; ChRe 2; ChRe 3; ChRe 4. ChRe denotes channel realization.
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Appendix 2: proof of proposition 2

Define f2(p∗
k,n) = p∗

k,n + 1
αk,n

= 1−Pfan (λn)+Pmd
n (λn)

(μ+βn) ln 2−f1(p∗
k,n)

, and
note that f2(p∗

k,n) is a decreasing function of p∗
k,n. For

p∗
k,n ≥ 0, the maximum value of f2(p∗

k,n) is: fmax
2 (0) =

1−Pfan (λn)+Pmd
n (λn)

(μ+βn) ln 2−f1(0) , and the minimum value of f2(p∗
k,n) is:

f min
2 (∞) = 1−Pfan (λn)+Pmd

n (λn)
(μ+βn) ln 2 . As shown in Figure 9,

assuming 1
αk,n

<
1−Pfan (λn)+Pmd

n (λn)
(μ+βn) ln 2−f1(0) , p∗

k,n is the point of
intersection between the curves of f2(p∗

k,n) = p∗
k,n + 1

αk,n

and f2(p∗
k,n) = 1−Pfan (λn)+Pmd

n (λn)
(μ+βn) ln 2−f1(p∗

k,n)
.

Appendix 3: proof of lemma 1
For arbitrary μ′,β ′, using (13), we have:

g(μ′,β ′) = max
P

L
(
P(μ′,β ′),μ′,β ′) , (28)

where:

L
(
P(μ′,β ′),μ′,β ′) =

K∑
k=1

N∑
n=1

(1−Pfan (λn))π0R0
k,n(P(μ′,β ′))

+
K∑

k=1

N∑
n=1

Pmd
n (λn)π1R1

k,n(P(μ′,β ′)

+ μ′
(
PT −

K∑
k=1

N∑
n=1

pk,n(μ′,β ′)
)

+
N∑

n=1
β ′
n

(
Pmax
n −

K∑
k=1

pk,n(μ′,β ′)
)
.

(29)

Let p∗
k,n(μ,β) be the optimal solution for minimizing

g(μ,β). According to (29), we have:

g(μ′,β ′) ≥
K∑

k=1

N∑
n=1

(1 − Pfan (λn))π0R0
k,n(p

∗
k,n(μ,β))

+
K∑

k=1

N∑
n=1

Pmd
n (λn)π1R1

k,n(p
∗
k,n(μ,β))

+ μ′
(
PT −

K∑
k=1

N∑
n=1

p∗
k,n(μ,β)

)

+
N∑

n=1
β ′
n

(
Pmax
n −

K∑
k=1

p∗
k,n(μ,β)

)
.

(30)

From (30), we have the following inequality:

g(μ′,β ′) ≥g(μ,β) + (μ′ − μ)

(
PT −

K∑
k=1

N∑
n=1

p∗
k,n(μ,β)

)

+
N∑

n=1
(β ′

n − βn)

(
Pmax
n −

K∑
k=1

p∗
k,n(μ,β)

)

(31)

which verifies the definition of sub-gradient and com-
pletes the proof.

Figure 9 The unique solution of OPA The OPA is the unique point of intersection between the curves of f2(p∗
k,n) = p∗

k,n + 1
αk,n

and

f2(p∗
k,n) = 1−Pfa

n (λn)+Pmd
n (λn)

(μ+βn) ln 2−f1(p∗
k,n)

.
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Endnote
aRate loss in our context indicates the lost data rate or
capacity of PUs due to the co-existence of SUs in the case
of missed detection.
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