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1 Introduction

TheN = 1 supersymmetric Born-Infeld (BI) theory [1–3] is the notorious example of theory

with the partial spontaneous breaking of global supersymmetry (PBGS). The relevant

superfield action is invariant under the second nonlinearly realized N = 1 supersymmetry

and so describes one of the possible patterns of the d = 4 PBGS N = 2 → N = 1 , with

the N = 1 spinor gauge superfield strength Wα as the relevant Goldstone fermion. It can

be interpreted as the worldvolume action of the space-filling D3 brane.

It was suggested in [4, 5] that there exists the N = 2 supersymmetric BI action describ-

ing the PBGS pattern N = 4→ N = 2 and admitting an interpretation as the static-gauge

form of the worldvolume action of D3 brane in D = 6. The corresponding Goldstone mul-

tiplet should be accommodated by the N = 2 Maxwell superfield strength W .

The N = 2 BI action constructed in [6, 7] does not reveal any extra N = 2 super-

symmetry and so cannot be regarded as a candidate for the N = 4 → N = 2 BI action.
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The group-theoretical setting for the latter (N = 4, d = 4 superalgebra properly extended

by a complex central charge) was suggested in [8]. In [9], there was proposed the method

of constructing N = 2 BI superfield action within this approach, such that it is invariant

under both the nonlinearly realized N = 4/N = 2 supersymmetry and the target space

shift symmetry (symmetry with respect to translations along two transverse directions of

D3 brane). The action was explicitly restored in a few first orders in the Maxwell N = 2

superfield strengthW , W̄. The terms up to the 8th order were shown to be identical to the

analogous recursion terms found in [10, 11] from the requirement of N = 2 U(1) self-duality

combined with the requirement of the target space shift invariance. Though the recursive

method of [9] enables, in principle, restoring the N = 4 → N = 2 BI action to any order

in W, it remained unclear whether this action could be given any suggestive closed form.

Recently, there was a revival of interest in the duality-invariant nonlinear extensions

of the Maxwell action [12–17] and its N = 1 and N = 2 supersymmetric cousins [10,

11] in connection with the possible crucial role of self-duality in checking the conjectures

about ultraviolet finiteness of N = 8 supergravity and its some lower N descendants [18–

21]. We have shown in [22, 23] that the “nonlinear twisted self-duality constraints” used

in [21, 24, 25] as the systematic method of constructing self-dual Lagrangians is none other

than the equations of motion for auxiliary bispinor fields in the off-shell formulation of

self-duality developed by us in [26, 27]. A generalization of this auxiliary-field formulation

to N = 1, 2 supersymmetric electrodynamics, with the bispinor fields being promoted to

the chiral spinor or scalar auxiliary superfields, was recently accomplished in [28, 29]. The

basic advantage of this approach is that the U(1) duality symmetry1 is realized on the

auxiliary (super)fields linearly, while the full set of self-dual systems is parametrized by

U(1) invariant interactions involving only the auxiliary (super)fields. Another characteristic

feature of this formulation is that many self-dual Lagrangians look much simpler prior to

trading the auxiliary (super)fields for the Maxwell (super)field strength. This refers, in

particular, to the N = 1 BI action as a typical example of self-dual N = 1 systems.

In application to the N = 2 case, the auxiliary superfield formulation implies that the

superfield action of any self-dual system can be cast in the following generic form

S(W,U) = Sb(W,U) + I(U) , (1.1)

where Sb is some universal bilinear part and I(U) is U(1) invariant interaction encoding

the entire information about the given self-dual system. The standard (W, W̄) form of the

action is reproduced, when eliminating the auxiliary superfield U by its equation of motion.

It seems natural to approach the problem of constructing the “genuine” N = 2 BI

action (with the partially broken N = 4 supersymmetry) from the duality side, using

the auxiliary superfield formalism as the universal general set-up for the self-dual N = 1

and N = 2 nonlinear electrodynamics actions. Initiating such a construction is the basic

subject of the present paper. We inspect the possibility of putting the N = 2 BI action

into the general self-dual form (1.1) and show that the answer is affirmative at least up to

the 10th order in the W, W̄ perturbative expansion of the action.

1Or U(N) symmetry - in the case of N Maxwell (super)fields.
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We start, in section 2, with a brief recalling of what is known about the structure of

the N = 4/N = 2 BI action SBI(W) in the standard W representation of refs. [9–11]. It

can be written as a sum of the minimal N = 2 BI action SX (W) = S2(W) + IX (W) [6, 7]

and an additional nonlinear interaction Î(W) with the higher-order derivatives,

SBI(W) = S2(W) + IX (W) + Î(W) . (1.2)

The interaction Î(W) is an infinite sum of the recursive terms which can be restored step

by step from the requirement of invariance under the second nonlinearly realized N = 2

supersymmetry. In [9], the action SBI(W) was manifestly given up to the 8th order in

W, W̄ . As a new development, we present the explicit form of the next, 10th order. We

also suggest a new general method of the recursive construction of the action. It proceeds

solely from the nonlinear realization of the central charge on the superfield strengthsW, W̄ .

In section 3 we recall the salient features of the (W,U) formulation of the self-dual

models of N = 2 electrodynamics and suggest the general form of the hypothetical repre-

sentation (1.1) for the N = 2 BI action:

SBI(W,U) = Sb(W,U) + IBI(U) , IBI(U) = IX (U) + IR(U) + IY(U) . (1.3)

Here, IX (U) is the (W,U) “image” of the minimal interaction IX (W) and IR(U) is obtained

through the replacementW ⇒ U in that part of Î(W) which is a sum of terms of the highest

orders in the x-derivatives. This part of Î(W) can be explicitly written to any order in W
by the method of ref. [9], as opposed to other parts which involve various descendants of

the lower orders in derivatives. Both IX and IR are U(1) invariant and so are guaranteed

to give self-dual action after passing to the (W, W̄) formulation. The third, unknown

interaction part IY(U) is responsible for some extra possible terms in Î(W) in (1.2) which

cannot be generated by the previous two U(1) invariant interactions.

In section 4 we cast the action of refs. [6, 7] in the formalism with the auxiliary chiral

N = 2 superfields U . The (W,U) representation of this action is analogous to our auxiliary

representation of the N = 1 BI action [29]. We construct, as a series in the auxiliary

superfields, the corresponding N = 2 U(1) invariant interaction IX (U), which reproduces

the action SX (W) of [6, 7] after eliminating the auxiliary superfield U by its equation of

motion in the total minimal (W,U) action SX (W,U) = Sb(W,U) + IX (U) . We explicitly

present IX (U) up to the 16th order, which, after going to the conventional W action, is

capable to reproduce the latter up to the 18th order.

In section 5 we discuss the (W,U) representation for the full “genuine” N = 2 BI

action (1.2). We start with the general form (1.3) without the unknown interaction part IY .

Substitution of the corresponding perturbative solution of the auxiliary equation for U into

this action yields, up to the 8th order inW, W̄, just the action SBI(W) = SX (W) + Î(W) ,

such that all descendants appear in Î(W) with the correct coefficients. Unfortunately,

starting from the 10th order, we observe a deviation from the genuine N = 4/N = 2 BI

action, which requires adding the proper auxiliary interaction IY(U). It is remarkable that

such IY(U) indeed exists, and we give explicitly the correction terms I(10)Y (U) which prove

to be manifestly U(1) invariant. This means that the self-duality of the N = 4/N = 2 BI

– 3 –
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action has been checked up to the 10th order. In the next orders in U , Ū we expect similar

correction terms I(2n)Y (U) , n ≥ 6 , too. At present we are not aware of any systematic way

of finding out such auxiliary superfield corrections.

2 N = 2 BI theory and spontaneous breaking of N = 4 supersymmetry

2.1 The general setting

The superfield N = 2 BI theory with the second nonlinearly realized N = 2 supersymme-

try was constructed in [9], starting from an infinite-dimensional representation of the full

centrally extended N = 4 supersymmetry on chiral superfields [8, 9]. The N = 4/N = 2

transformations of the chiral superfield strength W include the constant shift of the scalar

field (it is associated with the central charge in the N = 4 superalgebra). The invariance

under such a shift was earlier suggested in [10, 11] as the basic principle selecting the

N = 4/N = 2 BI action in the plethora of the N = 2 superfield U(1) self-dual actions.

The BI actions derived within these two approaches were found to coincide in a few lowest

orders in W, W̄.

Our conventions for the N = 2 superspace and the N = 2 gauge superfield strengths

are described in appendix A. We use the free superfield action

S2(W) =
1

4

∫
d8ZW2 +

1

4

∫
d8Z̄W̄2 , (2.1)

which yields the correctly normalized component free action. The full nonlinear action SBI
in our notations differs from that of [9] by the factor 1/4 and the replacement � → 2� .

Note that we ascribe to W the non-standard dimension, [W] = −1 (in the mass units); the

correct dimension of the action is ensured due to the implicit presence of a dimensionful

coupling constant which, for simplicity, has been put equal to 1 hereafter (appendix A).

We will need both the general and the chiral superspace forms of the BI action

SBI(W) = S2(W) + IBI(W) =
1

4

∫
d8ZA0 +

1

4

∫
d8Z̄Ā0 , (2.2)

IBI(W) =

∫
d12ZLBI(W) , (2.3)

where2

LBI =

∞∑
n=2

L(2n), A0(W) =

∞∑
n=1

A(2n)
0 =W2 + 2D̄4LBI . (2.4)

The upper index of L(2n) and A(2n)
0 denotes the order inW, W̄ . The object LBI , as defined

in (2.4), is generically complex, but we will see that its imaginary part is a total derivative

and so does not contribute to the action SBI ,

IBI =

∫
d12Z LBI =

1

2

∫
d12Z (LBI + L̄BI).

2We use the short-hand notations D̄4, D4 for the maximal powers of the N = 2 spinor covariant deriva-

tives, see appendix A.
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The proof of the N = 4 supersymmetry of the action (2.2) is based on the asser-

tion [9] that W together with A0 belong to an infinite-dimensional linear multiplet of the

N = 4 Poincaré superalgebra extended by a complex central charge generator; the latter is

assumed to be spontaneously broken (together with the N = 4/N = 2 part of supersym-

metry), so that W plays the role of Goldstone superfield associated with this generator.

The N = 4/N = 2 variations of W and A0 are given by [9]

δfW = f

(
1− 1

2
D̄4Ā0

)
+

1

2
f̄�A0 +

i

4
D̄α̇
k f̄D

kα∂αα̇A0, (2.5)

δfA0 = 2fW +
1

2
f̄�A1 +

i

4
D̄α̇
k f̄D

kα∂αα̇A1 , (2.6)

where A1 is the next chiral superfield component of the linear N = 4 multiplet just

mentioned and

f = c+ 2iθαk ξ
k
α , f̄ = c̄+ 2iθ̄kα̇ξ̄kα̇ , (2.7)

with c and ξkα , k = 1, 2 , being parameters of the spontaneously broken symmetries. The

infinite sequence of chiral superfields An, n ≥ 1 , have the following transformation laws

δfAn = 2fAn−1 +
1

2
f̄�An+1 +

i

4
D̄α̇
k f̄D

kα∂αα̇An+1 . (2.8)

It is straightforward to check that the Lie bracket of two nonlinear supersymmetry trans-

formations of W gives the standard x translation

[δ1, δ2]W =
i

2
[(D̄α̇

k f̄2)(D
kαf1)− (D̄α̇

k f̄1)(D
kαf2)]∂αα̇W = 2i[ξkα1 ξ̄α̇k2 − ξkα2 ξ̄α̇k1]∂αα̇W , (2.9)

where the identity (A.8) was used. The transformations of An, n ≥ 0 , have the same

closure

[δ1, δ2]An = 2i[ξkα1 ξ̄α̇k2 − ξkα2 ξ̄α̇k1]∂αα̇An. (2.10)

The action (2.2) is invariant under (2.6), taking into account the Bianchi identity (A.7)

and its corollary (A.8).

The most difficult step is to express A0 and all subsequent superfields An in terms of

W, W̄ and their ordinary and spinor derivatives. This is achieved by imposing an infinite

set of the N = 4 supersymmetric constraints on An. The first, basic constraint reads:

Φ0 = A0 −W2 − 1

2
A0D̄

4Ā0 − D̄4
∑
n=1

(−1)n

22n+1
An�nĀn = 0 . (2.11)

The higher-order recursion conditions are more complicated, e.g.,

Φ1 = �A1 + 2(A0�W −W�A0)

− D̄4
∑
n=0

(−1)n

22n+1
(�An+1�

nĀn −An+1�
n+1Ān) = 0 , (2.12)

Φ2 = �2A2 + 2(A0�
2A0 −�A0�A0 + 2�W�A1 −W�2A1 −A1�

2W)

− D̄4
∑
n=0

(−1)n

22n+1
(�2An+2�

nĀn − 2�An+2�
n+1Ān +An+2�

n+2Ān) = 0 . (2.13)
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The next constraints have the generic form Φn = �nAn + . . . = 0 . This infinite set of

constraints, in parallel with (2.11), is required by N = 4 supersymmetry, and it allows one

to recursively express A0, �A1 and �nAn , n ≥ 2 , in terms of W, W̄ and their derivatives.

The perturbative solution for any chiral superfield An can be written as the following

series

An =
∞∑
m=1

A(n+2m)
n , (2.14)

where, as before, the term A(n+2m)
n is of order (n + 2m) in W and W̄. Substitution of

these series into the original set of nonlinear constraints (2.11), (2.12), (2.13), . . . gives the

double-index chains of recursion relations, in particular,

A(2m)
0 − D̄4

m−2∑
n=0

(−1)n

22n+1

m−n−2∑
r=0

A(2m−n−2r−2)
n �nĀ(n+2r+2)

n = 0 , m ≥ 2 , (2.15)

whence, following the definition (2.4),

L(2m) =

m−2∑
n=0

(−1)n

22n+2

m−n−2∑
r=0

A(2m−n−2r−2)
n �nĀ(n+2r+2)

n , m ≥ 2 . (2.16)

The similar recursions relations can be written for the constraints which start with �nAn .

From the representation (2.16) it is easy to check that the imaginary parts of L(2m) are

indeed total derivatives and therefore do not contribute to the perturbative expansion of

IBI(W) in (2.3), ∫
d12ZL(2m) =

∫
d12ZL̄(2m). (2.17)

2.2 Explicit expressions for An

The characteristic feature of the explicit expressions for terms of different orders in

�nAn(W) is that these expressions can always be represented as �n of something. As

a result, the powers of � can be taken off from both sides of the relevant equalities, yield-

ing the explicit expressions for An . The solutions for the lowest terms in An for n ≤ 3

were constructed in [9]. In our conventions, they are

A(4)
0 =

1

2
D̄4(W2W̄2), A(6)

0 =
1

4
D̄4

[
W2W̄2(D4W2 + D̄4W̄2)− 2

9
W3�W̄3

]
, (2.18)

A(8)
0 = D̄4

[
1

8
W2W̄2(D4W2)2 +

1

4
W2W̄2(D4W2)(D̄4W̄2) +

1

8
W2W̄2(D̄4W̄2)2

+
1

8
W2W̄2D4(W2D̄4W̄2)− 1

36
W2W̄3�D4W3

− 1

18
W3�(W̄3D4W2)− 1

12
W3(D̄4W̄2)�W̄3 +

1

288
W4�2W̄4

]
, (2.19)

A(3)
1 =

2

3
W3, A(5)

1 =
2

3
D̄4(W3W̄2),

A(7)
1 = D̄4

[
1

2
W3W̄2D̄4W̄2 +

1

3
W3W̄2D4W2 − 1

12
W4�W̄3

]
,

– 6 –
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A(4)
2 =

1

3
W4, A(6)

2 =
1

2
D̄4(W4W̄2), A(5)

3 =
2

15
W5 . (2.20)

Knowing these expressions is sufficient for restoring A(10)
0 . Following [9], the implicit

form of the latter can be found from the general recursion formula (2.15) as

A(10)
0 =

1

2
D̄4

{
W2Ā(8)

0 + W̄2A(8)
0 +A(4)

0 Ā
(6)
0 +A(6)

0 Ā
(4)
0

− 1

4
[A(3)

1 �Ā(7)
1 +A(7)

1 �Ā(3)
1 +A(5)

1 �Ā(5)
1 ]

+
1

16
[A(4)

2 �2Ā(6)
2 +A(6)

2 �2Ā(4)
2 ]− 1

64
A(5)

3 �3Ā(5)
3

}
. (2.21)

The explicit expression for A(10)
0 is rather complicated and for this reason was not

given in [9]. For our further purposes, it is instructive to present such an expression. It

can be written as a sum of three terms

A(10)
0 = X (10) +R(10) + Y(10), (2.22)

with

X (10) = D̄4

{
1

16
W2W̄2(D4W2)3 +

1

8
W2W̄2(D̄4W̄2)(D4W2)2

+
3

16
W2W̄2(D4W2)(D̄4W̄2)2 +

1

16
W2W̄2(D̄4W̄2)3

+
1

16
W2W̄2D4[W2(D̄4W̄2)2] +

1

8
W2W̄2(D4W2)D4(W2D̄4W̄2)

+
1

8
W2W̄2(D̄4W̄2)D4(W2D̄4W̄2) +

1

16
W2W̄2(D4W2)D̄4(W̄2D4W2)

+
1

16
W2W̄2D4[W2D̄4(W̄2D4W2)]

}
, (2.23)

R(10) = D̄4

{
− 1

7200
W5�3W̄5

}
, (2.24)

Y(10) = D̄4

{
− 1

24
W2W̄3(D4W2)D4�W3 − 1

24
W3�D4(W̄3W2D4W2)

− 1

72
W2W̄2D4(W3�D̄4W̄3)− 1

36
W2W̄3D4�(W3D̄4W̄2)

− 1

72
W2(D̄4W̄2)D4(W̄3�W3)− 1

12
W3(D̄4W̄2)D4�(W̄3W2)

− 1

24
W3(�W̄3)D̄4(W̄2D4W2)− 1

72
W2W̄3(D̄4W̄2)�D4W3

− 1

12
W3(D̄4W̄2)2�W̄3 − 1

36
W3�D4(W̄3W2D̄4W̄2)

+
1

144
W3�D4(W̄4�W3) +

1

144
W4(�W̄3)�D̄4W̄3 +

1

144
W4(D̄4W̄2)�2W̄4

+
1

576
W2W̄4D4�2W4 +

1

192
W4�2(W̄4D4W2)

}
. (2.25)
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The basic differences between these three types of terms are as follows. The X term

contains no box operators inside the curly brackets, only the operators D4 and D̄4 are

present there; the R term contains only box operators; the Y term is mixed, it involves

both the box and the D4, D̄4 operators. As is seen from eqs. (2.18), (2.19) a similar

division into three such terms is also valid for A(4)
0 ,A(6)

0 and A(8)
0 . This reflects the general

property that the full chiral density A0, as a consequence of the constraint (2.11), admits

the splitting

A0 = X +R+ Y. (2.26)

Here, the superfield X is defined by the equation which is a truncation of the con-

straint (2.11), such that all the terms containing � are omitted,

X =W2 +
1

2
X D̄4X̄ . (2.27)

We study eq. (2.27) in some detail in section 4. The part X also accounts for the free action

W2, as well as for the quartic interaction A(4)
0 ∼ D̄4(W2W̄2). The superfield R originates

from the terms with An, n ≥ 1 , in (2.11):

R = 2D̄4
∞∑
n=3

(−1)n
1

(n!)2
Wn�n−2W̄n. (2.28)

The remaining superfield piece Y collects, in its perturbative expansion, the mixed terms

which are not combined into any obvious series.3 It contributes to the interaction IBI from

the eighth order.

While constructing the auxiliary superfield formulation of the N = 4/N = 2 BI action

in section 5, we will essentially make use of the general splitting (2.26).

As the last topic of this subsection, we will present the explicit form of the BI inter-
action IBI up to the 10th order (with taking into account the simplifications arising after
integrating by parts and grouping similar terms):

I
(4)
BI =

1

4

∫
d12ZW2W̄2 , (2.29)

I
(6)
BI =

1

8

∫
d12Z

[
W2W̄2(D4W2 + D̄4W̄2)− 2

9
W3�W̄3

]
, (2.30)

I
(8)
BI =

1

16

∫
d12Z

{
W2W̄2[(D4W2)2 + (D̄4W̄2)2 + 3(D4W2)(D̄4W̄2)]

− 2

3
[W̄3D4W2�W3 +W3(D̄4W̄2)�W̄3] +

1

36
W4�2W̄4

}
, (2.31)

3One can still find the series representation for some simple terms in Y.
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I
(10)
BI =

1

8

∫
d12Z

{
1

4
W2W̄2

[
(D4W2)3 + (D̄4W̄2)3 + 4(D4W2)2D̄4W̄2

+ 4(D4W2)(D̄4W̄2)2 + 2(D̄4W̄2)D4(W2D̄4W̄2) + 2(D4W2)D̄4(W̄2D4W2)

]
−1

3
W3W̄2(D̄4W̄2)�D̄4W̄3 − 1

3
W2W̄3(D4W2)�D4W3

−2

9
W3W̄2(D4W2)�D̄4W̄3 − 2

9
W2W̄3(D̄4W̄2)�D4W3 − 4

9
W3(D̄4W̄2)�(W̄3D4W2)

+
1

36
W4(�W̄3)�D̄4W̄3 +

1

36
W̄4(�W3)�D4W3

+
1

36
W4(D̄4W̄2)�2W̄4 +

1

36
W̄4(D4W2)�2W4 − 1

1800
W5�3W̄5

}
. (2.32)

The contributions from the three terms in (2.26) are easily recognized here. The terms like

B�kB̄ in (2.30)–(2.32) are hermitian up to a total derivative.

The straightforward (though rather cumbersome) calculations show that the sum of the

free action S2 and the interactions (2.29)–(2.32) is invariant, to the given order, under the

nonlinear c and c̄ central charge transformations (2.5). Moreover, all the terms in (2.29)–

(2.32) can be uniquely fixed, step by step, from the requirement of invariance under these

transformations (actually, under the c transformations, because the c̄ invariance follows

automatically as a consequence of the reality of the action).

2.3 An alternative calculation of An

So far, we reminded the basics of the formalism worked out in [9] and, as a new result,

gave the explicit form of the N = 4/N = 2 BI action up to the 10th order in W, W̄.

Now we would like to show that there exists an alternative method of expressing the chiral

superfields An in terms of the original N = 2 superfield strengths and their derivatives.

Its basic advantage is that it directly yields the correct expressions for An, n ≥ 0 , and not

for �nAn, as in the approach based on the constraints (2.11)–(2.13) and their higher n

generalizations.

Our starting point will be the linear realization of the central charge with the parameter

c on the full set of chiral functions W,An, n ≥ 1, and their conjugates, in accordance with

the transformation laws (2.5)–(2.8). Denoting this central charge generator as Z, we write

(a) ZW = 1− 1

2
D̄4Ā0, (b) Z W̄ =

1

2
�Ā0, (2.33)

(a) ZA0 = 2W, (b) Z Ā0 =
1

2
�Ā1 , (2.34)

(a) ZAn = 2An−1, (b) Z Ān =
1

2
�Ān+1. (2.35)

The action of the conjugated central charge generator Z̄ corresponding to the transforma-

tions with the parameter c̄ can be obtained by complex conjugation.

Next, we assume that all An can be covariantly expressed in terms of W, W̄, have the

perturbative expansions as in (2.14), and that A0, Ā0 start with W2 and W̄2

A(2)
0 =W2 , Ā(2)

0 = W̄2 . (2.36)
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Surprisingly, this minimal set of assumptions is sufficient for restoring, by recursions, the

whole set of the perturbative terms in An by the group relations (2.33)–(2.35) adapted to

the nonlinear realizations An = An(W, W̄).

To this end, we consider the perturbative expansion of the central charge generators

Z, Z̄ in the nonlinear realization considered

Z = ∂ +
∞∑
n=1

Z(2n−1) , Z̄ = ∂̄ +
∞∑
n=1

Z̄(2n−1) , (2.37)

Z(2n−1)W = −1

2
D̄4Ā(2n)

0 (W), Z(2n−1)W̄ =
1

2
�Ā(2n)

0 (W), and c.c. , (2.38)

∂W = 1, ∂W̄ = 0 , ∂̄W = 0, ∂̄W̄ = 1 . (2.39)

The nonlinear parts of the Z generators can be found from the evident requirement

that all transformations in (2.33)–(2.35) are now induced by the transformations ofW and

W̄ defined in (2.38) and (2.39). In particular, for A0 we have

Z(2n−1)A(2m)
0 = −1

2
[D̄4Ā(2n)

0 ] ∂A(2m)
0 +

1

2
[�Ā(2n)

0 ] ∂̄A(2m)
0 . (2.40)

Eqs. (2.40) are understood in such a way that the variations ∂W and ∂̄W̄ appearing inside

A(2m)
0 (and, generically, standing under the differential operators like �m, D4, D̄4 ) are just

replaced by the nonlinear coefficients within the square brackets defined in (2.40). This

will be illustrated on a few examples presented below and in the appendix B.

The perturbative expansion of the first equation in (2.34), that is

ZA0(W) = 2W,

reads

∂A(2)
0 = 2W , ∂A(2n)

0 + Z(2n−3)W2 +
n−1∑
m=2

Z(2n−2m−1)A(2m)
0 = 0 , n ≥ 2 . (2.41)

The first chiral equation is identically satisfied, while the second one yields an infinite set

of the recursion relations for determining A0. Several first relations are as follows

∂A(4)
0 + Z(1)A(2)

0 = 0 , ∂A(6)
0 + Z(3)A(2)

0 + Z(1)A(4)
0 = 0, (2.42)

∂A(8)
0 + Z(5)A(2)

0 + Z(3)A(4)
0 + Z(1)A(6)

0 = 0 . (2.43)

Explicitly, the first equation in (2.42) is

∂A(4)
0 =WD̄4W̄2. (2.44)

In view of the definition (2.39), A(4)
0 is just primitive of the r.h.s. with respect to the

argument W:

A(4)
0 ≡

∫
W
∂A(4)

0 =

∫
W
WD̄4W̄2 =

1

2
W2D̄4W̄2 ,
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that coincides with the relevant expression in (2.18). Having at hand A(4)
0 , it is easy to

calculate the terms

Z(3)A(2)
0 = 2WZ(3)W, Z(1)A(4)

0 =W(D̄4W̄2)Z(1)W +WD̄4(W̄Z(1)W̄)

and to find the explicit expression for ∂A(6)
0

∂A(6)
0 =

1

2
D̄4

[
WW̄2(D4W2 + D̄4W̄2)−W2W̄�W̄2

]
. (2.45)

It is also rather easy to find the primitive of this expression (using, at one of the intermediate

steps, the identity (A.8)). The answer coincides with the corresponding expression in (2.18).

At this step we encounter an ambiguity. The primitive of the first term in (2.45)

(∼ WD4W2) is defined up to the “integration constant”

C =W2D4W2 − 2

3
W3D4W − 2

3
WD4W3 +

1

6
D4W4 , ∂C = 0 . (2.46)

However, this uncertainty is fully fixed by recalling that A(6)
0 = 2D̄4L(6) (eq. (2.3)), where

L(6) is real up to a total derivative (eq. (2.17)). The contribution of C (2.46) is not

compatible with this reality property and so should be discarded, leaving us with the

expression (2.18) manifestly satisfying this reality criterion. Another way to see that C

does not contribute is to check the validity of the equation with Z̄

∂̄A(6)
0 + Z̄(3)A(2)

0 + Z̄(1)A(4)
0 =

1

2
�A(5)

1 , (2.47)

where A(5)
1 is defined in (2.20). Once again, this equation requires that the coefficient

before the possible contribution of C be vanishing.

The more direct way to avoid the ambiguities of this type is to rewrite the second

equation in (2.41) as the equation for L(2n)

∂L(2n) − 1

2
WĀ(2n−2)

0 +

n−1∑
m=2

Z(2n−2m−1)L(2m) = 0 , (2.48)

which is obtained by expressing A(2n)
0 = 2D̄4L(2n), Z(2n−3) = −1

2D̄
4Ā(2n−2)

0 ∂ in (2.41)

and taking off the operator D̄4. Because of the reality of L(2n), the Z̄ equation does not

yield any new information. So the single eq. (2.48) uniquely specifies L(2n) and, hence,

the whole LBI . It is remarkable that for this recursion computation of L(2n) one needs

to know only L(2m) (and A(2m)
0 = 2D̄4L(2m)) with m ≤ n and does not need to know

An, n ≥ 1. It is easy to reproduce the correct L(6) and L(8) in this way, so that the

expressions for A(6)
0 = 2D̄4L(6) and A(8)

0 = 2D̄4L(8) coincide with those given in (2.18)

and (2.19). The expression for A(10)
0 (W, W̄), eqs. (2.22)–(2.25), can also be re-derived by

making use of (2.48). Calculating the next-order terms in A0 is also feasible, though such

a computation gets more and more involved with each new recursion.

Some other examples of applying the alternative approach with the differential ∂ and ∂̄

equations are given in appendix B. In particular, it can be used for the recursion calculation
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of the higher n chiral superfields, based on the relation (2.35a), with the same realization

of Z(2n−1) as in (2.40) (where one should replace A(2m)
0 → A(p+2m)

p , p ≥ 1 ). In this way,

the generic formulas can be obtained for the first two terms in the perturbative expansion

of An:

A(n+2)
n (W) =

2n+1

(n+ 2)!
Wn+2,

A(n+4)
n (W) =

n+ 1

2
A(n+2)
n D̄4W̄2 =

2n(n+ 1)

(n+ 2)!
Wn+2D̄4W̄2 . (2.49)

These expressions are deduced by successively integrating the chains of equations

∂A(n+2)
n = 2A(n+1)

n−1 , ∂A(n+4)
n − 1

2
D̄4W̄2 ∂A(n+2)

n = 2A(n+3)
n−1 , (2.50)

which follow from (2.34a) and (2.35a). For the higher-order A(n+2p)
n , p ≥ 3 , integration

of the corresponding ∂ equations can produce the “integration constants” like (2.46) and,

for selecting unambiguous solutions, one would be forced to resort to the ∂̄ equations

like (2.47).4 This is just the case for the examples of appendix B.

It is curious that the considerations based solely upon the realization of the central

charges Z and Z̄ on the superfields W, W̄ and An (eqs. (2.33), (2.34), (2.35) and their

conjugates) yield the correct expressions for An without any use of the original set of

constraints. Moreover, for restoring An in a given order one needs to know only the ex-

pressions for the lower orders in An, as well as in all Ap with p < n. As was already

mentioned, the basic superfield A0 can be restored order by order, using solely the ∂ equa-

tions, without any need to apply to An, n ≥ 1 . Nevertheless, to have the full set of chiral

superfields seems to be necessary for checking the consistency with the nonlinearly realized

N = 4/N = 2 supersymmetry. Indeed, the transformations (2.5)–(2.8) also imply the

validity of the Grassmann-odd equations corresponding to the mutually conjugated ξkα and

ξ̄α̇k transformations. However, these additional relations look as the consistency conditions

for the basic ones. It is easy, e.g., to check their validity for a few first perturbative terms in

Ā0 and Ān, n ≥ 1. Note that the similar conclusions about the specific interplay between

the restrictions following from the central charge symmetry and broken supersymmetry

were made in [9] in the perturbative approach exploiting the constraints (2.11)–(2.13) and

their higher n counterparts. Though the precise relationship between the two approaches

for the time being is not obvious to us, they both result in the same final answers and so

are expected to be equivalent.

To shed more light on the interplay between the central charge and N = 4 supersym-

metry invariances, let us explicitly write some restrictions following from the left nonlinear

supersymmetry in (2.5)–(2.8) (corresponding to the parameters ξαk ). Denoting the relevant

odd generator Skα, we find

SkαW = −2iθkαZW , SkαW̄ = −2iθkαZW̄ +
1

2
D̄kα̇∂αα̇Ā0 ,

4For the functions (2.49) the ∂̄ equations are satisfied identically.
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where the additional term in the transformation of W̄ guarantees both sides to be anti-

chiral. We observe that the realization of the left supersymmetry on W, W̄ is almost

completely specified by the realization of the central charge Z. The action of this super-

symmetry on the chiral Lagrangian density A0 is in fact fully determined by Z:

SkαA0 = −2iθkαZA0 = −4iθkαW . (2.51)

Thus the Skα invariance of the chiral integral
∫
d8Z A0 follows from its Z invariance. The

conjugated antichiral integral
∫
d8Z̄ Ā0 is manifestly invariant under the Z̄ and S̄kα̇ trans-

formations. The reality of these chiral integrals (since their Lagrangians are coincident

and real up to a total derivative) guarantees the entire N = 4 supersymmetry of the

N = 4/N = 2 BI action.

3 N = 2 BI action with auxiliary chiral superfields

Now we are prepared to turn to our basic aim, that is constructing a new formulation of

the N = 2 BI actions in terms of the auxiliary superfields.

3.1 N = 2 self-duality and auxiliary superfields

The formalism of auxiliary (super)fields gives the general description of the self-dual theo-

ries of nonlinear electrodynamics and its superextensions. Auxiliary bispinor fields in the

nonlinear electrodynamics were considered in [22, 23, 26, 27], the auxiliary chiral spinor

N = 1 superfields were introduced in [28, 29]. The similar auxiliary chiral scalar superfields

were also used to construct the actions of the N = 2 self-dual theories [24, 25, 28].

Introducing the auxiliary chiral scalar superfield U , we can consider the following

extended bilinear action:

Sb(W,U) =

∫
d8Z Lb(W,U) + c.c., (3.1)

Lb(W,U) = −1

2
U2 + UW − 1

4
W2 =

1

4
W2 − 1

2
(U −W)2 . (3.2)

The W equation of motion reads5

DklM(W,U)− D̄klM̄(W̄, Ū) = 0, (3.3)

M(W,U) = −2i
δSb
δW

= −2i
∂Lb
∂W

= i(W − 2U) . (3.4)

The equation of motion for the auxiliary superfield is just

U =W , (3.5)

and substituting this back into (3.2) and (3.4) yields the standard N = 2 bilinear ac-

tion (2.1) and the free equation of motion.

5We vary with respect to W and U as independent chiral superfields. The Bianchi identity (A.7) is

imposed afterwards.
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In the (W,U) representation, the general action of the nonlinear N = 2 electrodynam-

ics S(W,U) is the sum

S(W,U) = Sb(W,U) + I(U) , I(U) =

∫
d8Z L(U) + c.c. , (3.6)

where the interaction L(U) is a function of U , Ū and the composite superfields which one

can construct from U , Ū and their x and θ derivatives.

Once again, eliminating U , Ū by their equations of motion (in the generic case, recur-

sively),

U =W +
δI
δU

,
δI
δU

:= J (U , Ū) = D̄4J(U , Ū) , (3.7)

we arrive at the standard nonlinear N = 2 electrodynamics action

S(W) = S2(W) + I(W) = S(W,U(W)), (3.8)

I(W) = I(U)− 1

2

[∫
d8Z

(
δI
δU

)2

+ c.c.

]
. (3.9)

Note the useful equation which directly relates U(W) to the W, W̄ action (3.8):

U(W) =
1

2
W +

δS(W)

δW
=W +

δI(W)

δW
. (3.10)

The N = 2 self-duality condition and the corresponding U(1) duality transformations

in the standard W, W̄ representation are given by eqs. (A.15) and (A.17) of the appendix

A. In the (U ,W) representation, the self-duality amounts to the off-shell invariance of the

auxiliary interaction I(U) under the following U(1) transformations

δωU = −iωU , δωŪ = iωŪ , (3.11)

ω being a real constant parameter. The U(1) transformations of W and W̄ are

δωW = ωM(W,U) = iω (W − 2U) , δωW̄ = ω M̄(W,U) = −iω (W̄ − 2Ū) . (3.12)

Together with (3.11), they ensure the U(1) duality covariance of the relevant equations of

motion for W, W̄ combined with the Bianchi identities (A.7). In the interaction case the

dual superfield strengthM(W,U) and the dynamical equations of motion are given by the

same eqs. (3.4) and (3.3) as in the free case. The specificity of the given nonlinear system

is encoded in the auxiliary equation (3.7), i.e. in the structure of the superfield J(U , Ū).

The U(1) invariance of I(U) is equivalent to the integral self-duality condition (A.18),

which in the (W,U) formulation is reduced to∫
d8Z (WU − U2) =

∫
d8Z̄ (W̄Ū − Ū2) . (3.13)

Using in (3.13) the auxiliary equation (3.7), we reduce this condition to∫
d8Z U δI

δU
=

∫
d8Z̄ Ū δI

δŪ
, (3.14)
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which is just the condition of the invariance of the functional I(U) under the U(1) trans-

formations (3.11). The general self-dual N = 2 action admits the representation which is

N = 2 analog of the well-known Gaillard-Zumino representation [12–14] for the bosonic

self-dual actions:

S(W,U) =
i

4

∫
d8ZWM− i

4

∫
d8Z W̄M̄+ I ′(U) , (3.15)

I ′(U) = I(U)− 1

2

[ ∫
d8Z U(W −U) + c.c.

]
. (3.16)

The additional term in (3.16) is invariant under (3.11) and (3.12) on its own.

Any self-dual system of N = 2 electrodynamics can be reformulated as a system with

the off-shell action (3.6) in which the interaction part I(U) is invariant under the U(1)

duality transformations (3.11). Conversely, if some system of N = 2 electrodynamics

admits such a reformulation, it is self-dual. The conjecture that the N = 4/N = 2 BI

system is self-dual was put forward for the first time in [10, 11]. In [9] it was proved up

to the 8th order. One of the ways to prove this for the whole N = 2 BI action is to put

the latter into the (U ,W) form and to demonstrate that the corresponding IBI(U) is U(1)

invariant. Below we make a few steps towards this goal.

3.2 The (U ,W) form of the N = 2 BI action: general structure

The splitting (2.26) suggests the following natural conjecture for the (W,U) form of the

total N = 4/N = 2 BI action

SBI(W,U) = Sb(W,U) + IBI(U) =

∫
d8Z LBI(W,U) + c.c. , (3.17)

IBI(U) = IX (U) + IR(U) + IY(U) . (3.18)

Here, LBI(W,U) is the full chiral Lagrangian density, and the interaction functional IBI(U)

consists of the three different terms. Below we explain the motivations for including these

terms.

The interaction IX (U) =
∫
d8Z LX (U) + c.c. in the absence of other terms should

generate just the action associated with the chiral superfield X defined by eq. (2.27). It

was proven in [10, 11] that the corresponding nonlinear N = 2 action is self-dual and

defines an extension of the bosonic BI action. In the next subsection we will give a simpler

proof of its self-duality by constructing the (U ,W) representation for it.

The next term, IR(U) =
∫
d8Z LR(U) + c.c. , corresponds to the choice

LR =
1

2
D̄4

∞∑
n=3

(−1)n
1

(n!)2
Un�n−2Ūn . (3.19)

It is the only structure capable to produce the R contribution (2.28) in the W representa-

tion, taking into account that, in the lowest order, U =W +O(W, W̄). Note that the first

terms in this sum were studied in [24] using the approach based on the “deformed twisted

self-duality constraint”, which is equivalent to our approach with auxiliary (super)fields.
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Finally, the third term IY(U) =
∫
d8Z LY(U) + c.c. should be responsible for possible

corrections to the contributions of the first two terms to the total BI action IBI(W, W̄).

For the time being, we are not aware of any regular method of constructing such action.

We will see that it gives a non-zero contribution starting from the 10th order.

The auxiliary equation of motion (3.7) for the case under consideration can be writ-

ten as

U =W +
δIBI
δU

,
δIBI
δU

= JBI = D̄4JBI = D̄4(JX + JR + JY) . (3.20)

Since the whole LR is defined by eq. (3.19), we can write the full expression for JR:

JR =
∞∑
n=3

(−1)n
1

(n!)(n− 1)!
Un−1�n−2Ūn . (3.21)

We still have no closed expressions for other two terms in JBI . For the time being, we

know IX (U) up to the 16th order and IY(U) up to the 10th order (see next sections).

4 Simple self-dual N = 2 model

Here we consider in some detail the self-dual model associated with the superfield chiral

density X in (2.26) as a subsector of the full hypothetical N = 2 BI model.

4.1 New auxiliary superfield formulation

The superfield N = 2 action SX (W) = S2(W) + IX (W) is the minimal self-dual N = 2

superextension of the bosonic BI action. It was constructed in [6, 7]

SX =
1

4

∫
d8ZX (W) +

1

4

∫
d8Z̄X̄ (W), (4.1)

where the chiral auxiliary superfield satisfies the simple constraint

X = W2 +
1

2
X D̄4X̄ . (4.2)

The self-duality of SX was demonstrated in [10, 11]. The perturbative solution for

X (W) =
∞∑
n=1

X (2n) =W2 + 2D̄4
∞∑
n=1

L
(2n)
X

and the corresponding superfield densities in the full superspace, L(2n)(W) , were con-

structed, up to the 8th order in W, W̄, in [6, 7, 10, 11] and, up to the 14th order, in [30].

Up to the 10th order, the corresponding interaction IX (W) can be obtained by neglecting

all terms with the operator � in the sum of the actions defined in eqs. (2.29)–(2.32) (the

chiral density X to the same order is a sum of (2.23) and the lower-order terms singled out

from eqs. (2.18) and (2.19)).

As the preparatory step for passing to the (U ,W) formulation of this model, we will

present a different auxiliary superfield formalism for it, which enables writing its action
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in a closed form. The new representation is an analog of the similar formalism developed

in [29] for self-dual N = 1 gauge models.

First, we introduce the constraint (4.2) into the action with the help of the Lagrange

multiplier R:

S̃X (W,X ,M) =
1

4

∫
d8ZW2 +

1

4

∫
d8Z̄W̄2 +

1

4

∫
d12ZXX̄

+
1

4

∫
d12Z{R̄[W2 +

1

2
D̄4(XX̄ )−X ] +R[W̄2 +

1

2
D4(XX̄ )− X̄ ]}, (4.3)

where X and R are some complex auxiliary superfields. Varying this extended action with

respect to R̄ , we obtain the constraint

X =W2 +
1

2
D̄4(XX̄ ) , (4.4)

which has the same chiral perturbative solution as the equation for X (4.2). Note that the

chirality of X arises as a consequence of eq. (4.4), while in the action (4.3) this superfield is

unconstrained, like the superfield R . Substituting the solution of (4.4) into S̃X , we come

back to the original action (4.1).

On the other hand, varying (4.3) with respect to X̄ , we obtain the equation

X −R+
1

2
X D̄4R̄+

1

2
XD4R = 0 . (4.5)

Eliminating X with the help of this equation,

X (R) =
R

1 + 1
2r + 1

2 r̄
, r = D̄4R̄, r̄ = D4R ,

and substituting X (R) back into (4.3), we find the equivalent (W, R) representation of the

action SX

SX (W, R) =
1

4

∫
d8ZW2(1 + r) +

1

4

∫
d8Z̄W̄2(1 + r̄) +

1

4

∫
d12Z I(R) , (4.6)

I(R) = − RR̄

1 + 1
2r + 1

2 r̄
. (4.7)

The auxiliary equation for this action (obtained by varying with respect to R̄) is again

equivalent to (4.4)

W2 −X (R) +
1

2
D̄4
[
X (R)X̄ (R)

]
= 0 . (4.8)

Using this equation in the action (4.6), one can reduce the latter, modulo a total derivative,

to (4.1).6

Thus we derived a new off-shell formulation for the considered system in terms of the

N = 2 superfield strengths W, W̄ and a complex unconstrained auxiliary N = 2 superfield

R. In this formulation the action has the closed form (4.6), (4.7). The previously known

6The simplest way to accomplish this is to trade W2, W̄2 for X , X̄ by eq. (4.8).
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representation for the action as an infinite series in W, W̄ and their derivatives arises after

elimination of R by its equation of motion.

Using the relations

M(W, R) = −2i
δS(W, R)

δW
= −iW(1 + r),

δωW = ωM(W, R) , (4.9)

we find how the duality transformations (A.17) look in this particular model

δωW = −iωW(1 + r),

δωR̄ = 2iω

(
1 +

1

2
r

)
R̄, δωr = 2iω

(
1 +

1

2
r

)
r. (4.10)

The transformation of R is uniquely fixed by requiring that δM(W, R) = −ωW. The

auxiliary interaction (4.7) is invariant under these transformations, while the remaining

terms in (4.6) can be rewritten by analogy with the N = 2 GZ representation (3.15)

SX (W, R) =
i

4

∫
d8ZWM(W, R)− i

4

∫
d8Z̄ W̄M̄(W, R) +

1

4

∫
d12Z I(R). (4.11)

The existence of such a representation for the general N = 2 gauge model superfield action

amounts to the self-duality condition (A.15). Thus the model under consideration is self-

dual, in agreement with the conclusion drawn in [10, 11].

4.2 Passing to the (U ,W) formulation

In order to derive the equivalent (U ,W) representation of the model, we need to

rewrite (4.6) and (4.7) in a slightly different form. We introduce the new auxiliary su-

perfield variables N̄ and n = D̄4N̄ related to R, r as

R̄ =
N̄

1− 1
2n
, r = D̄4R̄ =

n

1− 1
2n

. (4.12)

Their nice property is that the duality transformations (4.10) act on them linearly,

δωN̄ = 2iω N̄ , δωn = 2iω n . (4.13)

In terms of the new variables the action (4.6) is rewritten as

SX (W, N) =
1

4

∫
d8ZW2 1 + 1

2n

1− 1
2n

+
1

4

∫
d8Z̄ W̄2 1 + 1

2 n̄

1− 1
2 n̄

+
1

4

∫
d12Z LX (N), (4.14)

with

LX (N) = − NN̄

1− 1
4nn̄

, (4.15)

by analogy with the corresponding N = 1 case [29]. The equations of motion for the

auxiliary superfields N, N̄ once again yield the chiral constraint (4.8) which reduces (4.14)

to (4.1).
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The action (4.14) is the starting point for finding out the standard (W,U) representa-

tion for the action of our system:

SX (W,U) = Sb(W,U) + IX (U2) . (4.16)

We introduce a chiral N = 2 superfield U and write the (U ,W, N) image of the

action (4.14) as

SX (W, N) ⇒ SX (W,U , N) = Sb(W,U) + IX (U2, N) , (4.17)

where

IX (U2, N) =
1

4

∫
d12Z

[
U2N̄ + Ū2N + L(N)

]
=

1

4

∫
d12Z

{
U2N̄ + Ū2N − NN̄

1− 1
4nn̄

}
. (4.18)

Using the U equation

U =
W

1− 1
2n

(4.19)

in the action (4.17), we return to the action (4.14). On the other hand, varying with respect

to N̄ (and N), we obtain the equation for N(U2)

N −
(

1− 1

4
nn̄

)
U2 +

1

4

(
1− 1

4
nn̄

)
D̄4

[
NN̄n̄(

1− 1
4nn̄

)2
]

= 0 (4.20)

(and its conjugate). Solving this equation by recursions, we find

IX (U2) = IX (U2, N(U2)) . (4.21)

The interaction term (4.18) is invariant and the equation (4.20) is covariant with respect

to the U(1) duality transformations (4.13), (3.11), so the ultimate interaction (4.21) is also

invariant under (3.11). This provides one more proof of the self-duality of the initial model.

For further use, we give a few first recursive solutions of eq. (4.20):

N (2) = U2, N (6) = −1

4
U2(A+B), (4.22)

N (10) =
1

16
U2

{
B2 +A(2B + B̄) + (D4U2)D̄4(Ū2B̄) + (D̄4Ū2)D4(U2B)

+ D̄4D4 [U2Ū2(2B̄ +B)]

}
, (4.23)

where we denoted

A := (D4U2)(D̄4Ū2), B := D̄4D4(Ū2U2), B̄ = D4D̄4(Ū2U2) .
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Using these solutions, we have constructed few lowest terms of the interaction IX (U2):

IX (U2) =

∞∑
n=1

∫
d12ZL(4n)X (U , Ū),

L(4)X =
1

4
U2Ū2, L(8)X = − 1

16
U2Ū2A, (4.24)

L(12)X =
1

64
U2Ū2

(
BB̄ +B2 + B̄2

)
, (4.25)

L(16)X = − 1

256
U2Ū2

{
D4[U2(B + 2B̄)]D̄4[Ū2(B̄ + 2B)]

+ (B + B̄)(B2 + B̄2)

}
. (4.26)

These terms allow one to restore the original action SX (W) up to the 18th order by

eliminating U , Ū by their equations of motion.7

The auxiliary equation for Sb(W,U) + IX (U2) contains the variational derivative

W −U + 2U δIX
δU2

=W −U + D̄4JX . (4.27)

Solving the auxiliary equation for the function U(W) and substituting this solution back

into this action, we obtain the “minimal” N = 2 action SX (W) as an infinite series of

the powers of W, W̄ and their derivatives. Note that this series comprises an enormous

number of terms, such that the new structures appear with each new recursion [30]. In

the (U ,W) formulation, at least up to the 16th order, we are left with a limited number

of terms which all are expressed through U2, Ū2 and the dimensionless objects A and B.

This makes it probable that the whole interaction IX (U) can be written as a sum of the

well defined terms related by some general recurrence formula.

5 The (U ,W) form of the N = 4/N = 2 BI action up to 10th order

Here we will find the auxiliary interaction IBI(U) which reproduces the (W, W̄) form of

the BI action up to the 10th order, i.e. the sum of four terms

ÎBI = I
(4)
BI + I

(6)
BI + I

(8)
BI + I

(10)
BI , (5.1)

which were written down in eqs. (2.29)–(2.32).

Our starting point will be the general decomposition (3.18) of IBI(U) into the three

terms. First, we know that in order to find the contribution of IX (U) to IBI(W) up to the

10th order, it is enough to keep in IX (U) the terms up to the 8th order, i.e. those defined

by eqs. (4.24), whence

ÎX (U) =
1

4

∫
d12Z U2Ū2

[
1− 1

4
(D4U2)(D̄4Ū2)

]
. (5.2)

7In ref. [30], the action SX (W) was explicitly given up to the 14th order. In the U language, this

corresponds to keeping, in (4.24)–(4.26), all terms up to the 12th order.
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Secondly, we need three terms from IR(U) defined by (3.19):

ÎR(U) =
1

8

∫
d12Z

(
− 2

9
U3�Ū3 +

1

72
U4�2Ū4 − 1

1800
U5�3Ū5

)
. (5.3)

The sum of the interaction terms (5.2) and (5.3) will serve as the input of our construc-

tion. They both are invariant under the duality U(1) group (3.11) and so necessarily yield

a self-dual theory after passing to the (W, W̄) representation. As for possible contributions

from IY (U), they are not known in advance and should be constructed as far as necessary,

step by step.

Next we need the explicit expressions for U in terms of (W, W̄) . They can be found

by solving the auxiliary equation (3.20) for Î = ÎX + ÎR:

U =W +
δÎ
δU

=W + D̄4(ĴX + ĴR) . (5.4)

The relevant recursion procedure is rather straightforward. Explicitly, eq. (5.4) reads

U = W +
1

2
D̄4

{
UŪ2 − 1

4
UŪ2[(D̄4Ū2)(D4U2) +D4D̄4(U2Ū2)]

− 1

6
U2�Ū3 +

1

72
U3�2Ū4 − 1

1440
U4�3Ū5

}
=:W + ∆U . (5.5)

The lowest perturbative solutions of this equation are

U (1) =W , U (3) =
1

2
D̄4(WW̄2) . (5.6)

We can calculate the (W, W̄) interaction ÎBI(W) in two different ways, which yield

the same result. One can find various orders of these action by directly substituting the

perturbative expansion U(W) =
∑

n=0 U (2n+1)(W) into ŜBI(W,U) = Sb(W,U) + Î(U) .

Alternatively, one can make use of the general equation (3.10), which amounts to

U (2n+1)(W) =
δÎ

(2n+2)
BI (W)

δW
, n ≥ 1 , (5.7)

and then calculate Î
(2n+2)
BI (W) by integrating these equations. To reconstruct ÎBI up to

the 10th order, one needs to know U up to the 7th order in the first method, and up to the

9th order in the second method.

We explicitly quote U (5) and U (7) obtained by solving eq. (5.5) in the corresponding

orders:

U (5) =
1

2
D̄4

[
1

2
WW̄2D̄4W̄2 +WW̄2D4W2 − 1

6
W2�W̄3

]
, (5.8)

U (7) =
1

4
D̄4

[
1

2
WW̄2(D̄4W̄2)2 +

3

2
WW̄2(D̄4W̄2)(D4W2) +

3

2
WW̄2(D4W2)2

+
3

2
WW̄2D4(W2D̄4W̄2)− 1

3
WW̄3D4�W3 − 1

2
W2(D̄4W̄2)�W̄3

− 1

2
W2�(W̄3D4W2) +

1

36
W3�2W̄4

]
. (5.9)
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After substitution of (5.6), (5.8) and (5.9) into the “truncated” (U ,W) action

ŜBI = Sb + ÎX + ÎR , (5.10)

and keeping there theW, W̄ terms up to the 10th order, we obtain the corresponding action

S(W, W̄) to the same 10th order. The relevant interaction coincides with (5.1) up to the

8th order, but reveals certain deviations from the correct 10th order term (2.32). These

deviations can be fully canceled by adding, to the sum of U interactions (5.2), (5.3), the

following 10th order contribution from IY(U):

ÎY(U) =
1

72

∫
d12Z

[
U3Ū2(D4U2)�D̄4Ū3 + U2Ū3(D̄4Ū2)�D4U3

+
1

2
U3(D̄4Ū2)�(Ū3D4U2)

]
. (5.11)

The last term is hermitian up to a total derivative. The interaction (5.11) is U(1) invariant,

so it does not break the self-duality of the relevant (W, W̄) action. As a result, we proved

that the 10th order N = 2 BI action ŜBI = S2 + ÎBI is self-dual.

It is useful to give how the auxiliary equation (5.5) is modified upon taking into account

the extra interaction (5.11):

∆U ⇒ ∆U + ∆U (9) , (5.12)

∆U (9) =
1

12
D̄4

{
1

4
U2(D̄4Ū2)�(Ū3D4U2) +

1

6
UŪ3D4�(U3D̄4Ū2)

+
1

2
U2Ū2(D4U2)�D̄4Ū3 +

1

3
UŪ2D4(U3�D̄4Ū3)

+
1

3
UŪ3(D̄4Ū2)�D4U3 +

1

2
U2D4�(U2Ū3D̄4Ū2)

}
. (5.13)

The solutions (5.6), (5.8) and (5.9) are not affected by this modification. Now one can

calculate the correct term U (9)(W) and be convinced that eq. (5.7) with n = 4 yields

just the expression (2.32) for Î
(10)
BI (W). We will not present details of this straightforward

consistency check (which we have done explicitly to make sure that everything is correct).

Finally, for reader’s convenience, we summarize our main results.

We started from the N = 2 BI action describing the spontaneous breaking N = 4 →
N = 2 and given, to the 10th order, by the expression

Ŝ
(10)
BI (W) = S2(W) + I

(4)
BI (W) + I

(6)
BI (W) + I

(8)
BI (W) + I

(10)
BI (W) , (5.14)

where the free part S2 and the interaction terms I
(4)
BI - I

(10)
BI are defined by eqs. (2.1), (2.29)–

(2.32). We showed that this N = 2 BI action admits, to the same 10th order in the involved

superfields, the equivalent (U ,W) formulation as the action

Ŝ(10)BI (U ,W) = Sb(U ,W) + I(4)BI (U) + I(6)BI (U) + I(8)BI (U) + I(10)BI (U) . (5.15)
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Here the bilinear part Sb is defined by eqs. (3.1), (3.2) and the interaction terms I(4)BI - I(10)BI

read

I(4)BI =
1

4

∫
d12Z U2Ū2 , I(6)BI = − 1

36

∫
d12Z U3�Ū3, (5.16)

I(8)BI = − 1

16

∫
d12Z

[
U2Ū2(D4U2)(D̄4Ū2)− 1

36
U4�2Ū4

]
, (5.17)

I(10)BI =
1

72

∫
d12Z

{
U3Ū2(D4U2)�D̄4Ū3 + U2Ū3(D̄4Ū2)�D4U3

+
1

2
U3(D̄4Ū2)�(Ū3D4U2)− 1

200
U5�3Ū5

}
. (5.18)

Eliminating recursively the auxiliary superfield U from the action (5.15) by its equation

of motion, and keeping all terms up to the 10th order in W, W̄, we recover the original

truncated BI action (5.14). Since the interaction in the action (5.15) is invariant under the

U(1) duality transformations (3.11), the action (5.15) is a particular case of the duality

symmetric N = 2 actions in the (U ,W) formulation. Hence its W representation, i.e. the

truncated BI action (5.14), also defines a self-dual system.

6 Conclusions and outlook

In this paper, we studied the possibility that the known N = 2 BI action with the sponta-

neously broken N = 4 supersymmetry admits the general (W,U) representation (1.1) with

the U(1) invariant interaction IBI(U), which would mean that this N = 2 BI action indeed

defines a self-dual system, as suggested in [10, 11] and [9]. We succeeded to show this up to

the 10th order in the involved superfields. As a by-product, we found the explicit form of

the 10th order of the original BI action which was known before only up to the 8th order.

It is rather straightforward to extend this consideration to the next, 12th order. All the

necessary ingredients for this are already collected in the present paper. In particular, in

appendix B we present a folded form of the Lagrange density L(12) (related to the chiral

Lagrangian density A(12)
0 as A(12)

0 = 2D̄4L(12)). However, we believe that there should

exist a method of proving the self-duality of the N = 4/N = 2 BI action to any order,

perhaps without inspecting each order step by step. This hope is based on the fact that

the full chiral Lagrangian density A0 can be found as the solution of the system of differ-

ential equations related to the nonlinear realization of the N = 4 central charge on the

superfield strengths W, W̄. This new approach to computing A0 is proposed in section 2.3

of our paper. The N = 2 self-duality, i.e. O(2) symmetry between the Bianchi identity and

nonlinear equation of motion for W, W̄, could be a hidden consequence of this basic set of

equations. Note that the hypothesis that the central charge (shift) symmetry properly re-

alized on W, W̄, being combined with the self-duality requirement, imply invariance under

the full spontaneously broken N = 4 supersymmetry was put forward in ref. [10, 11].8 Our

consideration agrees with this conjecture. It would be also of interest to reveal possible

links with a recent paper [31], where the problem of constructing the full N = 2 BI action

8See also [24, 25] for a discussion of the interplay between self-duality and nonlinear supersymmetry.
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with spontaneously broken N = 4 supersymmetry was treated at the component level and

the necessity of deformation of the linear N = 2 supersymmetry was argued.

An interesting open problem is whether the 10th order-truncated (U ,W) BI ac-

tion (5.15) can be somehow promoted to all orders in the auxiliary superfields U , Ū , thus

providing the (U ,W) form of the complete N = 4/N = 2 BI action (still unknown in the

closed form). While the structure of the pieces IX and IR in the general triad decomposi-

tion (2.26) is obvious, it is not true for the part IY . We know only that it starts from the

10th order (5.11). It would be tempting to see whether the Y terms can be interpreted as

perturbative solutions of some closed superfield equation like, e.g., eq. (4.2). The closely

related problem is to understand how the hidden spontaneously broken N = 4 supersym-

metry (including the central charge transformations) is realized in the (U ,W) formulation,

i.e. on the extended superfield set W, W̄,U , Ū . We hope to shed more light on these issues

soon.
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Note added. After the first version of this paper appeared in Archive, we realized that

an important part of ref. [25] directly related to the subject of our study has escaped our

notice.9 The authors of [25] calculated the auxiliary action (5.18) using the equivalent

language of “nonlinear twisted self-duality constraints” [21, 24]. However, only the �3

terms in their and our auxiliary actions agree, while the remaining ones do not coincide

and there is no way to transform them into each other. It seems that this discrepancy

is related to the fact that the explicit 10th order W action, which was taken as an input

in [25], does not coincide with our (2.32), although it was claimed to follow from ref. [9].

We warrant the correctness of (2.32) and, hence, of (5.18) because it was checked in a few

independent ways. So we can conclude that the auxiliary action of [25], while definitely

generating some self-dual N = 2 action, does not reproduce the 10th order of the genuine

N = 4/N = 2 BI action. For cogency, we added a new appendix C where some basic steps

leading to (2.32) are presented explicitly.

A N = 2 nonlinear electrodynamics

The N = 2, d = 4 superspace in the central basis is parametrized by the coordinate set

z = (xm, θαk , θ̄
kα̇) , with the supersymmetry generators realized as

Qkα = ∂kα − iθ̄kβ̇(σm)αβ̇∂m , Q̄kα̇ = −∂̄kα̇ + iθβk (σm)βα̇∂m . (A.1)

The N = 2 covariant spinor derivatives are defined by

Dk
α = ∂kα + iθ̄kβ̇(σm)αβ̇∂m , D̄kα̇ = −∂̄kα̇ − iθβk (σm)βα̇∂m . (A.2)

9We thank Stefano Bellucci for bringing this omission to our attention.

– 24 –



J
H
E
P
0
5
(
2
0
1
4
)
0
6
1

All these differential operators satisfy the relations

{Dk
α, D

l
β} = {D̄kα̇, D̄lβ̇} = 0 , {Dk

α, D̄lα̇} = −2iδkl (σm)αα̇∂m ,

{Qkα, Qlβ} = {Q̄kα̇, Q̄lβ̇} = 0 , {Qkα, Q̄lα̇} = 2iδkl (σm)αα̇∂m ,

{Dk
α, Q

l
β} = {Dk

α, Q̄lβ̇} = 0 , {D̄kα̇, Q
l
β} = {D̄kα̇, Q̄lβ̇} = 0 . (A.3)

We use the notation

Dik = DαiDk
α , Dαβ = Dk

αDkβ , D̄kl = D̄kα̇D̄
α̇
l , D̄α̇β̇ = D̄kα̇D̄

k
β̇
,

D4 =
1

16
(D1αD1

α)(D2αD2
α) =

1

48
DikDik =

1

48
DαβDαβ , D

4D̄4D4 = �2D4 , (A.4)

where � = ∂m∂m = 1
2∂

α̇α∂αα̇ , ∂αα̇ := (σm)αα̇∂m . The chiral and real superspace integra-

tion measures are

d12Z = d4xD4D̄4, d8Z = d4xD4. (A.5)

The chiral Abelian N = 2 superfield strengths are defined as

W = D̄4DklVkl , W̄ = D4D̄klVkl , (A.6)

where Vkl is the gauge prepotential [32].10 The corresponding Bianchi identity reads

DklW − D̄klW̄ = 0 . (A.7)

The corollary of (A.7) is the important relations

D4W = −�W̄ , D̄4W̄ = −�W . (A.8)

The free N = 2 gauge theory superfield action is

S(2)(W, W̄) =
1

4f2

∫
d8ZW2 +

1

4f2

∫
d8Z̄W̄2 , (A.9)

where f is a coupling constant of the dimension −2. Respectively, we ascribe to W the

non-standard dimension, [W] = −1 , in accordance with the interpretation of W as the

Goldstone superfield associated with a central charge of the mass dimension 1 in N =

4, d = 4 superalgebra [8]. The free equation of motion corresponding to the action (A.9) is

DklW − D̄klW̄ = 0 . (A.10)

The nonlinear R invariant superfield interaction can be written as:

Sint(W) =
1

f2

∫
d12Z L(W) , (A.11)

where the superfield density L has the dimension −4 and may depend on various dimen-

sionful superfield arguments

W2W̄2, W2+k�kW̄2+k, . . . , (A.12)

10The harmonic-superspace description of the N = 2 gauge theory can be found, e.g., in the book [33].
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as well as the dimensionless R invariant variables

D̄4W̄2 , D̄4[W̄2(D4W 2)] , DklW, ∂mW∂mW̄, . . . . (A.13)

We can rescale the action according to

Sint(W)→ 1

l2
Sint(lW) (A.14)

and make use of this freedom to set, for simplicity, f = 1. Throughout the paper, we stick

just to this choice.

Introducing the variational derivative of the action S = S2 + Sint with respect to the

chiral superfield strength,

M≡ −2i
δS

δW
, M̄ ≡ 2i

δS

δW̄
, (A.15)

we can write the nonlinear equation of motion corresponding to the sum of the actions (A.9)

and (A.11) as

DklM− D̄klM̄ = 0 . (A.16)

The nonlinear O(2) duality transformation mixing the equation of motion (A.16) with

the Bianchi identity (A.7) reads:

δωW = ωM(W, W̄) , δωM = −ωW , (A.17)

where ω is a real parameter. The nonlinear integral O(2) self-duality constraint on the

interaction L was given in [10, 11]:∫
d8Z(W2 +M2) =

∫
d8Z̄(W̄2 + M̄2) . (A.18)

This condition by itself is invariant under the duality transformations (A.17).

B The recursion calculation of L(12)

The expression for the 12th order term L(12) follows from the general formula for the

Lagrange density (2.16)

L(12) =
1

4
A(10)

0 Ā(2)
0 +

1

4
A(8)

0 Ā
(4)
0 +

1

4
A(6)

0 Ā
(6)
0 +

1

4
A(4)

0 Ā
(8)
0 +

1

4
A(2)

0 Ā
(10)
0

− 1

16
A(9)

1 �Ā(3)
1 −

1

16
A(7)

1 �Ā(5)
1 −

1

16
A(5)

1 �Ā(7)
1 −

1

16
A(3)

1 �Ā(9)
1

+
1

64
A(8)

2 �2Ā(4)
2 +

1

64
A(6)

2 �2Ā(6)
2 +

1

64
A(4)

2 �2Ā(8)
2

− 1

256
A(7)

3 �3Ā(5)
3 −

1

256
A(5)

3 �3Ā(7)
3 +

1

1024
A(6)

4 �4Ā(6)
4 . (B.1)

Recall that it is real up to a total derivative. Below we outline the necessary steps in

calculation of this superfield.
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The functions A(7)
3 and A(6)

4 are known from eqs. (2.49):

A(7)
3 =

4

15
W5D̄4W̄2 , A(6)

4 =
2

45
W6 . (B.2)

The unknown functions A(9)
1 and A(8)

2 can be found from the recursion equations

∂A(8)
2 = 2A(7)

1 − Z
(3)A(4)

2 − Z
(1)A(6)

2 ,

∂A(9)
1 = 2A(8)

0 − Z
(5)A(3)

1 − Z
(3)A(5)

1 − Z
(1)A(7)

1 . (B.3)

One can directly integrate these equations, using, e.g., the primitives∫
W
W2W̄2(D4W2)2 =

1

3
W3W̄2(D4W2)2 +

1

3
W4W̄2(D4W2)�W̄ +

2

15
W5W̄2(D4W)2,∫

W
W2(W̄2)(D4W2)D̄4W̄2 =

1

3
W3W̄2(D4W2)(D̄4W̄2) +

1

6
W4W̄2(D̄4W̄2)�W̄ . (B.4)

It is also straightforward to calculate other primitives needed for solving eqs. (B.3). As the

result, we obtain

A(8)
2 = W4D̄4

{
1

2
W̄2D̄4W̄2 +

1

4
W̄2D4W2 − 1

15
W�W̄3

}
, (B.5)

A(9)
1 = D̄4

{
1

6
W3W̄2[(D4W2)2 + 3(D4W2)(D̄4W̄2) + 2(D̄4W̄2)2]

+
1

6
W4W̄2(D4W2)�W̄ − 1

12
W4W̄(D4W2)�W̄2 +

1

4
W4W̄2(D̄4W̄2)�W̄

− 1

4
W4W̄(D̄4W̄2)�W̄2 − 1

12
W4(D̄4W̄2)�W̄3 +

1

6
W3W̄2D4(W2D̄4W̄2)

− 1

27
W3W̄3�D4W3 +

1

36
W4W̄3�D4W2 − 1

12
W4W̄�(W̄2D4W2)

− 1

36
W4�(W̄3D4W2) +

1

15
W5W̄2(�W̄)2 +

1

90
W5W̄3�2W̄

− 1

30
W5W̄(�W̄2)�W̄ − 1

30
W5W̄�(W̄2�W̄) +

1

40
W5�(W̄2�W̄2)

− 1

90
W5�(W̄3�W̄) +

1

720
W5�2W̄4

}
. (B.6)

The correctness of these expressions was confirmed by checking that they satisfy the Z̄

counterparts of eqs. (B.3),

∂̄A(8)
2 =

1

2
�A(7)

3 − Z̄
(3)A(4)

2 − Z̄
(1)A(6)

2 ,

∂̄A(9)
1 =

1

2
�A(8)

2 − Z̄
(5)A(3)

1 − Z̄
(3)A(5)

1 − Z̄
(1)A(7)

1 . (B.7)

The explicit expressions for L(12) and I
(12)
BI can now be directly written, but they are

too bulky to present them here. Note that L(12) could be equivalently calculated by the

method of section 2.3.
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C The bricks of the action I
(10)
BI

In this appendix we calculate explicitly different terms in the 10th order action 1
2

∫
d8Z A(10)

0

=
∫
d12Z L(10) , where A(10)

0 is the chiral density (2.21).

1

4

∫
d12ZW̄2A(8)

0 +
1

4

∫
d12ZW2Ā(8)

0

=
1

8

∫
d12Z

{
1

4
W2W̄2(D4W2)3 +

3

4
W2W̄2(D4W2)2(D̄4W̄2) +

3

4
W2W̄2(D4W2)(D̄4W̄2)2

+
1

4
W2W̄2(D̄4W̄2)3 +

1

4
W2W̄2(D̄4W̄2)D4[W2(D̄4W̄2)] +

1

4
W2W̄2(D4W2)D̄4[W̄2(D4W2)]

− 1

18
W2W̄3(D̄4W̄2)�D4W3 − 1

18
W3W̄2(D4W2)�D̄4W̄3

−1

6
W3W̄2(D̄4W̄2)�D̄4W̄3 − 1

6
W2W̄3(D4W2)�D4W3

−2

9
W3(D̄4W̄2)�[(W̄3(D4W2)] +

1

144
W4(D̄4W̄2)�2W̄4 +

1

144
W̄4(D4W2)�2W4

}
. (C.1)

1

4

∫
d12Z[Ā(4)

0 A
(6)
0 +A(4)

0 Ā
(6)
0 ]

=
1

8

∫
d12Z

{
1

4
W2W̄2[(D4W2) + (D̄4W̄2)]D̄4[W̄2(D4W2)]

+
1

4
W2W̄2[(D4W2) + (D̄4W̄2)]D4[W2(D̄4W̄2)]

− 1

18
D̄4[W̄2(D4W2)](W3�W̄3)− 1

18
D4[W2(D̄4W̄2)](W̄3�W3)

}
. (C.2)

− 1

16

∫
d12Z[A(7)

1 �Ā(3)
1 + Ā

(7)
1 �A(3)

1 ]

=
1

8

∫
d12Z

{
−1

6
W3(D̄4W̄2)2�W̄3 − 1

9
W3D̄4[W̄2(D4W2)]�W̄3

−1

6
W̄3W2(D4W2)�D4W3 − 1

9
W̄3W2(D̄4W̄2)�D4W3

+
1

36
W4(�D̄4W̄3)�W̄3 +

1

36
W̄4�W3(�D4W3)

}
. (C.3)

− 1

16

∫
d12ZA(5)

1 �Ā(5)
1 = − 1

36

∫
d12ZW3(D̄4W̄2)�[W̄3(D4W2)]. (C.4)

1

64

∫
d12Z[A(6)

2 �2Ā(4)
2 + Ā(6)

2 �2A(4)
2 ]

=
1

384

∫
d12Z[W4(D̄4W̄2)�2(W̄4) + W̄4(D4W2)�2(W4)]. (C.5)

− 1

256

∫
d12ZA(5)

3 �3Ā(5)
3 = − 1

14400

∫
d12ZW5�3W̄5. (C.6)

Summing up the terms (C.1)–(C.6) yields just the action (2.32).
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